

CC
PROBLEM SOLVING AND
PROGRAM DESIGN

S E V E N T H E D I T I O N

in

This page intentionally left blank

 Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi

Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Jeri R. Hanly, University of Wyoming

Elliot B. Koffman, Temple University

CC
PROBLEM SOLVING AND
PROGRAM DESIGN

S E V E N T H E D I T I O N

in

 Editorial Director, ECS: Marcia Horton
 Editor-in-Chief: Michael Hirsch
 Senior Project Manager: Carole Snyder
 Director of Marketing: Patrice Jones
 Marketing Manager: Yezan Alayan
 Senior Marketing Coordinator: Kathryn Ferranti
 Director of Production: Vince O’Brien
 Managing Editor: Jeff Holcomb
 Associate Managing Editor: Robert Engelhardt
 Production Manager: Pat Brown

 Creative Director: Jayne Conte
 Designer: Suzanne Behnke
 Media Editor: Daniel Sandin
 Media Project Manager: John Cassar
Cover Image: (c) michael Holcomb/Shutterstock.com
Full-Service Project Management: Mohinder Singh/
 Aptara®, Inc.
Composition: Aptara®, Inc.
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix

 Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on appropriate page within text.

Photo Credits: Page 4: Fig. 0.1: akg-images/Paul Almasy/Newscom. Page 11: Fig. 0.4: © 2008 IEEE/Journal of
Microelectromechanical Systems (2006). Page 15: Fig. 1.1: Intel Corporation Pressroom Photo Archives. Page 16:
Fig. 1.2(a) ©Hugh Threlfall/Alamy; Fig. 1.2(b) Hewlett-Packard Company; Fig. 1.2(c) © D. Hurst/Alamy; Fig. 1.2(d)
Handout/MCT/Newscom.

 Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries.
Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or
endorsed by or affiliated with the Microsoft Corporation.

 Copyright © 2013, 2010, 2007, 2004, and 2002 Pearson Education, Inc., publishing as Addison-Wesley.
All rights reserved. Printed in the United States of America. This publication is protected by Copyright, and permis-
sion should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

 Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

 Library of Congress Cataloging-in-Publication Data

Hanly, Jeri R.
 Problem solving and program design in C / Jeri R. Hanly, Elliot B. Koffman. —7th ed.
 p. cm.
 ISBN-13: 978-0-13-293649-1
 ISBN-10: 0-13-293649-6
 1. C (Computer program language) I. Koffman, Elliot B. II. Title.
 QA76.73.C15H363 2013
 005.13�3—dc23 2012000375

 10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-293649-6
ISBN 13: 978-0-13-293649-1

 This book is dedicated to

 Jeri Hanly’s family:

 Brian, Kevin, Laura, Trinity, and Alex

 Eric, Jennifier, Mical, Micah, Josiah, and Rachel

 Elliot Koffman’s family:

 Caryn and Deborah

 Richard, Jacquie, and Dustin

 Robin, Jeffrey, Jonathan, and Eliana

This page intentionally left blank

 P R E F A C E

 Problem Solving and Program Design in C teaches a disciplined approach to prob-
lem solving, applying widely accepted software engineering methods to design
program solutions as cohesive, readable, reusable modules. We present as an
implementation vehicle for these modules a subset of ANSI C—a standardized,
 industrial-strength programming language known for its power and portability. This
text can be used for a first course in programming methods: It assumes no prior
knowledge of computers or programming. The text’s broad selection of case studies
and exercises allows an instructor to design an introductory programming course in
C for computer science majors or for students from a wide range of other disciplines.

 New to this Edition

 Several changes to this edition are listed below:

 • Chapters 3 (Functions), 5 (Loops), and 7 (Arrays) include optional sections on
graphics programming

 • Chapter 6 (Pointers and Modular Programming) includes a new section 6.1
on pointers

 • New complete programs show use of if statements in Chapter 4
 • New complete program shows use of switch statement in Chapter 4
 • Chapter 7 (Simple Data Types) in previous edition is eliminated and its

 contents integrated into other chapters of the book
 • Hardware examples in Chapter 1 are updated to reflect current technology
 • Several chapters contain new programming project homework problems

 More About Graphics Many Computer Science faculty have recommended the
use of graphics to help motivate the study of introductory programming and as a
vehicle to help students understand how to use libraries and to call functions. We
agree with this viewpoint and have included three optional sections with graphics
examples in this edition. The new graphics sections include:

 Section 3.6 : Introduction to Computer Graphics
 Section 5.11 : Loops in Graphics Programs
 Section 7.10 : Graphics Programs with Arrays

 To reduce the overhead required to introduce graphics, we decided to use
WinBGIm (Windows BGI with mouse), which is a package based on the Turbo

viii Preface

Pascal BGI (Borland Graphics Interface) library. WinBGIm was created to run
on top of the Win32 library by Michael Main and his students at the University of
Colorado. Several development platforms appropriate for CS 1 courses have incor-
porated WinBGIm. Quincy (developed by Al Stevens) is an open-source student-
oriented C++ IDE that includes WinBGIm as well as more advanced libraries
(http://www.codecutter.net/tools/quincy). Figure 1 shows the Quincy new project
window (File → New → Project) with WinBGIm Graphics application selected.

 A command-line platform based on the open-source GNU g++ compiler and
the emacs program editor is distributed by the University of Colorado (http://www.
codecutter.net/tools/winbgim). WinBGIm is also available for Bloodshed Software’s
Dev-C++ and Microsoft’s Visual Studio C++.

 Using C to Teach Program Development

 Two of our goals—teaching program design and teaching C—may be seen by some
as contradictory. C is widely perceived as a language to be tackled only after one has
learned the fundamentals of programming in some other, friendlier language. The

 FIGURE 1

http://www.codecutter.net/tools/quincy
http://www.codecutter.net/tools/winbgim
http://www.codecutter.net/tools/winbgim

Preface ix

perception that C is excessively difficult is traceable to the history of the language.
Designed as a vehicle for programming the UNIX operating system, C found its
original clientele among programmers who understood the complexities of the oper-
ating system and the underlying machine and who considered it natural to exploit
this knowledge in their programs. Therefore, it is not surprising that many textbooks
whose primary goal is to teach C expose the student to program examples requir-
ing an understanding of machine concepts that are not in the syllabus of a standard
introductory programming course.

 In this text, we are able to teach both a rational approach to program devel-
opment and an introduction to ANSI C because we have chosen the first goal as
our primary one. One might fear that this choice would lead to a watered-down
treatment of ANSI C. On the contrary, we find that the blended presentation of
programming concepts and of the implementation of these concepts in C captures
a focused picture of the power of ANSI C as a high-level programming language,
a picture that is often blurred in texts whose foremost objective is the coverage of
all of ANSI C. Even following this approach of giving program design precedence
over discussion of C language features, we have arrived at coverage of the essential
constructs of C that is quite comprehensive.

 Pointers and the Organization of the Book

 The order in which C language topics are presented is dictated by our view of the
needs of the beginning programmer rather than by the structure of the C programming
language. The reader may be surprised to discover that there is no chapter entitled
“Pointers.” This missing chapter title follows from our treatment of C as a high-level
language, not from an absence of awareness of the critical role of pointers in C.

 Whereas other high-level languages have separate language constructs for out-
put parameters and arrays, C openly folds these concepts into its notion of a pointer,
drastically increasing the complexity of learning the language. We simplify the
learning process by discussing pointers from these separate perspectives where such
topics normally arise when teaching other programming languages, thus, allowing
a student to absorb the intricacies of pointer usage a little at a time. Our approach
makes possible the presentation of fundamental concepts using traditional high-
level language terminology—output parameter, array, array subscript, string—and
makes it easier for students without prior assembly language background to master
the many facets of pointer usage.

 Therefore, this text has not one but four chapters that focus on pointers.
 Chapter 6 (Pointers and Modular Programming) begins with a discussion of point-
ers, indirect reference, and the use of pointers to files (moved from Chapter 2). It
then discusses the use of pointers as simple output and input/output parameters,
 Chapter 7 deals with arrays, Chapter 8 presents strings and arrays of pointers.
 Chapter 11 discusses file pointers again. Chapter 13 describes dynamic memory
allocation after reviewing pointer uses previously covered.

x Preface

 Software Engineering Concepts

 The book presents many aspects of software engineering. Some are explicitly discussed
and others are taught only by example. The connection between good problem-solving
skills and effective software development is established early in Chapter 1 with a sec-
tion that discusses the art and science of problem solving. The five-phase software
development method presented in Chapter 1 is used to solve the first case study and is
applied uniformly to case studies throughout the text. Major program style issues are
highlighted in special displays, and the coding style used in examples is based on guide-
lines followed in segments of the C software industry. There are sections in several
chapters that discuss algorithm tracing, program debugging, and testing.

 Chapter 3 introduces procedural abstraction through selected C library func-
tions, parameterless void functions, and functions that take input parameters and
return a value. Chapters 4 and 5 include additional function examples including the
use of a function as a parameter and Chapter 6 completes the study of functions
that have simple parameters. The chapter discusses the use of pointers to represent
output and input/output parameters.

 Case studies and sample programs in Chapters 6 , 7 , and 10 introduce by exam-
ple the concepts of data abstraction and encapsulation of a data type and operators.
 Chapter 12 presents C’s facilities for formalizing procedural and data abstraction
in personal libraries defined by separate header and implementation files. Chapter
 14 (on the textbook website) introduces essential concepts of multiprocessing, such
as parent and child processes, interprocess communication, mutual exclusion lock-
ing, and dead lock avoidance. Chapter 15 (on the textbook website) describes how
object-oriented design is implemented by C++.

 The use of visible function interfaces is emphasized throughout the text. We do
not mention the possibility of using a global variable until Chapter 12 , and then we
carefully describe both the dangers and the value of global variable usage.

 Pedagogical Features

 We employ the following pedagogical features to enhance the usefulness of this
book as a learning tool:

 End-of-Section Exercises Most sections end with a number of Self-Check
Exercises. These include exercises that require analysis of program fragments as
well as short programming exercises. Answers to selected Self-Check Exercises
appear online at www.aw.com/cssupport in the directory for “Hanly”.

 Examples and Case Studies The book contains a wide variety of programming
examples. Whenever possible, examples contain complete programs or functions
rather than incomplete program fragments. Each chapter contains one or more
substantial case studies that are solved following the software development method.
Numerous case studies give the student glimpses of important applications of

www.aw.com/cssupport

Preface xi

computing, including database searching, business applications such as billing and
sales analysis, word processing, and environmental applications such as radiation
level monitoring and water conservation.

 Syntax Display Boxes The syntax displays describe the syntax and semantics of
new C features and provide examples.

 Program Style Displays The program style displays discuss major issues of good
programming style.

 Error Discussions and Chapter Review Each chapter concludes with a
section that discusses common programming errors. The Chapter Review includes
a table of new C constructs.

 End-of-Chapter Exercises Quick-Check Exercises with answers follow each
Chapter Review. There are also review exercises available in each chapter.

 End-of-Chapter Projects Each chapter ends with Programming Projects giving
students an opportunity to practice what they learned in the chapter.

 Appendices

 Reference tables of ANSI C constructs appear on the inside covers of the book.
Because this text covers only a subset of ANSI C, the appendices play a vital role
in increasing the value of the book as a reference. Throughout the book, array
referencing is done with subscript notation; Appendix A is the only coverage
of pointer arithmetic. Appendix B is an alphabetized table of ANSI C standard
libraries. The table in Appendix C shows the precedence and associativity of all
ANSI C operators; the operators not previously defined are explained in this
appendix. Appendix D presents character set tables, and Appendix E lists all ANSI
C reserved words.

 Supplements

 The following supplemental materials are available to all readers of this book at
 www.pearsonhighered.com/irc :

 • Source code
 • Known errata
 • Answers to odd-numbered Self-Check exercises.

 The following instructor supplement is available only to qualified instructors
at the Pearson Instructor Resource Center. Visit www.pearsonhighered.com/irc or
contact your local Pearson sales representative to gain access to the IRC.

 • Solutions Manual

www.pearsonhighered.com/irc
www.pearsonhighered.com/irc

xii Preface

 Acknowledgments

 Many people participated in the development of this textbook. For this edition, we
want to thank Michael Main for his assistance with WinBGIm and help with some of
the graphics examples. We would also like to acknowledge the contributions of his
students at the University of Colorado who adapted WinBGI to create WinBGIm
(Grant Macklem, Gregory Schmelter, Alan Schmidt, and Ivan Stashak). The review-
ers for this edition were Frank L. Friedman, Temple University, Philadelphia, PA;
Mark S. Hutchenreuther, California Polytechnic State University, San Luis Obispo,
CA; Anwar Mamat, University of Nebraska, Lincoln, NE; Hamdy Soliman, New
Mexico Tech, Socorro, NM; Tami Sorgente, Florida Atlantic University, Boca
Raton, FL; and Alexander Stoychev, Iowa State University, Ames, IA.

 We also want to thank Charlotte Young of South Plains College for her help in
creating Chapter 0 , and Jeff Warsaw of WaveRules, LLC, who contributed substan-
tially to Chapter 14 . Joan C. Horvath of the Jet Propulsion Laboratory, California
Institute of Technology, contributed several programming exercises, and Nelson
Max of the University of California, Davis suggested numerous improvements to the
text. Jeri appreciates the assistance of her Loyola College in Maryland colleagues—
James R. Glenn, Dawn J. Lawrie, and Roberta E. Sabin—who contributed several
programming projects. We are also grateful for the assistance over the years of
several Temple University, University of Wyoming, and Howard University former
students who helped to verify the programming examples and who provided answer
keys for the host of exercises, including Mark Thoney, Lynne Doherty, Andrew
Wrobel, Steve Babiak, Donna Chrupcala, Masoud Kermani, Thayne Routh, and
Paul Onakoya.

 It has been a pleasure to work with the Pearson team in this endeavor. The
Editor-in-Chief, Michael Hirsch, along with the Senior Project Manager, Carole
Snyder provided guidance and encouragement throughout all phases of manuscript
revision. Pat Brown and Bob Engelhardt supervised the production of the book,
while Yez Alayan developed the marketing campaign.

 J.R.H.
 E.B.K.

 C O N T E N T S

 0. Computer Science as a Career Path 1

 Section 1 Why Computer Science May be the Right Field for You 2
 Section 2 The College Experience: Computer Disciplines

and Majors to Choose From 4
 Section 3 Career Opportunities 9

 1. Overview of Computers and Programming 13

 1.1 Electronic Computers Then and Now 14
 1.2 Computer Hardware 17
 1.3 Computer Software 25
 1.4 The Software Development Method 33
 1.5 Applying the Software Development Method 36
 Case Study: Converting Miles to Kilometers 36
 1.6 Professional Ethics for Computer Programmers 39
 Chapter Review 41

 2. Overview of C 45

 2.1 C Language Elements 46
 2.2 Variable Declarations and Data Types 53
 2.3 Executable Statements 59
 2.4 General Form of a C Program 69
 2.5 Arithmetic Expressions 72
 Case Study: Supermarket Coin Processor 82
 2.6 Formatting Numbers in Program Output 87
 2.7 Interactive Mode, Batch Mode, and Data Files 90
 2.8 Common Programming Errors 93
 Chapter Review 99

xiv Contents

 3. Top-Down Design with Functions 107

 3.1 Building Programs from Existing Information 108
 Case Study: Finding the Area and Circumference of a Circle 109
 Case Study: Computing the Weight of a Batch of Flat Washers 112
 3.2 Library Functions 117
 3.3 Top-Down Design and Structure Charts 124
 Case Study: Drawing Simple Diagrams 124
 3.4 Functions without Arguments 126
 3.5 Functions with Input Arguments 136
 3.6 Introduction to Computer Graphics (Optional) 146
 3.7 Common Programming Errors 163
 Chapter Review 164

 4. Selection Structures: if and switch Statements 173

 4.1 Control Structures 174
 4.2 Conditions 175
 4.3 The if Statement 185
 4.4 if Statements with Compound Statements 191
 4.5 Decision Steps in Algorithms 194
 Case Study: Water Bill Problem 195
 4.6 More Problem Solving 204
 Case Study: Water Bill with Conservation Requirements 205
 4.7 Nested if Statements and Multiple-Alternative Decisions 207
 4.8 The switch Statement 217
 4.9 Common Programming Errors 223
 Chapter Review 224

 5. Repetition and Loop Statements 235

 5.1 Repetition in Programs 236
 5.2 Counting Loops and the while Statement 238
 5.3 Computing a Sum or a Product in a Loop 242
 5.4 The for Statement 247
 5.5 Conditional Loops 256
 5.6 Loop Design 261
 5.7 Nested Loops 268
 5.8 The do-while Statement and Flag-Controlled Loops 273
 5.9 Iterative Approximations 276
 Case Study: Bisection Method for Finding Roots 278

xvContents

 5.10 How to Debug and Test Programs 287
 5.11 Loops in Graphics Programs (Optional) 289
 5.12 Common Programming Errors 296
 Chapter Review 299

 6. Pointers and Modular Programming 315

 6.1 Pointers and the Indirection Operator 316
 6.2 Functions with Output Parameters 320
 6.3 Multiple Calls to a Function with Input/Output Parameters 328
 6.4 Scope of Names 334
 6.5 Formal Output Parameters as Actual Arguments 336
 6.6 Problem Solving Illustrated 340
 Case Study: Collecting Area For Solar-Heated House 340
 Case Study: Arithmetic with Common Fractions 347
 6.7 Debugging and Testing a Program System 356
 6.8 Common Programming Errors 359
 Chapter Review 359

 7. Arrays 375

 7.1 Declaring and Referencing Arrays 376
 7.2 Array Subscripts 379
 7.3 Using for Loops for Sequential Access 381
 7.4 Using Array Elements as Function Arguments 386
 7.5 Array Arguments 388
 7.6 Searching and Sorting an Array 401
 7.7 Parallel Arrays and Enumerated Types 406
 7.8 Multidimensional Arrays 414
 7.9 Array Processing Illustrated 419
 Case Study: Summary of Hospital Revenue 419
 7.10 Graphics Programs with Arrays (Optional) 428
 7.11 Common Programming Errors 437
 Chapter Review 438

 8. Strings 453

 8.1 String Basics 454
 8.2 String Library Functions: Assignment and Substrings 460
 8.3 Longer Strings: Concatenation and Whole-Line Input 469

xvi Contents

 8.4 String Comparison 474
 8.5 Arrays of Pointers 477
 8.6 Character Operations 483
 8.7 String-to-Number and Number-to-String Conversions 488
 8.8 String Processing Illustrated 495
 Case Study: Text Editor 495
 8.9 Common Programming Errors 504
 Chapter Review 506

 9. Recursion 517

 9.1 The Nature of Recursion 518
 9.2 Tracing a Recursive Function 524
 9.3 Recursive Mathematical Functions 532
 9.4 Recursive Functions with Array and String Parameters 538
 Case Study: Finding Capital Letters in a String 538
 Case Study: Recursive Selection Sort 541
 9.5 Problem Solving with Recursion 545
 Case Study: Operations on Sets 545
 9.6 A Classic Case Study in Recursion: Towers of Hanoi 553
 9.7 Common Programming Errors 558
 Chapter Review 560

 10. Structure and Union Types 567

 10.1 User-Defined Structure Types 568
 10.2 Structure Type Data as Input and Output Parameters 574
 10.3 Functions Whose Result Values Are Structured 580
 10.4 Problem Solving with Structure Types 583
 Case Study: A User-Defined Type for Complex Numbers 584
 10.5 Parallel Arrays and Arrays of Structures 592
 Case Study: Universal Measurement Conversion 594
 10.6 Union Types (Optional) 603
 10.7 Common Programming Errors 610
 Chapter Review 610

 11. Text and Binary File Processing 623

 11.1 Input/Output Files: Review and Further Study 624
 11.2 Binary Files 634
 11.3 Searching a Database 640

xviiContents

 Case Study: Database Inquiry 641
 11.4 Common Programming Errors 650
 Chapter Review 651

 12. Programming in the Large 659

 12.1 Using Abstraction to Manage Complexity 660
 12.2 Personal Libraries: Header Files 663
 12.3 Personal Libraries: Implementation Files 668
 12.4 Storage Classes 671
 12.5 Modifying Functions for Inclusion in a Library 675
 12.6 Conditional Compilation 678
 12.7 Arguments to Function main 682
 12.8 Defining Macros with Parameters 685
 12.9 Common Programming Errors 690
 Chapter Review 691

 13. Dynamic Data Structures 699

 13.1 Pointers 700
 13.2 Dynamic Memory Allocation 704
 13.3 Linked Lists 710
 13.4 Linked List Operators 716
 13.5 Representing a Stack with a Linked List 721
 13.6 Representing a Queue with a Linked List 725
 13.7 Ordered Lists 731
 Case Study: Maintaining an Ordered List of Integers 732
 13.8 Binary Trees 743
 13.9 Common Programming Errors 753
 Chapter Review 754

 14. Multiprocessing Using Processes and Threads
(Online at www.pearsonhighered.com/irc)

 14.1 Multitasking
 14.2 Processes
 14.3 Interprocess Communications and Pipes
 14.4 Threads
 14.5 Threads Illustrated

www.pearsonhighered.com/irc

xviii Contents

 Case Study: The Producer/Consumer Model
 14.6 Common Programming Errors
 Chapter Review

 15. On to C++ (Online at www.pearsonhighered.com/irc)

 15.1 C++ Control Structures, Input/Output, and Functions
 15.2 C++ Support for Object-Oriented Programming
 Chapter Review

 Appendices

 A More about Pointers A-1
 B ANSI C Standard Libraries B-1
 C C Operators C-1
 D Character Sets D-1
 E ANSI C Reserved Words E-1

 Answers to Odd-Numbered Self-Check Exercises
(Online at www.pearsonhighered.com/irc)

 Glossary G-1

 Index I-1

www.pearsonhighered.com/irc
www.pearsonhighered.com/irc

CC
PROBLEM SOLVING AND
PROGRAM DESIGN

S E V E N T H E D I T I O N

in

This page intentionally left blank

 Computer Science
as a Career Path

CHAPTER OBJECTIVES
 • To learn why computer science may be the right field

for you

 • To become familiar with different computer disciplines
and related college majors

 • To find out about career opportunities

 C H A P T E R

0

 Introduction
 In order to choose a course of study and eventually a desirable career path, we may
ask many important questions. Why would we choose this field? Will we be good at
it? Will there be jobs for us when we finish our education? Will we enjoy our work?
This chapter sheds some light on these types of questions for anyone contemplating
a degree in computer science or a related field.

 Section 1 Why Computer Science May be the
Right Field for You

 Reasons to Major in Computer Science

 Almost everything we do is influenced by computing. Today’s generation of college
students, dubbed the Millennials , are not surprised by this statement. They have
grown up with computers, the Internet, instant communication, and electronic
entertainment. They embrace new technology and expect it to do fantastic things.

 However, previous generations are not as comfortable with technology and try
to solve problems without always thinking of technology first. Many people in the
workforce resist the changes that technology requires. They often turn to the young-
est employees to take over technology issues and to make choices that will have
important consequences.

 This difference among generations creates a great environment for bright
and dedicated students to choose to major in computer science or a related field.
The computer industry is one of the fastest growing segments of our economy and
promises to continue to see growth well into the future. In order to be competitive,
businesses must continue to hire well-trained professionals not only to produce high
quality products for the present, but also to plan creative scientific and engineering
advances for the future.

 A person who is part of the computer industry can choose from a wide variety
of fields where many interesting and challenging problems will need to be solved.
In addition to all the business and communication jobs that may first come to
mind, people with degrees in computer science are working on problems from
all spectrums of life. A quick review of technical articles highlights such areas as
developing electronic balloting for state and national elections, using signals from
wireless devices to update vehicle and pedestrian travel times in order to make the
best decisions for traffic signals or management of construction zones, and using a
supercomputer-powered “virtual earthquake” to study benefits of an early warning
system using 3D models of actual geographic locations and damage scenarios.

 Millennials Those
born from 1982 on are
said to be confident,
social and team-
oriented, proud of
achievement, prone
to use analytic skills to
make decisions, and
determined to seek
security, stability, and
balance for themselves

3Section 1 • Why Computer Science May be the Right Field for You

 Some problems being worked on right now by computer professionals in the medi-
cal world include understanding how the human brain works by modeling brain activa-
tion patterns with emphasis on helping people impacted by autism or disorders like
paranoid schizophrenia; customizing a wide array of helpful devices for the physically
impaired, from programmable robotic prostheses to digital “sight”; gathering informa-
tion from implanted pacemakers in order to make timely decisions in times of crisis;
developing a computer system capable of recognizing human emotional states by analyz-
ing a human face in real-time; and developing human–computer interfaces that allow a
computer to be operated solely by human gestures in order to manipulate virtual objects.

 The fields of security and law enforcement present many challenges to the com-
puter professional, and include the following: The U.S. government is performing
observational studies on normal behavior in online worlds in hopes of developing
techniques for uncovering online activities of terrorist groups. Advancements in
voice biometrics technology allow speech to be analyzed by computer software to
determine identity, truthfulness, and emotional states. Electronic protection against
malicious software is of great concern to national economies and security interests.

 Some of our world’s most challenging problems will be worked on by teams of
 professionals from many disciplines. Obviously these teams will include computer
professionals who are creative and possess the knowledge of how to best use technol-
ogy. In the near future we will see much innovation in the areas of the human genome
project, environmental monitoring, AIDS vaccine research, clean fuels, tracking
weather changes by using robots in potentially dangerous areas, and using supercom-
puters to simulate the earth’s architecture and functions in order to predict natural dis-
asters. A way to make a positive difference in the world would be to study computing.

 Traits of a Computer Scientist

 An individual’s personality and character traits typically influence the field he or
she chooses to study and eventually in which he or she will work. The demands of
certain fields are met by individuals with certain capabilities. It makes sense that
people who are successful computer science students will have many common traits.
Read the following description and decide if it sounds like you.

 Foremost, you must love the challenge of solving problems. Computer science
is more about finding solutions to problems than it is about using the current com-
puter hardware or programming language. Solving problems requires being creative
and “thinking outside the box.” You must be willing to try things that are different
from the “accepted” solution.

 You enjoy working with technology and enjoy being a lifelong learner. You
enjoy puzzles and work tenaciously to find solutions. You probably don’t even notice
that the hours have flown by as you are narrowing in on the answer. You enjoy
building things, both in the actual world and in a “virtual world.” You can see how
to customize a particular object to make it work in a specific environment. You like
to tackle large projects and see them to completion. You like to build things that are
useful to people and that will have a positive impact on their lives.

4 Chapter 0 • Computer Science as a Career Path

 To be successful in the workplace, you must also be a good communicator. You
should be able to explain your plans and solutions well to both technical and non-
technical people. You must be able to write clearly and concisely in the technical
environment. Since most projects involve multiple people, it is important to work
well in a group. If you plan to become a manager or run your own company, it is
very important to be able to work with different personalities.

 Frederick P. Brooks, famous for leading the team that developed the operat-
ing system for the IBM System/360, wrote a book in the 1970’s titled The Mythical
Man Month—Essays on Software Engineering . Even though much has changed in
the computing world since he wrote the book, his essays still hold a lot of relevance
today. He listed the “Joys of the Craft” as the following: First is the sheer joy of
making things of your own design. Second is the pleasure of making things that
are useful to and respected by other people. Third is the joy of fashioning complex
puzzle-like entities into a system that works correctly. Fourth is the joy of always
learning because of the non-repetitive nature of the work. Finally, there is the joy
of working with a very tractable medium. The programmer can create in his or her
imagination and readily produce a product that can be tested and easily changed
and reworked. Wouldn’t the sculptor or civil engineer enjoy such easy tractability!

 Section 2 The College Experience: Computer Disciplines
and Majors to Choose From

 Most professionals in the computing industry have at least an undergraduate degree
in mathematics, computer science, or a related field. Many have advanced degrees,
especially those involved primarily in research or education.

 The IBM System/360 was a mainframe computer system family announced by IBM in 1964. It

was the first family of computers making a clear distinction between architecture and imple-

mentation, allowing IBM to release a suite of compatible designs at different price points. The

design is considered by many to be one of the most successful computers in history, influenc-

ing computer design for years to come (see Figure 0.1).

FIGURE 0.1

IBM Introduced the
System/360 Family of Business
Mainframe Computers in
1964.
(©2012 akg-images/Paul Almasy/
Newscom. Unauthorized use not
permitted.)

5Section 2 • The College Experience: Computer Disciplines and Majors to Choose From

 Computing is a broad discipline that intersects many other fields such as math-
ematics, science, engineering, and business. Because of such a wide range of choices,
it is impossible for anyone to be an expert in all of them. A career involving computing
requires the individual to focus his or her efforts while obtaining a college degree.

 There are many different degrees that involve computing offered at institutions
of higher learning. These degrees can even be from different departments within
the same institution. Although computing degrees can share some of the same
courses, they can also be quite different from each other. Choosing among them
can be confusing.

 To ease this confusion, it is wise for students to be exposed to the work already
done on this topic. The three largest international professional societies for comput-
ing professionals—the Association for Computing Machinery (ACM), the Association
for Information Systems (AIS), and the Institute of Electrical and Electronics
Engineers Computer Society (IEEE-CS)—produced a cooperative report titled
“Computing Curricula 2005.” Five fields and their suggested college curricula have
been identified and explained in this report: computer science, computer engineer-
ing, information systems, information technology, and software engineering.

 Most of the degree programs in our colleges and universities follow these guide-
lines. The report states at the beginning that “it is important that the computing
disciplines attract quality students from a broad cross section of the population and
prepare them to be capable and responsible professionals, scientists, and engineers.”1
There are countless opportunities for the dedicated and curious individual who is
willing to put in the hard work to obtain a degree. Those students who are also mem-
bers of an underrepresented minority will find these fields to be full of prospects.

Computer
science
degree

Computer
engineering

degree

Software
engineering

degree

Electrical
engineering
department

Engineering
college

Computer
science

department

Information
technology

degree

Business
college

Information
systems
degree

Sciences
college

 FIGURE 0.2

 Example of
relationships
between
computing
degrees and
university colleges
and departments.
This can vary
widely from
school to school

1 “Computing Curricula 2005” by the Association for Computing Machinery, Association for Information
Systems, Institute of Electrical and Electronic Engineers. Copyright © 2005 IEEE. Reprinted by
permission.

6 Chapter 0 • Computer Science as a Career Path

 Computer Science

 Computer science as a discipline encompasses a wide range of topics from theoreti-
cal and algorithmic foundations to cutting-edge developments. The work computer
scientists are trained to do can be arranged into three categories:

 • Designing and implementing useful software.
 • Devising new ways to use computers.
 • Developing effective ways to solve computing problems.

 A computer science degree consists of courses that include computing theory, pro-
gramming, and mathematics. These courses ultimately develop the logic and reasoning
skills integral to becoming a computer scientist. The math sequence includes calculus I
and II (and in many cases, calculus III) as well as discrete mathematics. Some students
also study linear algebra and probability and statistics. A computer science degree
offers a comprehensive foundation that permits graduates to understand and adapt to
new technologies and new ideas. Computer science departments are often found at
universities as part of the science, engineering, or mathematics divisions.

 Computer scientists take on challenging programming jobs, supervise other
programmers, and advise other programmers on the best approaches to be taken.
Computer science researchers are working with scientists from other fields to do
such things as using databases to create and organize new knowledge, making robots
that will be practical and intelligent aides, and using computers to help decipher the
secrets of human DNA. Their theoretical background allows them to determine the
best performance possible for new technologies and their study of algorithms helps
them to develop creative approaches to new (and old) problems.

 Computer Engineering

 For students who are more interested in understanding and designing the actual
computing devices, many opportunities are available in computer engineering,
which is concerned with the design and construction of computers and computer-
based systems. A computer engineering degree involves the study of hardware, soft-
ware, communications, and the interaction among them, and is a customized blend
of an Electrical Engineering degree with a Computer Science degree.

 The computer engineering curriculum includes courses on the theories, prin-
ciples, and practices of traditional electrical engineering as well as mathematics
through the standard calculus sequence and beyond. This knowledge is then applied
in courses dealing with designing computers and computer-based devices. In addi-
tion, programming courses are required so that the computer engineer can develop
software for digital devices and their interfaces.

 Currently, an important area for computer engineers involves embedded sys-
tems. This involves the development of devices that have software and hardware
embedded in them such as cell phones, digital music players, alarm systems, medical

7Section 2 • The College Experience: Computer Disciplines and Majors to Choose From

diagnostic devices, laser surgical tools, and so on. The devices a computer engineer
might work with are limitless as he or she applies his or her knowledge of how to
integrate hardware and software systems.

 Information Systems

 The information systems (IS) field focuses on integrating technology into businesses
and other enterprises to manage their information in an efficient and secure man-
ner. In this area, technology is viewed as an instrument for generating, processing,
and distributing information. Therefore, the focus in this field is on business and
organizational principles.

 Most IS programs are located in the business school of a university or college,
and IS degrees combine business and computing coursework, and the math that is
required has a business application focus. These degrees may be found under such
programs as Computer Information Systems (CIS) or Management Information
Systems (MIS). Degree program names are not always consistent, but they all have
their focus on business principles and applications of technology with less emphasis
on the theory of computer science or the digital design of computer engineering.

 IS specialists must understand both technical and organizational factors, and
must be able to help an organization determine how to use information and technol-
ogy to provide a competitive edge. These professionals serve as a bridge between
the technical community and the management community within an organization.
They are called on to determine the best way to use technology, organize informa-
tion, and communicate effectively.

 Information Technology

 An Information Technology (IT) program prepares students to meet the computer
technology needs of business, government, healthcare, schools, and other organiza-
tions. IT has its emphasis on the technology itself, more than on the information
handled, the theory behind it, or how to design hardware or software. IT profes-
sionals work with computer systems to ensure they work properly, are secure, are
upgraded and maintained, and are replaced as appropriate.

 Because computers have become integral parts of the work environment for all
employees at all levels of the organization, many enterprises must maintain depart-
ments of IT workers. Organizations of every kind are dependent on information
technology on a daily basis and the need for qualified workers is great.

 Degree programs in IT are commonly found in business or information man-
agement departments, or as an alternate degree in a computer science depart-
ment. IT programs in business departments focus on using applications to meet
the requirements, networking, systems integration, and resource planning. The
emphasis is less on programming and more on using programs already written to
the best advantage. IT programs in computer science departments often have more

8 Chapter 0 • Computer Science as a Career Path

emphasis on programming for computer users, with a focus on writing software for
interactive web pages, multimedia, and cloud computing.

 IT specialists select appropriate hardware and software products for an organi-
zation and then integrate these products within the existing infrastructure. They
install and customize and maintain the software as needed. Other examples of
responsibilities include network administration and security, design and imple-
mentation of Web pages, development of multimedia resources, oversight of email
systems, and installation of communication components. User support and training
are often important responsibilities for the IT professional as well.

 Software Engineering

 Software engineering (SE) is the discipline of developing and maintaining large
software systems. These systems must behave reliably and efficiently, be affordable,
and satisfy all requirements defined for them. SE seeks to integrate the theory of
computer science and mathematics with the practical engineering principles devel-
oped for physical objects.

 An SE degree program is closely related to the computer science degree
program, and they are usually offered within the same department. In fact, most
computer science curricula require one or more software engineering courses. An
SE degree can be considered a specialized degree within the confines of the field
of computer science.

 SE students learn more about software reliability and maintenance of large
systems and focus more on techniques for developing and maintaining software that
is engineered to be correct from its inception. Most programs require SE students
to participate in group projects for the development of software that will be used in
earnest by others. Students assess customer needs, develop usable software, test the
product thoroughly, and analyze its usefulness.

 Professionals who hold a software engineering degree expect to be involved
with the creation and maintenance of large software systems that may be used by
many different organizations. Their focus will be on the design principles that make
the system viable for many people and through many years.

 Although an SE degree has a recognized description, the term software engi-
neer is merely a job label in the workplace. There is no standard definition for
this term when used in a job description, and its meaning can vary widely among
employers. An employer may think of a programmer or an IT specialist as a soft-
ware engineer.

 Mixed Disciplinary Majors

 Technology is opening doors for fields of study that combine different sciences or
engineering fields with computing. Institutes of higher learning have responded by
offering courses or programs for multidisciplinary majors. Some examples follow.

9Section 3 • Career Opportunities

Biology Bioinformatics
Computer
science

Artificial
intelligence

Engineering
and robotics

Computer
science

Philosophy

Psychology

Linguistics

Forensic
science

Law enforcement

Computer
science

Computer
forensics

Mathematics Cryptology
Computer
science

Mechanical
engineering

Electrical engineering

Computer
science

Mechatronics

 FIGURE 0.3

 Illustrations of
the overlapping
fields within mixed
disciplinary majors

 • Bioinformatics is the use of computer science to maintain, analyze, and
store biological data as well as to assist in solving biological problems—usu-
ally on the molecular level. Such biological problems include protein folding,
protein function prediction, and phylogeny (the history, origin, and evolution
of a set of organisms). The core principal of bioinformatics involves using
computing resources to help solve problems on scales of magnitude too great
for human observation.

 • Artificial Intelligence (AI) is the implementation and study of systems that
can exhibit autonomous intelligence or behaviors. AI research draws from
many fields including computer science, psychology, philosophy, linguistics,
neuroscience, logic, and economics. Applications include robotics, control
systems, scheduling, logistics, speech recognition, handwriting recognition,
understanding natural language, proving mathematical theorems, data mining,
and facial recognition.

 • Computer Forensics is a branch of forensic science pertaining to legal evi-
dence that may be found in computers and digital storage devices. The col-
lection of this evidence must adhere to standards of evidence admissible in a
court of law. Computer forensics involves the fields of law, law enforcement,
and business.

 • Cryptology (or cryptography) is the practice and study of hiding information
and involves mathematics, computer science, and engineering. Electronic
data security for commerce, personal uses, and military uses continue to be of
vast importance.

 • Mechatronics is the combination of mechanical engineering, electronic engi-
neering, and software engineering in order to design advanced hybrid systems.
Examples of mechatronics include production systems, planetary exploration
rovers, automotive subsystems such as anti-lock braking systems, and autofo-
cus cameras.

 Even when the definitions are given for the different computing disciplines men-
tioned in this chapter, it is easy to see that there is great overlap among all of them.
In fact, many professionals who have earned a computer science degree may be
working in jobs that are closer to an information systems description or vice versa.
The student is encouraged to choose a computing field that seems closest to his or
her personal goals. Keep in mind that in general, computer science is probably the
degree that will open the most doors in the most diverse areas of computing.

 Section 3 Career Opportunities
 The Bureau of Labor Statistics is the principal fact-finding agency for the U.S.
Federal Government in the field of labor economics and statistics. This agency pub-
lishes The Occupational Outlook Handbook , which is a nationally recognized source

10 Chapter 0 • Computer Science as a Career Path

of career information, designed to provide valuable assistance to individuals making
decisions about their future work lives. The Handbook is revised every two years.

 In 2011, an occupation search using the term computer science resulted in over
9000 search results with more than 40 career matches. This means that computer
science was listed in the job description, or in the type of degree desired, or in the
recommended courses for that job. Examples of the matched include Computer
Software engineers, Computer Systems analysts, Mathematicians, Computer
Programmers, Web Designers and Developers, Secondary and Postsecondary
Teachers, Statisticians, Medical Records and Health Information Technicians,
Atmospheric Scientists, Market and Survey Researcher, Economists, Radiation
Therapists, Urban and Regional Planners, Surveyors and Mapping Technicians,
Conservation Scientists and Foresters, Travel Agents, Private Detectives and
Investigators, Geoscientists, Psychologists, and Interpreters and Translators.

 Look up information from the Bureau of Labor Statistics’ The Occupational Outlook

Handbook using http://www.bls.gov/oco/home.htm .

 The Demand in the United States and in the World

 According to the BLS Occupational Outlook Handbook, computer software engineer
and computer scientist and database administrator are some of the occupations pro-
jected to grow the fastest and to add the most new jobs over the 2008–2018 decade.
Strong employment growth combined with a limited supply of qualified workers will
result in excellent employment prospects. Those with practical experience and at
least a bachelor’s degree in computer engineering or computer science should have
the best opportunities. Employers will continue to seek computer professionals with
strong programming, systems analysis, interpersonal, and business skills.

 The Federal Government is the nation’s largest employer, with more than 1.8
million civilian employees. Computer specialists—primarily computer software
engineers, computer systems analysts, and network administrators—are employed
throughout the federal government. Of all the “professional and related occupa-
tions” listed as employed by the federal government, only the occupations of
computer specialists and conservation scientists were projected to have an actual
increase in job numbers for the 2008–2018 decade.

 The growing need for computer professionals is increased by the looming
retirement of a generation of baby boomers, and all of this is occurring as the
government projects that the computer science/IT workforce will grow nearly 25
percent between 2008 and 2018 more than twice as fast as the overall workforce.

 Today’s student should not be worried about any impact outsourcing computer
jobs to other countries will have on their ability to find a job. The fact is many com-
panies have tried outsourcing entire projects and found that it does not work well.

http://www.bls.gov/oco/home.htm

11Section 3 • Career Opportunities

Some of the more mundane aspects of coding can be outsourced, but the more cre-
ative work is best kept in house. For example, during the design and development
of a new system, interaction with specialists from other disciplines and communica-
tion with other team members and potential system users are of utmost importance.
These activities cannot be effectively done from a distance. Many companies are
abandoning outsourcing and doing more system development at home.

 The number of graduates from the computing fields will not meet the demand in
the marketplace in the foreseeable future. Projections and statistics show that there
will be plenty of jobs to be offered to the qualified computer professional and the
salaries will be higher than the average full-time worker earns in the United States.

 The Demand for Underrepresented Groups

 The demand for women and minorities to fill computer-related jobs is higher than
ever. The computer-related fields have traditionally seen small numbers of women
and minorities in the workplace. Colleges and universities want to attract these
groups to computer science and IS departments and often offer good scholarships
and opportunities.

 According to a recent study by the National Center for Women and
Information Technology, the most successful IT teams were also the most diverse.
The study showed that diversity of thought leads to innovation, and that companies
should be aware of the significance of diversity. Prospective students should not
be turned away by the stereotypical view of a “computer geek” who sits in front of
a computer all day, but should realize all the opportunities to be found in such a
diverse and fast-growing field. Computer professionals will be creating the applica-
tions that allow computers to solve real-world problems.

 FIGURE 0.4

 Untethered,
Electrostatic,
Globally
Controllable MEMS
Micro-Robot.
(© 2008 IEEE/Journal of
Microelectromechanical
Systems [2006])

12 Chapter 0 • Computer Science as a Career Path

 New Careers Constantly on the Horizon

 It is clear that there will be a healthy need for computer professionals in the career
paths that are known about today. For the student just starting to plan a career,
there will surely be opportunities that have not even been imagined yet. The possibili-
ties are amazing and the rewards are many.

 One such window into the future can be seen in the work of Bruce Donald, a
professor of Computer Science and of Biochemistry at Duke University. Through
his research, Professor Donald has developed microscopic robots that can be con-
trolled individually or as a group. These robots are measured in microns (millionths
of a meter) and are almost 100 times smaller than any previous robotic designs of
their kind. “Our work constitutes the first implementation of an untethered, multi-
microrobotic system.” Each robot can respond differently to the same single “global
control signal” as voltages charge and discharge on their working parts. A budding
computer scientist should see many fantastic applications for these devices!

 The student who chooses to major in computer science or a related field can
look forward to challenging and interesting classes. The job market will be wide
open upon graduation, with the assurance that such degrees will be highly market-
able. A new employee or researcher will have opportunities to be at the forefront
of innovative technology in a constantly changing world. The prospects are limited
only by the imagination.

 Overview of
Computers and
Programming

 CHAPTER OBJECTIVES
 • To learn about the different categories of computers

 • To understand the role of each component in a computer

 • To understand the purpose of an operating system

 • To learn the differences between machine language,
assembly language, and higher level languages

 • To understand what processes are required to run a
C program

 • To learn how to solve a programming problem in a
careful, disciplined way

 • To understand and appreciate ethical issues related to
the use of computers and programming

 C H A P T E R

1

 I n developed countries, life in the twenty-first century is conducted in a veritable
sea of computers. From the coffeepot that turns itself on to brew your morning cof-
fee to the microwave that cooks your breakfast to the automobile that you drive to
work to the automated teller machine you stop by for cash, virtually every aspect of
your life depends on computers . These machines which receive, store, process, and
output information can deal with data of all kinds: numbers, text, images, graphics,
and sound, to name a few.

 The computer program’s role in this technology is essential; without a list of
instructions to follow, the computer is virtually useless. Programming languages
allow us to write those programs and thus to communicate with computers.

 You are about to begin the study of computer science using one of the most
versatile programming languages available today: the C language. This chapter
introduces you to the computer and its components and to the major categories of
programming languages. It discusses how C programs are processed by a computer.
It also describes a systematic approach to solving programming problems called the
software development method and shows you how to apply it.

 1.1 Electronic Computers Then and Now
 In our everyday life, we come in contact with computers frequently, some of us using
computers for creating presentations and other documents, tabulating data in spread-
sheets, or even having studied programming in high school. But it wasn’t always this
way. Not so long ago, most people considered computers to be mysterious devices
whose secrets were known only by a few computer wizards.

 The first electronic computer was built in the late 1930s by Dr. John Atanasoff
and Clifford Berry at Iowa State University. Atanasoff designed his computer to
assist graduate students in nuclear physics with their mathematical computations.

 The first large-scale, general-purpose electronic digital computer, called the
ENIAC, was completed in 1946 at the University of Pennsylvania with funding from
the U.S. Army. Weighing 30 tons and occupying a 30-by-50-foot space, the ENIAC
was used to compute ballistics tables, predict the weather, and make atomic energy
calculations.

 These early computers used vacuum tubes as their basic electronic component.
Technological advances in the design and manufacture of electronic components
led to new generations of computers that were considerably smaller, faster, and less
expensive than previous ones.

 computer a machine
that can receive, store,
transform, and output
data of all kinds

151.1 • Electronic Computers Then and Now

 Using today’s technology, the entire circuitry of a computer processor can be pack-
aged in a single electronic component called a computer or microprocessor chip
(Fig. 1.1), which is less than one-fourth the size of a standard postage stamp. Their
affordability and small size enable computer chips to be installed in watches, cellphones,
GPS systems, cameras, home appliances, automobiles, and, of course, computers.

 Today, a common sight in offices and homes is a personal computer, which can
cost less than $1000 and sit on a desk (Fig. 1.2a) and yet has as much computational
power as one that 40 years ago cost more than $100,000 and filled a 9-by-12-foot
room. Even smaller computers can fit inside a briefcase or purse (Fig. 1.2b , c) or your
hand (Fig. 1.2 d).

 Modern computers are categorized according to their size and performance.
 Personal computers , shown in Fig. 1.2 , are used by a single person at a time. Large
real-time transaction processing systems, such as ATMs and other banking net-
works, and corporate reservations systems for motels, airlines, and rental cars use
 mainframes , very powerful and reliable computers. The largest capacity and fastest
computers are called supercomputers and are used by research laboratories and in
computationally intensive applications such as weather forecasting.

 computer chip
(microprocessor
chip) a silicon
chip containing the
circuitry for a computer
processor

 FIGURE 1.1

 The Intel Atom
processor chip
contains the full
circuitry of a
central processing
unit in an
integrated circuit
whose small size
and low power
requirements make
it suitable for use
in mobile internet
devices. (Intel
Corporation Pressroom
Photo Archives)

16 Chapter 1 • Overview of Computers and Programming

 FIGURE 1.2

(a) Desktop Computer, iMac. (© Hugh Threlfall/Alamy). (b) Hewlett Packard Laptop. (© Hewlett-Packard
Company). (c) iPad. (© D. Hurst/Alamy). (d) Android phone, LG Thrill 4G. (© Handout/MCT/Newscom).

a

b

c d

171.2 • Computer Hardware

 The elements of a computer system fall into two major categories: hardware and
software. Hardware is the equipment used to perform the necessary computations
and includes the central processing unit (CPU), monitor, keyboard, mouse, printer,
and speakers. Software consists of the programs that enable us to solve problems
with a computer by providing it with lists of instructions to perform.

 Programming a computer has undergone significant changes over the years.
Initially, the task was very difficult, requiring programmers to write their program
instructions as long binary numbers (sequences of 0s and 1s). High-level pro-
gramming languages such as C make programming much easier.

 EXERCISES FOR SECTION 1.1

 Self-Check

 1. Is a computer program a piece of hardware or is it software?
 2. For what applications are mainframes used?

 1.2 Computer Hardware
 Despite significant variations in cost, size, and capabilities, modern computers
resemble one another in many basic ways. Essentially, most consist of the following
components:

 ■ Main memory
 ■ Secondary memory, which includes storage devices such as hard disks, CDs,

DVDs, and flash drives
 ■ Central processing unit
 ■ Input devices, such as keyboards, mouses, touch pads, scanners, joysticks
 ■ Output devices, such as monitors, printers, and speakers

 Figure 1.3 shows how these components interact in a computer, with the arrows
pointing in the direction of information flow. The program must first be transferred
from secondary storage to main memory before it can be executed. Normally the
person using a program (the program user) must supply some data to be processed.
These data are entered through an input device and are stored in the computer’s
 main memory, where they can be accessed and manipulated by the central process-
ing unit. The results of this manipulation are then stored back in main memory.
Finally, the information in main memory can be displayed through an output device.
In the remainder of this section, we describe these components in more detail.

 Memory

 Memory is an essential component in any computer. Let’s look at what it consists of
and how the computer works with it.

 hardware the actual
computer equipment

 software the set of
programs associated
with a computer

 program a list
of instructions that
enables a computer to
perform a specific task

 binary number a
number whose digits
are 0 and 1

18 Chapter 1 • Overview of Computers and Programming

 Anatomy of Memory Imagine the memory of a computer as an ordered
sequence of storage locations called memory cells (Fig. 1.4). To store and access
information, the computer must have some way of identifying the individual
memory cells. Therefore, each memory cell has a unique address that indicates
its relative position in memory. Figure 1.4 shows a computer memory consisting of
1000 memory cells with addresses 0 through 999. Most computers, however, have
millions of individual memory cells, each with its own address.

 The data stored in a memory cell are called the contents of the cell. Every
memory cell always has some contents, although we may have no idea what they are.
In Fig. 1.4 , the contents of memory cell 3 are the number �26 and the contents of
memory cell 4 are the letter H.

 Although not shown in Fig. 1.4 , a memory cell can also contain a program
instruction. The ability to store programs as well as data is called the stored
program concept : A program’s instructions must be stored in main memory
before they can be executed. We can change the computer’s operation by stor-
ing a different program in memory.

Secondary storage

Input devices Output devicesMain
memory

Central
processing

unit

 memory cell an
individual storage
location in memory

 address of a memory
cell the relative
position of a memory
cell in the computer’s
main memory

 contents of a memory
cell the information
stored in a memory
cell, either a program
instruction or data

 stored program
concept a computer’s
ability to store program
instructions in main
memory for execution

 FIGURE 1.3

 Components of a Computer

191.2 • Computer Hardware

 Bytes and Bits A memory cell is actually a grouping of smaller units called
bytes. A byte is the amount of storage required to store a single character, such as
the letter H in memory cell 4 of Fig. 1.4 . The number of bytes a memory cell can
contain varies from computer to computer. A byte is composed of even smaller units
of storage called bits (Fig. 1.5). The term bit , derived from the words b inary dig it ,
is the smallest element a computer can deal with. Binary refers to a number system
based on two numbers, 0 and 1, so a bit is either a 0 or a 1. Generally, there are 8
bits to a byte.

 Storage and Retrieval of Information in Memory Each value in memory
is represented by a particular pattern of 0s and 1s. A computer can either store a
value or retrieve a value. To store a value, the computer sets each bit of a selected
memory cell to either 0 or 1, destroying the previous contents of the cell in the
process. To retrieve a value from a memory cell, the computer copies the pattern
of 0s and 1s stored in that cell to another storage area for processing; the copy
operation does not destroy the contents of the cell whose value is retrieved. This
process is the same regardless of the kind of information—character, number, or
program instruction—to be stored or retrieved.

 Main Memory Main memory stores programs, data, and results. Most computers
have two types of main memory: random access memory (RAM) , which offers

 byte the amount of
storage required to
store a single character

 bit a binary digit; a 0
or a 1

0

1

2

3

4

.

.

.

998

999

Address Contents

Memory

–27.2

354

0.005

–26

H

X

75.62

.

.

.

 FIGURE 1.4

 1000 Memory Cells
in Main Memory

00101100
Byte

Bit

 FIGURE 1.5

 Relationship
Between a Byte
and a Bit

 data storage setting
the individual bits of a
memory cell to 0 or 1,
destroying its previous
contents

 data retrieval
 copying the contents of
a particular memory cell
to another storage area

 random access
memory (RAM) the
part of main memory
that temporarily stores
programs, data, and
results

20 Chapter 1 • Overview of Computers and Programming

temporary storage of programs and data, and read-only memory (ROM) , which
stores programs or data permanently. RAM temporarily stores programs while they
are being executed (carried out) by the computer. It also temporarily stores such
data as numbers, names, and even pictures while a program is manipulating them.
RAM is usually volatile memory , which means that everything in RAM will be lost
when the computer is switched off.

 ROM, on the other hand, stores information permanently within the computer.
The computer can retrieve (or read), but cannot store (or write) information in
ROM, hence its name, read-only. Because ROM is not volatile, the data stored there
do not disappear when the computer is switched off. Start-up instructions and other
critical instructions are burned into ROM chips at the factory. When we refer to
main memory in this text, we mean RAM because that is the part of main memory
that is normally accessible to the programmer.

 Secondary Storage Devices Computer systems provide storage in addition to
main memory for two reasons. First, computers need storage that is permanent or
semipermanent so that information can be retained during a power loss or when the
computer is turned off. Second, systems typically store more information than will
fit in memory.

 Figure 1.6 shows some of the most frequently encountered secondary storage
devices and storage media. Most personal computers use two types of disk drives
as their secondary storage devices—hard drives and optical drives. Hard disks are
attached to their disk drives and are coated with a magnetic material. Each data bit
is a magnetized spot on the disk, and the spots are arranged in concentric circles
called tracks. The disk drive read/write head accesses data by moving across the
spinning disk to the correct track and then sensing the spots as they move by. The
hard disks in personal computers usually hold several hundred gigabytes (GB) of
data, but clusters of hard drives that store data for an entire network may provide as
much as several terabytes (TB) of storage (see Table 1.1).

 Most of today’s personal computers are equipped with optical drives for stor-
ing and retrieving data on compact disks (CDs) or digital versatile disks (DVDs) that
can be removed from the drive. A CD is a silvery plastic platter on which a laser
records data as a sequence of tiny pits in a spiral track on one side of the disk. One
CD can hold 680 MB of data. A DVD uses smaller pits packed in a tighter spiral,
allowing storage of 4.7 GB of data on one layer. Some DVDs can hold four layers of
data—two on each side—for a total capacity of 17 GB, sufficient storage for as much
as nine hours of studio-quality video and multi-channel audio.

 read-only memory
(ROM) the part of
main memory that
permanently stores
programs or data

 volatile
memory memory
whose contents
disappear when
the computer is
switched off

 secondary
storage units such as
disks or flash drives that
retain data even when
the power to the drive
is off

 disk thin platter
of metal or plastic
on which data are
represented by
magnetized spots
arranged in tracks

 optical drive device
that uses a laser to
access or store data on
a CD or DVD

CD Hard
disk

Flash
drive

 FIGURE 1.6

 Secondary Storage
Media

211.2 • Computer Hardware

 Flash drives such as the one pictured in Fig. 1.6 use flash memory packaged
in small plastic cases about three inches long that can be plugged into any of a
computer’s USB (Universal Serial Bus) ports. Unlike hard drives and optical drives
that must spin their disks for access to data, flash drives have no moving parts and
all data transfer is by electronic signal only. In flash memory, bits are represented
as electrons trapped in microscopic chambers of silicon dioxide. Typical USB flash
drives store 1 to several GB of data, but 64-GB drives are also available.

 Information stored on a disk is organized into separate collections called files .
One file may contain a C program. Another file may contain the data to be proc-
essed by that program (a data file). A third file could contain the results generated
by a program (an output file). The names of all files stored on a disk are listed in
the disk’s directory . This directory may be broken into one or more levels of sub-
directories or folders, where each subdirectory stores the names of files that relate
to the same general topic. For example, you might have separate subdirectories
of files that contain homework assignments and programs for each course you are
taking this semester. The details of how files are named and grouped in directories
vary with each computer system. Follow the naming conventions that apply to your
system.

 Central Processing Unit

 The central processing unit (CPU) has two roles: coordinating all computer
operations and performing arithmetic and logical operations on data. The CPU
follows the instructions contained in a computer program to determine which
operations should be carried out and in what order. It then transmits coordinating
control signals to the other computer components. For example, if the instruction
requires scanning a data item, the CPU sends the necessary control signals to the
input device.

 To process a program stored in main memory, the CPU retrieves each instruc-
tion in sequence (called fetching an instruction), interprets the instruction to
determine what should be done, and then retrieves any data needed to carry out

 TABLE 1.1 Terms Used to Quantify Storage Capacities

 Term Abbreviation Equivalent to Comparison to Power of 10

 Byte B 8 bits

 Kilobyte KB 1,024 (2 10) bytes > 10 3

 Megabyte MB 1,048,576 (2 20) bytes > 10 6

 Gigabyte GB 1,073,741,824 (2 30) bytes > 10 9

 Terabyte TB 1,099,511,627,776 (2 40) bytes > 10 12

 flash drive device
that plugs into USB port
and stores data bits as
trapped electrons

 file named collection
of data stored on a disk

 directory a list of the
names of files stored on
a disk

 subdirectory a list of
the names of files that
relate to a particular
topic

 central processing
unit (CPU)
 coordinates all
computer operations
and performs arithmetic
and logical operations
on data

 fetching an
instruction retrieving
an instruction from
main memory

22 Chapter 1 • Overview of Computers and Programming

that instruction. Next, the CPU performs the actual manipulation, or processing, of
the data it retrieved. The CPU stores the results in main memory.

 The CPU can perform such arithmetic operations as addition, subtraction, mul-
tiplication, and division. The CPU can also compare the contents of two memory
cells (for example, Which contains the larger value? Are the values equal?) and
make decisions based on the results of that comparison.

 The circuitry of a modern CPU is housed in a single integrated circuit or chip,
millions of miniature circuits manufactured in a sliver of silicon. An integrated cir-
cuit (IC) that is a full central processing unit is called a microprocessor. A CPU’s
current instruction and data values are stored temporarily inside the CPU in special
high-speed memory locations called registers .

 Some computers have multiple CPUs (multiprocessors) or a multi-core CPU.
These computers are capable of faster speeds because they can process different
sets of instructions at the same time.

 Input/Output Devices

 We use input/output (I/O) devices to communicate with the computer. Specifically, they
allow us to enter data for a computation and to observe the results of that computation.

 You will be using a keyboard as an input device and a monitor (display screen) as an
output device. When you press a letter or digit key on a keyboard, that character is sent
to main memory and is also displayed on the monitor at the position of the cursor , a
moving place marker (often a blinking line or rectangle). A computer keyboard has keys
for letters, numbers, and punctuation marks plus some extra keys for performing special
functions. The twelve function keys along the top row of the keyboard are labeled F1
through F12. The activity performed when you press a function key depends on the pro-
gram currently being executed; that is, pressing F1 in one program will usually not pro-
duce the same results as pressing F1 in another program. Other special keys enable you
to delete characters, move the cursor, and “enter” a line of data you typed at the keyboard.

 Another common input device is a mouse. A mouse is a handheld device used
to select an operation. Moving the mouse around on your desktop moves the mouse
cursor (normally a small rectangle or an arrow) displayed on the monitor’s screen.
You select an operation by moving the mouse cursor to a word or icon (picture) that
represents the computer operation you wish to perform and then pressing a mouse
button to activate the operation selected.

 A monitor provides a temporary display of the information that appears on its
screen. If you want hard copy (a printed version) of some information, you must
send that information to an output device called a printer .

 Computer Networks

 The explosion we are experiencing in worldwide information access is primarily due
to the fact that computers are now linked together in networks so they can com-
municate with one another. In a local area network (LAN) , computers and other

 register high-speed
memory location inside
the CPU

 multiprocessor a
computer with more
than one CPU.

 cursor a moving place
marker that appears on
the monitor

 function keys special
keyboard keys used
to select a particular
operation; operation
selected depends on
program being used

 mouse an input
device that moves its
cursor on the computer
screen to select an
operation

 icon a picture
representing a
computer operation

 hard copy a printed
version of information

 local area network
(LAN) computers,
printers, scanners,
and storage devices
connected by cables for
intercommunication

231.2 • Computer Hardware

devices in a building are connected by cables or a wireless network, allowing them
to share information and resources such as printers, scanners, and secondary stor-
age devices (Fig. 1.7). A computer that controls access to a secondary storage device
such as a large hard disk is called a file server .

 Local area networks can be connected to other LANs using the same tech-
nology as telephone networks. Communications over intermediate distances use
phone lines, fiber-optics cables or wireless technology, and long-range com-
munications use either phone lines or microwave signals that may be relayed by
satellite (Fig. 1.8).

 A network that links many individual computers and local area networks over a
large geographic area is called a wide area network (WAN) . The most well-known
WAN is the Internet, a network of university, corporate, government, and public-
access networks. The Internet is a descendant of the computer network designed
by the U.S. Defense Department’s 1969 ARPAnet project. The goal of the project
was to create a computer network that could continue to operate even if partially
destroyed. The most widely used aspect of the Internet is the World Wide Web
(WWW) , the universe of Internet-accessible resources that are navigable through
the use of a graphical user interface (GUI) .

 If you have a computer with a modem, you can connect to the information
superhighway through a telephone line, television or fiber-optic cable, or through
wireless or satellite communications. A modem (mo dulator/ dem odulator) converts
binary computer data into audio tones that can be transmitted to another computer
over a normal telephone circuit. At the computer on the receiving end, another
modem converts the audio tones back to binary data.

 Early modems for telephone lines transmitted at only 300 baud (300 bits per
second). Today’s modems transmit over 50,000 bits per second, or if you have a
digital subscriber line (DSL connection) or fiber-optics telephone line, the associated

 file server the
computer in a network
that controls access to a
secondary storage device
such as a hard disk

 FIGURE 1.7

 Local Area
Network

 wide area network
(WAN) a network
such as the Internet that
connects computers
and LANs over a large
geographic area

 World Wide Web
(WWW) a part of
the Internet whose
graphical user interfaces
make associated
network resources
easily navigable

 graphical user
interface (GUI)
 pictures and menus
displayed to allow user
to select commands
and data

 modem a device that
converts binary data
into audio signals that
can be transmitted
between computers
over telephone lines

 DSL connection
(digital subscriber
line) a high-speed
Internet connection that
uses a telephone line
and does not interfere
with simultaneous voice
communication on the
same line

24 Chapter 1 • Overview of Computers and Programming

Satellite

Microwave tower

Local area network (LAN)

 FIGURE 1.8

 A Wide Area Network with Satellite Relays of Microwave Signals

modem can transmit 1.5 million bits per second (DSL) or a few billion bits per sec-
ond (fiber optics) while allowing you to use the same line simultaneously for voice
calls. Cable Internet access brings Internet data to your computer at speeds of
several billion bits per second using the same coaxial cable that carries cable TV.
Wireless and satellite communications provide data speeds comparable to cable.

 EXERCISES FOR SECTION 1.2

 Self-Check

 1. If a computer executes instructions to sum the contents of memory cells 2 and
999 in Fig. 1.4 and store the result in cell 0, what would then be the contents
of cells 0, 2, and 999?

 2. One bit can have two values, 0 or 1. A combination of 2 bits can have four val-
ues: 00, 01, 10, 11. List all of the values you can form with a combination of 3
bits. Do the same for 4 bits.

 3. List the following in order of smallest to largest: byte, bit, WAN, main mem-
ory, memory cell, LAN, secondary storage.

 cable Internet
access two-way high-
speed transmission of
Internet data through
two of the hundreds of
channels available over
the coaxial cable that
carries cable television
signals

251.3 • Computer Software

 1.3 Computer Software
 In the previous section, we surveyed the components of a computer system, compo-
nents referred to collectively as hardware. We also studied the fundamental opera-
tions that allow a computer to accomplish tasks: repeated fetching and execution
of instructions. In this section we focus on these all-important lists of instructions
called computer programs or computer software. We will consider first the software
that makes the hardware friendly to the user. We will then look at the various levels
of computer languages in which software is written and at the process of creating
and running a new program.

 Operating System

 The collection of computer programs that control the interaction of the user and
the computer hardware is called the operating system (OS) . The operating sys-
tem of a computer is often compared to the conductor of an orchestra, for it is the
software that is responsible for directing all computer operations and managing all
computer resources. Usually part of the operating system is stored permanently
in a read-only memory (ROM) chip so that it is available as soon as the computer
is turned on. A computer can look at the values in read-only memory, but can-
not write new values to the chip. The ROM-based portion of the OS contains the
instructions necessary for loading into memory the rest of the operating system
code, which typically resides on a disk. Loading the operating system into memory
is called booting the computer .

 Here is a list of some of the operating system’s many responsibilities:

 1. Communicating with the computer user: receiving commands and carrying
them out or rejecting them with an error message.

 2. Managing allocation of memory, of processor time, and of other resources for
various tasks.

 3. Collecting input from the keyboard, mouse, and other input devices, and pro-
viding this data to the currently running program.

 4. Conveying program output to the screen, printer, or other output device.
 5. Accessing data from secondary storage.
 6. Writing data to secondary storage.

 In addition to these responsibilities, the operating system of a computer with multiple
users must verify each individual’s right to use the computer and must ensure that
each user can access only data for which he or she has proper authorization.

 Table 1.2 lists some widely used operating systems. An OS that uses a com-
mand-line interface displays a brief message, called a prompt, that indicates its
readiness to receive input, and the user then types a command at the keyboard.
 Figure 1.9 shows an entry of a UNIX command (ls temp/misc) requesting a list of
the names of all the files (Gridvar.c , Gridvar.exe , Gridok.txt) in subdirectory

 operating system
(OS) software that
controls interaction
of user and computer
hardware and that
manages allocation of
computer resources

 booting a computer
 loading the operating
system from disk into
memory

26 Chapter 1 • Overview of Computers and Programming

 misc of directory temp . In this case, the prompt is mycomputer:~> (In this figure,
and in all subsequent figures showing program runs, input typed by the user is
shown in color to distinguish it from computer-generated text.)

 In contrast, operating systems with a graphical user interface provide the
user with a system of icons and menus. To issue commands, the user moves the
mouse or touch pad cursor to point to the appropriate icon or menu selection
and pushes a button once or twice. Figure 1.10 shows the window that pops up
in Microsoft Windows 7 when you left-click on the Start icon and then left-click
on Computer. You can view the directories of the hard drive (C:), backup drive
(F:), optical drive (D:), or flash drive (E:) by double-clicking the appropriate
icon.

 Application Software

 Application programs are developed to assist a computer user in accomplishing
specific tasks. For example, a word-processing application such as Microsoft Word
or OpenOffice.org Writer helps to create a document, a spreadsheet application
such as Microsoft Office Excel helps to automate tedious numerical calculations and
to generate charts that depict data, and a database management application such as

 TABLE 1.2 Widely Used Operating System Families
Categorized by User Interface Type

 Command-Line Interface Graphical User Interface

 UNIX Macintosh OS

 MS-DOS Windows

 VMS OS/2 Warp

 UNIX + X Window System

 FIGURE 1.9 Entering a UNIX Command for Directory Display

 1. mycomputer:~> ls temp/misc

 2. Gridvar.c Gridvar.exe Gridok.txt

 3.

 4. MYCOMPUTER:~>

 application software
used for a specific task
such as word processing,
accounting, or database
management

271.3 • Computer Software

Microsoft Office Access or dBASE assists in data storage and quick keyword-based
access to large collections of records.

 Computer users typically purchase application software on CDs or by down-
loading files from the Internet and install the software by copying the programs
to the hard disk. When buying software, you must always check that the program
you are purchasing is compatible with both the operating system and the computer
hardware you plan to use. We have already discussed some of the differences among
operating systems; now we will investigate the different languages understood by
different processors.

 Computer Languages

 Developing new software requires writing lists of instructions for a computer to
execute. However, software developers rarely write in the language directly under-
stood by a computer, since this machine language is a collection of binary num-
bers. Another drawback of machine language is that it is not standardized: There is a
different machine language for every type of CPU. This same drawback also applies

 install make an
application available on
a computer by copying
it to the computer’s
hard drive

 machine language
 binary number codes
understood by a
specific CPU

 FIGURE 1.10

 Accessing
Secondary Storage
Devices through
Windows

28 Chapter 1 • Overview of Computers and Programming

to the somewhat more readable assembly language , a language in which computer
operations are represented by mnemonic codes rather than binary numbers and
variables can be given names rather than binary memory addresses. Table 1.3
shows a tiny machine language program fragment that adds two numbers and the
equivalent fragment in assembly language. Notice that each assembly language
instruction corresponds to exactly one machine instruction: The assembly language
memory cells labeled A and B are space for variables; they are not instructions.
The symbol ? indicates that we do not know the contents of the memory cells with
addresses 00000101 and 00000110.

 To write programs that are independent of the CPU on which they will be
executed, software designers use high-level languages that combine algebraic
expressions and symbols taken from English. For example, the machine/assembly
language program fragment shown in Table 1.3 would be a single statement in a
high-level language:

 a = a + b;

 This statement means “add the values of variables a and b , and store the result in
variable a (replacing a ’s previous value).”

 There are many high-level languages available. Table 1.4 lists some of the
most widely used ones along with the origin of their names and the application
areas that first popularized them. Although programmers find it far easier to
express problem solutions in high-level languages, there remains the problem
that computers do NOT understand these languages. Thus, before a high-level
language program can be executed, it must first be translated into the target com-
puter’s machine language. The program that does this translation is called a com-
piler . Figure 1.11 illustrates the role of the compiler in the process of developing

 TABLE 1.3 A Machine Language Program Fragment and Its Assembly
Language Equivalent

Memory Addresses

 Machine Language
Instructions

 Assembly Language
Instructions

 00000000 00000000 CLA

 00000001 00010101 ADD A

 00000010 00010110 ADD B

 00000011 00110101 STA A

 00000100 01110111 HLT

 00000101 ? A ?

 00000110 ? B ?

 high-level language
 machine-independent
programming language
that combines algebraic
expressions and English
symbols

 compiler software
that translates a high-
level language program
into machine language

 assembly language
 mnemonic codes that
correspond to machine
language instructions

291.3 • Computer Software

and testing a high-level language program. Both the input to and the output from
the compiler (when it is successful) are programs. The input to the compiler is a
 source file containing the text of a high-level language program. The software
developer creates this file by using a word processor or editor. The format of the
source file is text, which means that it is a collection of character codes. For exam-
ple, you might type a program into a file called myprog.c. The compiler will scan
this source file, checking the program to see if it follows the high-level language’s
 syntax (grammar) rules. If the program is syntactically correct, the compiler saves
in an object file the machine language instructions that carry out the program’s
purpose. For program myprog.c , the object file created might be named myprog.
obj . Notice that this file’s format is binary. This means that you should not send
it to a printer, display it on your monitor, or try to work with it in a word proces-
sor because it will appear to be meaningless garbage to a word processor, printer,
or monitor. If the source program contains syntax errors, the compiler lists these
errors but does not create an object file. The developer must return to the word
processor, correct the errors, and recompile the program.

 Although an object file contains machine instructions, not all of the instruc-
tions are complete. High-level languages provide the software developer with many
named chunks of code for operations that the developer will likely need. Almost all
high-level language programs use at least one of these chunks of code called func-
tions that reside in other object files available to the system. The linker program
combines these prefabricated functions with the object file, creating a complete

 source file file
containing a program
written in a high-level
language; the input for
a compiler

 syntax grammar
rules of a programming
language

 object file file of
machine language
instructions that is the
output of a compiler

 TABLE 1.4 High-Level Languages

 Language Application Area Origin of Name

 FORTRAN Scientific programming For mula tran slation

 COBOL Business data processing Co mmon B usiness- O riented L anguage

 LISP Artificial Intelligence Lis t p rocessing

 C Systems programming Predecessor language was named B

 Prolog Artificial Intelligence Log ic pro gramming

 Ada Real-time distributed systems Ada Augusta Byron collaborated with nineteenth-century
 computer pioneer Charles Babbage

 Smalltalk Graphical user interfaces;
object-oriented programming

 Objects “talk” to one another via messages

 C++ Supports objects and object-oriented
 programming

 Incremental modification of C (++ is the C increment operator)

 Java Supports Web programming and
 programming Android applications

 Originally named “Oak”

 linker software
that combines object
files and resolves
crossreferences to
create an executable
machine language
program

30 Chapter 1 • Overview of Computers and Programming

Word Processor
(editor) Used to
type in program
and corrections

Source File

Format: text

Object File

Format: binary

Format: binary

Other Object
Files

Format: binary

Executable File
(load module)

Compiler
Attempts to

translate program
into machine

code

Successful

Unsuccessful

Error
Messages

Linker
Resolves

cross-references
among

object files

Loader
Copies executable
file into memory;

initiates execution
of instructions

Input data Results

 FIGURE 1.11

Entering, Translating, and Running a High-Level Language Program

311.3 • Computer Software

machine language program that is ready to run. For your sample program, the linker
might name the executable file it creates myprog.exe .

 As long as myprog.exe is just stored on your disk, it does nothing. To run it,
the loader must copy all its instructions into memory and direct the CPU to begin
execution with the first instruction. As the program executes, it takes input data
from one or more sources and sends results to output and/or secondary storage
devices.

 Some computer systems require the user to ask the OS to carry out separately
each step illustrated in Fig. 1.11 . However, most high-level language compilers are
sold as part of an integrated development environment (IDE) , a package that
combines a simple word processor with a compiler, linker, and loader. Such environ-
ments give the developer menus from which to select the next step, and if the devel-
oper tries a step that is out of sequence, the environment simply fills in the missing
steps automatically.

 The user of an integrated development environment should be aware that
the environment may not automatically save to disk the source, object, and
executable files. Rather, it may simply leave these versions of the program in
memory. Such an approach saves the expenditure of time and disk space needed
to make copies and keeps the code readily available in memory for application
of the next step in the translation/execution process. However, the developer
can risk losing the only copy of the source file in the event of a power outage
or serious program error. To prevent such a loss when using an IDE, be sure to
explicitly save the source file to disk after every modification before attempting
to run the program.

 Executing a Program

 To execute a machine language program, the CPU must examine each program
instruction in memory and send out the command signals required to carry out the
instruction. Although the instructions normally are executed in sequence, as we will
discuss later, it is possible to have the CPU skip over some instructions or execute
some instructions more than once.

 During execution, data can be entered into memory and manipulated in some
specified way. Special program instructions are used for entering or scanning a
program’s data (called input data) into memory. After the input data have been
processed, instructions for displaying or printing values in memory can be executed
to display the program results. The lines displayed by a program are called the
 program output .

 Let’s use the situation described in Fig. 1.12 —executing a water bill program
stored in memory—as an example. The first step of the program scans into memory
data that describe the amount of water used. In step 2, the program manipulates
the data and stores the results of the computations in memory. In the final step, the
computational results are displayed as a water bill.

 integrated
development
environment
(IDE) software
package combining
a word processor,
compiler, linker, loader,
and tools for finding
errors

 input data the data
values that are scanned
by a program

 program output the
lines displayed by a
program

32 Chapter 1 • Overview of Computers and Programming

 EXERCISES FOR SECTION 1.3

 Self-Check

 1. What do you think these five high-level language statements mean?

 x = a + b + c; x = y / z; d = c - b + a;
 z = z + 1; kelvin = celsius + 273.15;

 2. List two reasons why it would be preferable to write a program in C rather
than in machine language.

 3. Would a syntax error be found in a source program or an object program?
What system program would find a syntax error if one existed? What system
program would you use to correct it?

 4. Explain the differences among the source program, the object program, and
an executable program. Which do you create, and which does the compiler
create? Which does the linker or loader create?

Machine language
program for
computing water
bill

Computed results

Data entered
during execution

Memory

Step 2Step 1

Program

input

Input data:
meter
readings

Central
processing
unit

Program

output
Output results:
water bill

Step 3

 FIGURE 1.12

Flow of Information During Program Execution

331.4 • The Software Development Method

 1.4 The Software Development Method
 Programming is a problem-solving activity. If you are a good problem solver, you
have the potential to become a good programmer. Therefore, one goal of this book
is to help you improve your problem-solving ability. Problem-solving methods are
covered in many subject areas. Business students learn to solve problems with a
 systems approach while engineering and science students use the engineering and
scientific method. Programmers use the software development method.

 Software Development Method

 1. Specify the problem requirements.
 2. Analyze the problem.
 3. Design the algorithm to solve the problem.
 4. Implement the algorithm.
 5. Test and verify the completed program.
 6. Maintain and update the program.

 PROBLEM

 Specifying the problem requirements forces you to state the problem clearly and
unambiguously and to gain a clear understanding of what is required for its solution.
Your objective is to eliminate unimportant aspects and zero in on the root problem.
This goal may not be as easy to achieve as it sounds. You may find you need more
information from the person who posed the problem.

 ANALYSIS

 Analyzing the problem involves identifying the problem (a) inputs, that is, the data
you have to work with; (b) outputs , that is, the desired results; and (c) any additional
requirements or constraints on the solution. At this stage, you should also determine
the required format in which the results should be displayed (for example, as a table
with specific column headings) and develop a list of problem variables and their
relationships. These relationships may be expressed as formulas.

 If steps 1 and 2 are not done properly, you will solve the wrong problem. Read
the problem statement carefully, first, to obtain a clear idea of the problem and
second, to determine the inputs and outputs. You may find it helpful to underline
phrases in the problem statement that identify the inputs and outputs, as in the
problem statement below.

 Compute and display the total cost of apples given the number of pounds of apples
purchased and the cost per pound of apples .

 Next, summarize the information contained in the underlined phrases:

34 Chapter 1 • Overview of Computers and Programming

 Problem Inputs

 quantity of apples purchased (in pounds)
 cost per pound of apples (in dollars per pound)

 Problem Output

 total cost of apples (in dollars)

 Once you know the problem inputs and outputs, develop a list of formulas that
specify relationships between them. The general formula

 Total cost � Unit cost � Number of units

 computes the total cost of any item purchased. Substituting the variables for our
particular problem yields the formula

 Total cost of apples � Cost per pound � Pounds of apples

 In some situations, you may need to make certain assumptions or simplifications
to derive these relationships. This process of modeling a problem by extracting the
essential variables and their relationships is called abstraction .

 DESIGN

 Designing the algorithm to solve the problem requires you to develop a list of steps
called an algorithm to solve the problem and to then verify that the algorithm
solves the problem as intended. Writing the algorithm is often the most difficult
part of the problem-solving process. Don’t attempt to solve every detail of the
problem at the beginning; instead, discipline yourself to use top-down design. In
 top-down design (also called divide and conquer), you first list the major steps, or
subproblems, that need to be solved. Then you solve the original problem by solving
each of its subproblems. Most computer algorithms consist of at least the following
subproblems.

 ALGORITHM FOR A PROGRAMMING PROBLEM

 1. Get the data.
 2. Perform the computations.
 3. Display the results.

 Once you know the subproblems, you can attack each one individually. For
example, the perform-the-computations step may need to be broken down into a
more detailed list of steps through a process called stepwise refinement .

 You may be familiar with top-down design if you use an outline when writing
a term paper. Your first step is to create an outline of the major topics, which you
then refine by filling in subtopics for each major topic. Once the outline is com-
plete, you begin writing the text for each subtopic.

 abstraction the
process of modeling a
problem by extracting
the essential variables
and their relationships

 algorithm a list of
steps for solving a
problem

 top-down design
 breaking a problem into
its major subproblems
and then solving the
subproblems

 stepwise refinement
development of a
detailed list of steps to
solve a particular step in
the original algorithm

351.4 • The Software Development Method

 Desk checking is an important part of algorithm design that is often overlooked.
To desk check an algorithm, you must carefully perform each algorithm step (or
its refinements) just as a computer would and verify that the algorithm works as
intended. You’ll save time and effort if you locate algorithm errors early in the
problem-solving process.

 IMPLEMENTATION

 Implementing the algorithm (step 4 in the software development method) involves
writing it as a program. You must convert each algorithm step into one or more
statements in a programming language.

 TESTING

 Testing and verifying the program requires testing the completed program to verify
that it works as desired. Don’t rely on just one test case. Run the program several
times using different sets of data to make sure that it works correctly for every situ-
ation provided for in the algorithm.

 MAINTENANCE

 Maintaining and updating the program involves modifying a program to remove
previously undetected errors and to keep it up-to-date as government regulations
or company policies change. Many organizations maintain a program for five years
or more, often after the programmers who originally coded it have left or moved on
to other positions.

 A disciplined approach is essential if you want to create programs that are
easy to read, understand, and maintain. You must follow accepted program style
guidelines (which will be stressed in this book) and avoid tricks and programming
shortcuts.

 Caution: Failure Is Part of the Process

 Although having a step-by-step approach to problem solving is helpful, we must avoid
jumping to the conclusion that if we follow these steps, we are guaranteed a correct
solution the first time, every time. The fact that verification is so important implies
an essential truth of problem solving: The first (also the second, the third, or the
twentieth) attempt at a solution may be wrong. Probably the most important distinc-
tion between outstanding problem solvers and less proficient ones is that outstanding
problem solvers are not discouraged by initial failures. Rather, they see the faulty and
near-correct early solutions as a means of gaining a better understanding of the prob-
lem. One of the most inventive problem solvers of all time, Thomas Edison, is noted
for his positive interpretation of the thousands of failed experiments that contributed
to his incredible record of inventions. His friends report that he always saw those
failures in terms of the helpful data they yielded about what did not work.

 desk checking the
step-by-step simulation
of the computer
execution of an
algorithm

36 Chapter 1 • Overview of Computers and Programming

 EXERCISES FOR SECTION 1.4

 Self-Check

 1. List the steps of the software development method.
 2. In which phase is the algorithm developed? In which phase do you identify the

problem inputs and outputs?

 1.5 Applying the Software Development Method
 Throughout this book, we use the first five steps of the software development
method to solve programming problems. These example problems, presented as
Case Studies, begin with a problem statement. As part of the problem analysis, we
identify the data requirements for the problem, indicating the problem inputs and
the desired outputs. Next, we design and refine the initial algorithm. Finally, we
 implement the algorithm as a C program. We also provide a sample run of the pro-
gram and discuss how to test the program.

 We walk you through a sample case study next. This example includes a running
commentary on the process, which you can use as a model in solving other problems.

 CASE STUDY Converting Miles to Kilometers

 PROBLEM

 Your summer surveying job requires you to study some maps that give distances in
kilometers and some that use miles. You and your coworkers prefer to deal in metric
measurements. Write a program that performs the necessary conversion.

 ANALYSIS

 The first step in solving this problem is to determine what you are asked to do. You
must convert from one system of measurement to another, but are you supposed to
convert from kilometers to miles, or vice versa? The problem states that you prefer
to deal in metric measurements, so you must convert distance measurements in miles
to kilometers. Therefore, the problem input is distance in miles and the problem
output is distance in kilometers . To write the program, you need to know the rela-
tionship between miles and kilometers. Consulting a metric table shows that one mile
equals 1.609 kilometers.

 The data requirements and relevant formulas are listed below. miles identifies
the memory cell that will contain the problem input and kms identifies the memory
cell that will contain the program result, or the problem output.

371.5 • Applying the Software Development Method

 DATA REQUIREMENTS

 Problem Input
 miles /* the distance in miles*/

 Problem Output
 kms /* the distance in kilometers */

 Relevant Formula
 1 mile = 1.609 kilometers

 DESIGN

 Next, formulate the algorithm that solves the problem. Begin by listing the three
major steps, or subproblems, of the algorithm.

 ALGORITHM

 1. Get the distance in miles.
 2. Convert the distance to kilometers.
 3. Display the distance in kilometers.

 Now decide whether any steps of the algorithm need further refinement or whether
they are perfectly clear as stated. Step 1 (getting the data) and step 3 (displaying a
value) are basic steps and require no further refinement. Step 2 is fairly straightfor-
ward, but some detail might help:

 Step 2 Refinement
 2.1 The distance in kilometers is 1.609 times the distance in miles.

 We list the complete algorithm with refinements below to show you how it all
fits together. The algorithm resembles an outline for a term paper. The refinement
of step 2 is numbered as step 2.1 and is indented under step 2.

 ALGORITHM WITH REFINEMENTS

 1. Get the distance in miles.
 2. Convert the distance to kilometers.

 2.1 The distance in kilometers is 1.609 times the distance in miles.
 3. Display the distance in kilometers.

 Let’s desk check the algorithm before going further. If step 1 gets a distance
of 10.0 miles, step 2.1 would convert it to 1.609 � 10.00 or 16.09 kilometers. This
correct result would be displayed by step 3.

38 Chapter 1 • Overview of Computers and Programming

 FIGURE 1.13 Miles-to-Kilometers Conversion Program

 1. /*
 2. * Converts distance in miles to kilometers.
 3. */
 4. #include <stdio.h> /* printf, scanf definitions */
 5. #define KMS_PER_MILE 1.609 /* conversion constant */
 6.
 7. int
 8. main(void)
 9. {
 10. double miles, /* input - distance in miles. */
 11. kms; /* output - distance in kilometers */
 12.
 13. /* Get the distance in miles. */
 14. printf(“Enter the distance in miles> ”);
 15. scanf(“%lf”, &miles);
 16.
 17. /* Convert the distance to kilometers. */
 18. kms = KMS_PER_MILE * miles;
 19.
 20. /* Display the distance in kilometers. */
 21. printf(“That equals %f kilometers.\n”, kms);
 22.
 23. return (0);
 24. }

 Sample Run
 Enter the distance in miles> 10.00
 That equals 16.090000 kilometers.

 IMPLEMENTATION

 To implement the solution, you must write the algorithm as a C program. To do
this, you must first tell the C compiler about the problem data requirements—that
is, what memory cell names you are using and what kind of data will be stored in
each memory cell. Next, convert each algorithm step into one or more C statements.
If an algorithm step has been refined, you must convert the refinements, not the
original step, into C statements.

 Figure 1.13 shows the C program along with a sample execution or run. For
easy identification, the program statements corresponding to algorithm steps are in

391.6 • Professional Ethics for Computer Programmers

color as is the input data typed in by the program user. Don’t worry about under-
standing the details of this program yet. We explain the program in the next chapter.

 TESTING

 How do you know the sample run is correct? You should always examine program
results carefully to make sure that they make sense. In this run, a distance of 10.0
miles is converted to 16.09 kilometers, as it should be. To verify that the program
works properly, enter a few more test values of miles. You don’t need to try more
than a few test cases to verify that a simple program like this is correct.

 EXERCISES FOR SECTION 1.5

 Self-Check

 1. Change the algorithm for the metric conversion program to convert distance
in kilometers to miles.

 2. List the data requirements, formulas, and algorithm for a program that con-
verts a volume from quarts to liters.

 1.6 Professional Ethics for Computer Programmers
 We end this introductory chapter with a discussion of professional ethics for com-
puter programmers. Like other professionals, computer programmers and software
system designers (called software engineers) need to follow certain standards of
professional conduct.

 Privacy and Misuse of Data

 As part of their jobs, programmers may have access to large data banks or databases
containing sensitive information on financial transactions or personnel, or informa-
tion that is classified as “secret” or “top secret.” Programmers should always behave
in a socially responsible manner and not retrieve information that they are not
entitled to see. They should not use information to which they are given access for
their own personal gain, or do anything that would be considered illegal, unethical,
or harmful to others. Just as doctors and lawyers must keep patient information con-
fidential, programmers must respect an individual’s rights to privacy.

 A programmer who changes information in a database containing financial
records for his or her own personal gain—for example, changes the amount of
money in a bank account—is guilty of computer theft or computer fraud . This is
a felony that can lead to fines and imprisonment.

 computer theft
(computer fraud)
 Illegally obtaining
money by falsifying
information in a
computer database

40 Chapter 1 • Overview of Computers and Programming

 Computer Hacking

 You may have heard about “computer hackers” who break into secure data
banks by using their own computer to call the computer that controls access to
the data bank. Classified or confidential information retrieved in this way has
been sold to intelligence agencies of other countries. Other hackers have tried
to break into computers to retrieve information for their own amusement or as
a prank, or just to demonstrate that they can do it. Regardless of the intent, this
activity is illegal, and the government will prosecute anyone who does it. Your
university probably addresses this kind of activity in your student handbook.
The punishment is likely similar to that for other criminal activity, because that
is exactly what it is.

 Another illegal activity sometimes practiced by hackers is attaching harmful
code, called a virus , to another program so that the virus code copies itself through-
out a computer’s disk memory. A virus can cause sporadic activities to disrupt the
operation of the host computer—for example, unusual messages may appear on the
screen at certain times—or cause the host computer to erase portions of its own disk
memory, destroying valuable information and programs. Viruses are spread from
one computer to another in various ways—for example, if you copy a file that origi-
nated on another computer that has a virus, or if you open an e-mail message that
is sent from an infected computer. A computer worm is a virus that can replicate
itself on other network computers, causing these computers to send multiple mes-
sages over the network to disrupt its operation or shut it down. Certainly, data theft
and virus propagation should not be considered harmless pranks; they are illegal and
carry serious penalties.

 Plagiarism and Software Piracy

 Using someone else’s programs without permission is also unprofessional behavior.
Although it is certainly permissible to use modules from libraries that have been
developed for reuse by their own company’s programmers, you cannot use another
programmer’s personal programs or programs from another company without get-
ting permission beforehand. Doing so could lead to a lawsuit, with you or your com-
pany having to pay damages.

 Modifying another student’s code and submitting it as your own is a fraudulent
practice—specifically, plagiarism—and is no different than copying paragraphs of
information from a book or journal article and calling it your own. Most universities
have severe penalties for plagiarism that may include failing the course and/or being
dismissed from the university. Be aware that even if you modify the code slightly
or substitute your own comments or different variable names, you are still guilty of
plagiarism if you are using another person’s ideas and code. To avoid any question of
plagiarism, find out beforehand your instructor’s rules about working with others on
a project. If group efforts are not allowed, make sure that you work independently
and submit only your own code.

 virus Code attached
to another program
that spreads through
a computer’s disk
memory, disrupting the
computer or erasing
information

 worm A virus that
can disrupt a network
by replicating itself
on other network
computers

41Chapter Review

 Many commercial software packages are protected by copyright laws against
 software piracy —the practice of illegally copying software for use on another
computer. If you violate this law, your company or university can be fined heavily
for allowing this activity to occur. Besides the fact that software piracy is against the
law, using software copied from another computer increases the possibility that your
computer will receive a virus. For all these reasons, you should read the copyright
restrictions on each software package and adhere to them.

 Misuse of a Computer Resource

 Computer system access privileges or user account codes are private property.
These privileges are usually granted for a specific purpose—for example, for work to
be done in a particular course or for work to be done during the time you are a stu-
dent at your university. The privilege should be protected; it should not be loaned to
or shared with anyone else and should not be used for any purpose for which it was
not intended. When you leave the institution, this privilege is normally terminated
and any accounts associated with the privilege will be closed.

 Computers, computer programs, data, and access (account) codes are like any
other property. If they belong to someone else and you are not explicitly given per-
mission to use them, then do not use them. If you are granted a use privilege for a
specific purpose, do not abuse the privilege or it will be taken away.

 Legal issues aside, it is important that we apply the same principles of right and
wrong to computerized property and access rights as to all other property rights and
privileges. If you are not sure about the propriety of something you want to do, ask
first. As students and professionals in computing, we set an example for others. If
we set a bad example, others are sure to follow.

 EXERCISES FOR SECTION 1.6

 Self-Check

 1. Some computer users will not open an e-mail message unless they know the
person who sent it. Why might someone adopt this policy?

 2. Find out the penalty for plagiarism at your school.
 3. Why is it a good policy to be selective about opening e-mail attachments?
 4. Define the terms virus and worm .

 ■ Chapter Review

 1. The basic components of a computer are main memory and secondary storage,
the CPU, and input and output devices.

 2. All data manipulated by a computer are represented digitally, as base 2 num-
bers composed of strings of the digits 0 and 1.

 software
piracy Violating
copyright agreements
by illegally copying
software for use in
another computer

42 Chapter 1 • Overview of Computers and Programming

 3. Main memory is organized into individual storage locations called memory
cells.
 ■ Each memory cell has a unique address.
 ■ A memory cell is a collection of bytes; a byte is a collection of 8 bits.
 ■ A memory cell is never empty, but its initial contents may be meaningless

to your program.
 ■ The current contents of a memory cell are destroyed whenever new infor-

mation is stored in that cell.
 ■ Programs must be loaded into the memory of the computer before they can

be executed.
 ■ Data cannot be manipulated by the computer until they are first stored in

memory.
 4. Information in secondary storage is organized into files: program files and data

files. Secondary storage provides a low-cost means of storing large quantities
of information in semipermanent form.

 5. A CPU runs a computer program by repeatedly fetching and executing simple
machine-code instructions.

 6. Connecting computers in networks allows sharing of resources—local
resources on LANs and worldwide resources on a WAN such as the Internet.

 7. Programming languages range from machine language (meaningful to a com-
puter) to high-level language (meaningful to a programmer).

 8. Several system programs are used to prepare a high-level language program
for execution. An editor enters a high-level language program into a file. A
compiler translates a high-level language program (the source program) into
machine language (the object program). The linker links this object program
to other object files, creating an executable file, and the loader loads the exe-
cutable file into memory. All of these programs are combined in an integrated
development environment (IDE).

 9. Through the operating system, you can issue commands to the computer and
manage files.

 10. Follow the first five steps of the software development method to solve pro-
gramming problems: (1) specify the problem, (2) analyze the problem, (3)
design the algorithm, (4) implement the algorithm, and (5) test and verify the
completed program. Write programs in a consistent style that is easy to read,
understand, and maintain.

 11. Follow ethical standards of conduct in everything you do pertaining to comput-
ers. This means do not copy software that is copyright protected, do not hack
into someone else’s computer, do not send files that may be infected to oth-
ers, and do not submit someone else’s work as your own or lend your work to
another student.

43Answers to Quick-Check Exercises

 ■ Quick-Check Exercises

 1. A translates a high-level language program into ________ .
 2. A(n) ________ provides access to system programs for editing, compiling, and

so on.
 3. Specify the correct order for these operations: execution, translation, linking,

loading.
 4. A high-level language program is saved on disk as a(n) ________ file.
 5. The ________ finds syntax errors in the ________ .
 6. Before linking, a machine language program is saved on disk as a(n) ________

file.
 7. After linking, a machine language program is saved on disk as a(n) ________

file.
 8. Computer programs are ________ components of a computer system while a

disk drive is ________ .
 9. In a high-level or an assembly language, you can reference data using

 ________ rather than memory cell addresses.
 10. ________ is composed of units such as disks, flash memory, or writable CDs

that retain the data stored even when power is lost.
 11. On a magnetic disk, data are represented as ________ arranged in concentric

tracks.
 12. On a CD or DVD, data are represented as laser-written pits arranged in a

 ________ .
 13. A list of all files stored on a disk is stored in its ________ .
 14. Give an example of a wide area network.

 ■ Answers to Quick-Check Exercises

 1. compiler, machine language
 2. operating system
 3. translation, linking, loading, execution
 4. source
 5. compiler, source file
 6. object
 7. executable
 8. software, hardware
 9. variables
 10. Secondary storage
 11. magnetized spots
 12. spiral
 13. directory
 14. the Internet

44 Chapter 1 • Overview of Computers and Programming

 ■ Review Questions

 1. List at least three kinds of information stored in a computer.
 2. List two functions of the CPU.
 3. List two input devices, two output devices, and two secondary storage devices.
 4. Describe three categories of programming languages.
 5. What is a syntax error?
 6. What processes are needed to transform a C program to a machine language

program that is ready for execution?
 7. Explain the relationship between memory cells, bytes, and bits.
 8. Name three high-level languages and describe their original usage.
 9. What are the differences between RAM and ROM?
 10. What is the World Wide Web?
 11. How do you install new software on a computer?
 12. What are two high-speed Internet connection options available to home com-

puter users?

 Overview of C

 CHAPTER OBJECTIVES
 • To become familiar with the general form of a C

 program and the basic elements in a program

 • To appreciate the importance of writing comments in a
program

 • To understand the use of data types and the differences
between the data types int, double, and char

 • To know how to declare variables

 • To understand how to write assignment statements to
change the values of variables

 • To learn how C evaluates arithmetic expressions and
how to write them in C

 • To learn how to read data values into a program and to
display results

 • To understand how to write format strings for data
entry and display

 • To learn how to use redirection to enable the use of files
for input/output

 • To understand the differences between syntax errors,
run-time errors, and logic errors, and how to avoid them
and to correct them

 C H A P T E R

2

 T his chapter introduces C—a high-level programming language developed in
1972 by Dennis Ritchie at AT&T Bell Laboratories. Because C was designed as
a language in which to write the UNIX® operating system, it was originally used
primarily for systems programming. Over the years, however, the power and flex-
ibility of C, together with the availability of high-quality C compilers for comput-
ers of all sizes, have made it a popular language in industry for a wide variety of
applications.

 This chapter describes the elements of a C program and the types of data that
can be processed by C. It also describes C statements for performing computations,
for entering data, and for displaying results.

 2.1 C Language Elements
 One advantage of C is that it lets you write programs that resemble everyday
English. Even though you do not yet know how to write your own programs, you
can probably read and understand the program in Fig. 1 .14. Figure 2.1 repeats this
figure with the basic features of C highlighted. We identify them briefly below, and
explain them in detail in Sections 2.2 to 2.4 . The line numbers shown in all code
figures are not part of the C programming.

 Preprocessor Directives

 The C program in Fig. 2.1 has two parts: preprocessor directives and the main
function. The preprocessor directives are commands that give instructions to
the C preprocessor , whose job it is to modify the text of a C program before it
is compiled. A preprocessor directive begins with a number symbol (#) as its first
nonblank character. The two most common directives appear in Fig. 2.1 : #include
and #define .

 The C language explicitly defines only a small number of operations: Many
actions that are necessary in a computer program are not defined directly by C.
Instead, every C implementation contains collections of useful functions and
symbols called libraries . The ANSI (American National Standards Institute)
standard for C requires that certain standard libraries be provided in every ANSI
C implementation. A C system may expand the number of operations available by
supplying additional libraries; an individual programmer can also create libraries
of functions. Each library has a standard header file whose name ends with the
symbols .h.

 preprocessor directive
a C program line
beginning with # that
provides an instruction
to the preprocessor

 preprocessor a
system program that
modifies a C program
prior to its compilation

 library a collection
of useful functions and
symbols that may be
accessed by a program

2.1 • C Language Elements 47

 The #include directive gives a program access to a library. This directive
causes the preprocessor to insert definitions from a standard header file into a pro-
gram before compilation. The directive

 #include <stdio.h> /* printf, scanf definitions */

 notifies the preprocessor that some names used in the program (such as scanf and
 printf) are found in the standard header file <stdio.h> .

 The other preprocessor directive in Fig. 2.1

 #define KMS_PER_MILE 1.609 /* conversion constant */

 FIGURE 2.1 C Language Elements in Miles-to-Kilometers Conversion Program

 /*
 * Converts distances from miles to kilometers.
 */

 #include <stdio.h> /* printf, scanf definitions */
 #define KMS_PER_MILE 1.609 /* conversion constant */

 int
 main(void)
 {
 double miles, /* distance in miles
 kms; /* equivalent distance in kilometers */

 /* Get the distance in miles. */
 printf("Enter the distance in miles> ");
 scanf("%lf", &miles);

 /* Convert the distance to kilometers. */
 kms = KMS_PER_MILE * miles;

 /* Display the distance in kilometers. */
 printf("That equals %f kilometers.\n", kms);

 return (0);
 }

preprocessor
directive

constant

variable

standard
identifier

reserved
word

special symbol

punctuation

special symbol

comment

reserved word

standard header file comment

48 Chapter 2 • Overview of C

 associates the constant macro KMS_PER_MILE with the meaning 1.609 . This
directive instructs the preprocessor to replace each occurrence of KMS_PER_
MILE in the text of the C program by 1.609 before compilation begins. As a result,
the line

 kms = KMS_PER_MILE * miles;

 would read

 kms = 1.609 * miles;

 by the time it was sent to the C compiler. Only data values that never change (or
change very rarely) should be given names using a #define , because an executing C
program cannot change the value of a name defined as a constant macro. Using the
constant macro KMS_PER_MILE in the text of a program for the value 1.609 makes
it easier to understand and maintain the program.

 The text on the right of each preprocessor directive, starting with /* and ending
with */ , is a comment . Comments provide supplementary information making it
easier for us to understand the program, but comments are ignored by the C pre-
processor and compiler.

 Syntax Displays for Preprocessor Directives

 For each new C construct introduced in this book, we provide a syntax display that
describes and explains the construct’s syntax and shows examples of its use. The
following syntax displays describe the two preprocessor directives. The italicized
elements in each construct are discussed in the interpretation section.

 constant macro a
name that is replaced
by a particular constant
value before the
program is sent to the
compiler

 comment text
beginning with /* and
ending with */ that
provides supplementary
information but
is ignored by the
preprocessor and
compiler

 #include Directive for Defining Identifiers from
Standard Libraries

 SYNTAX: #include <standard header file>

 EXAMPLES: #include <stdio.h>
 #include <math.h>

 INTERPRETATION: #include directives tell the preprocessor where to find the meanings of

standard identifiers used in the program. These meanings are collected in files called stan-

dard header files. The header file stdio.h contains information about standard input and

output functions such as scanf and printf . Descriptions of common mathematical func-

tions are found in the header file math.h . We will investigate header files associated with

other standard libraries in later chapters.

2.1 • C Language Elements 49

 #define Directive for Creating Constant Macros

 SYNTAX: #define NAME value

 EXAMPLES: #define MILES_PER_KM 0.62137
 #define PI 3.141593
 #define MAX_LENGTH 100

 INTERPRETATION: The C preprocessor is notified that it is to replace each use of the identi-

fier NAME by value . C program statements cannot change the value associated with NAME .

 Function main

 The two-line heading

 int
 main(void)

 marks the beginning of the main function where program execution begins. Every
C program has a main function. The remaining lines of the program form the body
of the function which is enclosed in braces {, } .

 A function body has two parts: declarations and executable statements. The
 declarations tell the compiler what memory cells are needed in the function (for
example, miles and kms in Fig. 2.1). To create this part of the function, the pro-
grammer uses the problem data requirements identified during problem analysis.
The executable statements (derived from the algorithm) are translated into
machine language and later executed.

 The main function contains punctuation and special symbols (* , =). Commas
separate items in a list, a semicolon appears at the end of several lines, and braces
({ , }) mark the beginning and end of the body of function main .

 declarations the part
of a program that tells
the compiler the names
of memory cells in a
program

 executable
statements program
lines that are converted
to machine language
instructions and
executed by the
computer

 main Function Definition

 SYNTAX: int
 main(void)
 {
 function body
 }

 (continued)

50 Chapter 2 • Overview of C

 EXAMPLE: int
 main(void)
 {
 printf("Hello world\n");
 return (0);
 }

 INTERPRETATION: Program execution begins with the main function. Braces enclose the main

 function body, which contains declarations and executable statements. The line int indicates

that the main function returns an integer value (0) to the operating system when it finishes

normal execution. The symbols (void) indicate that the main function receives no data from

the operating system before it begins execution.

 Reserved Words

 Each line of Fig. 2.1 contains a number of different words classified as reserved
words , identifiers from standard libraries, and names for memory cells. All the
reserved words appear in lowercase; they have special meaning in C and cannot
be used for other purposes. A complete list of ANSI C reserved words is found in
 Appendix E . Table 2.1 describes the reserved words in Fig 2.1.

 Standard Identifiers

 The other words in Fig. 2.1 are identifiers that come in two varieties: standard and
user-defined. Like reserved words, standard identifiers have special meaning in
C. In Fig. 2.1 , the standard identifiers printf and scanf are names of operations
defined in the standard input/output library. Unlike reserved words, standard identi-
fiers can be redefined and used by the programmer for other purposes—however,
we don’t recommend this practice. If you redefine a standard identifier, C will no
longer be able to use it for its original purpose.

 reserved word a
word that has special
meaning in C

 standard identifier
a word having special
meaning but one
that a programmer
may redefine (but
redefinition is not
recommended!)

 TABLE 2.1 Reserved Words in Fig. 2.1

 Reserved Word Meaning

 int integer; indicates that the main function returns an integer value

 void indicates that the main function receives no data from the operating
system

 double indicates that the memory cells store real numbers

 return returns control from the main function to the operating system

2.1 • C Language Elements 51

 User-Defined Identifiers

 We choose our own identifiers (called user-defined identifiers) to name memory
cells that will hold data and program results and to name operations that we define
(more on this in Chapter 3). The first user-defined identifier in Fig. 2.1 , KMS_PER_
MILE , is the name of a constant macro.

 You have some freedom in selecting identifiers. The syntax rules and some valid
identifiers follow. Table 2.2 shows some invalid identifiers.

 1. An identifier must consist only of letters, digits, and underscores.
 2. An identifier cannot begin with a digit.
 3. A C reserved word cannot be used as an identifier.
 4. An identifier defined in a C standard library should not be redefined. *

 Valid Identifiers

 letter_1, letter_2, inches, cent, CENT_PER_INCH, Hello, variable

 Although the syntax rules for identifiers do not place a limit on length, some ANSI
C compilers do not consider two names to be different unless there is a variation within
the first 31 characters. The two identifiers

 per_capita_meat_consumption_in_1980
 per_capita_meat_consumption_in_1995

 would be viewed as identical by a C compiler that considered only the first 31 char-
acters to be significant.

 Table 2.3 lists the category of each identifier appearing in the main function of
 Fig. 2.1 .

 * Rule 4 is actually advice from the authors rather than ANSI C syntax.

 TABLE 2.2 Invalid Identifiers

 Invalid Identifier Reason Invalid

 1Letter begins with a letter

 double reserved word

 int reserved word

 TWO*FOUR character * not allowed

 joe's character ' not allowed

52 Chapter 2 • Overview of C

 Uppercase and Lowercase Letters

 The C programmer must take great care in the use of uppercase and lowercase
letters because the C compiler considers such usage significant. The names Rate ,
 rate , and RATE are viewed by the compiler as different identifiers. Adopting a con-
sistent pattern in the way you use uppercase and lowercase letters is helpful to the
readers of your programs. You will see that all reserved words in C and the names
of all standard library functions use only lowercase letters. One style that has been
widely adopted in industry uses all uppercase letters in the names of constant mac-
ros. We follow this convention in this text; for other identifiers we use all lowercase
letters.

 Program Style Choosing Identifier Names

 We discuss program style throughout the text in displays like this one. A program
that “looks good” is easier to read and understand than one that is sloppy. Most pro-
grams will be examined or studied by someone other than the original programmers.
In industry, programmers spend considerably more time on program maintenance
(that is, updating and modifying the program) than they do on its original design or
coding. A program that is neatly stated and whose meaning is clear makes every-
one’s job simpler.

 Pick a meaningful name for a user-defined identifier, so its use is easy to under-
stand. For example, the identifier salary would be a good name for a memory cell
used to store a person’s salary, whereas the identifier s or bagel would be a bad
choice. If an identifier consists of two or more words, placing the underscore char-
acter (_) between words will improve the readability of the name (dollars_per_
hour rather than dollarsperhour).

 Choose identifiers long enough to convey your meaning, but avoid excessively
long names because you are more likely to make a typing error in a longer name.
For example, use the shorter identifier lbs_per_sq_in instead of the longer identi-
fier pounds_per_square_inch .

 If you mistype a name so that the identifier looks like the name of another mem-
ory cell, often the compiler cannot help you detect your error. For this reason and to
avoid confusion, do not choose names that are similar to each other. Especially avoid

 TABLE 2.3 Reserved Words and Identifiers in Fig. 2.1

 Reserved Words Standard Identifiers User-Defined Identifiers

 int, void, printf, scanf KMS_PER_MILE, main,

 double, miles, kms

 return

2.2 • Variable Declarations and Data Types 53

selecting two names that are different only in their use of uppercase and lowercase
letters, such as LARGE and large . Also try not to use two names that differ only in the
presence or absence of an underscore (xcoord and x_coord).

 EXERCISES FOR SECTION 2.1

 Self-Check

 1. Which of the following identifiers are (a) C reserved words, (b) standard
 identifiers, (c) conventionally used as constant macro names, (d) other valid
identifiers, and (e) invalid identifiers?

 void MAX_ENTRIES double time G Sue's
 return printf xyz123 part#2 "char" #insert
 this_is_a_long_one

 2. Why should E (2.7182818) be defined as a constant macro?
 3. What part of a C implementation changes the text of a C program just before

it is compiled? Name two directives that give instructions about these changes.
 4. Why shouldn’t you use a standard identifier as the name of a memory cell in a

program? Can you use a reserved word instead?

 2.2 Variable Declarations and Data Types

 Variable Declarations

 The memory cells used for storing a program’s input data and its computational
results are called variables because the values stored in variables can change
(and usually do) as the program executes. The variable declarations in a C
program communicate to the C compiler the names of all variables used in a pro-
gram. They also tell the compiler what kind of information will be stored in each
variable and how that information will be represented in memory. The variable
declarations

 double miles; /* input - distance in miles. */
 double kms; /* output - distance in kilometers */

 give the names of two variables (miles , kms) used to store real numbers. Note that C
ignores the comments on the right of each line describing the usage of each variable.

 A variable declaration begins with an identifier (for example, double) that tells
the C compiler the type of data (such as a real number) stored in a particular vari-
able. You can declare variables for any data type. C requires you to declare every
variable used in a program.

 variable a name
associated with a
memory cell whose
value can change

 variable declarations
 statements that
communicate to the
compiler the names
of variables in the
program and the kind
of information stored
in each variable

54 Chapter 2 • Overview of C

 Data Types

 A data type is a set of values and a set of operations on those values. Knowledge
of the data type of an item (a variable or value) enables the C compiler to cor-
rectly specify operations on that item. A standard data type in C is a data type that
is predefined, such as char , double , and int . We use the standard data types
 double and int as abstractions for the real numbers and integers (in the math-
ematical sense).

 Objects of a data type can be variables or constants. A positive numeric constant
(or number) in a C program can be written with or without a + sign. A numeric con-
stant cannot contain a comma.

 Numeric constants in C are considered nonnegative numbers. Although you
can use a number like −10500 in a program, C views the minus sign as the nega-
tion operator (applied to the positive constant 10500) rather than as a part of the
constant.

 Data Type int In mathematics, integers are whole numbers. The int data type
is used to represent integers in C. Because of the finite size of a memory cell, not all
integers can be represented by type int . ANSI C specifies that the range of data type

 Syntax Display for Declarations

 SYNTAX: int variable_list ;
 double variable_list ;
 char variable_list ;

 EXAMPLES: int count,
 large;
 double x, y, z;
 char first_initial;
 char ans;

 INTERPRETATION: A memory cell is allocated for each name in the variable_list. The type of

data (double , int , char) to be stored in each variable is specified at the beginning of

the statement. One statement may extend over multiple lines. A single data type can appear

in more than one variable declaration, so the following two declaration sections are equally

acceptable ways of declaring the variables rate , time , and age .

 double rate, time; double rate;
 int age; int age;
 double time;

 data type a set of
values and operations
that can be performed
on those values

2.2 • Variable Declarations and Data Types 55

 int must include at least the values −32767 through 32767 . You can store an integer
in a type int variable, perform the common arithmetic operations (add, subtract,
multiply, and divide), and compare two integers. Some values that you can store in a
type int variable are

 -10500 435 +15 -25 32767

 Data Type double A real number has an integral part and a fractional part that
are separated by a decimal point. In C, the data type double is used to represent
real numbers (for example, 3.14159 , 0.0005 , 150.0). You can store a real number
in a type double variable, perform the common arithmetic operations (add,
subtract, multiply, and divide), and compare them.

 We can use scientific notation to represent real numbers (usually for very large
or very small values). In normal scientific notation, the real number 1.23 � 10 5
is equivalent to 123000.0 where the exponent 5 means “move the decimal point
5 places to the right.” In C scientific notation, we write this number as 1.23e5
or 1.23E5 . Read the letter e or E as “times 10 to the power”: 1.23e5 means 1.23
times 10 to the power 5. If the exponent has a minus sign, the decimal point is
moved to the left (for example, 0.34e-4 is equivalent to 0.000034). Table 2.4
lists some real numbers and indicates which ones can be stored in a type double
variable. The last line shows we can write a type double constant in C scientific
notation without a decimal point.

 Data type double is an abstraction for the real numbers because it does
not include them all. Some real numbers are too large or too small, and some
real numbers cannot be represented precisely because of the finite size of a
memory cell. However, we can certainly represent enough of the real numbers
in C to carry out most of the computations we wish to perform with sufficient
accuracy.

 TABLE 2.4 Type double Constants (real numbers)

 Valid double Constants Invalid double Constants

 3.14159 150 (no decimal point)

 0.005 .12345e (missing exponent)

 12345.0 15e-0.3 (0.3 is invalid exponent)

 15.0e-04 (value is 0.0015)

 2.345e2 (value is 234.5) 12.5e.3 (.3 is invalid exponent)

 1.15e-3 (value is 0.00115) 34,500.99 (comma is not allowed)

 12e+5 (value is 1200000.0)

56 Chapter 2 • Overview of C

 Differences Between Numeric Types

 You may wonder why having more than one numeric type is necessary. Can the
data type double be used for all numbers? Yes, but on many computers, operations
involving integers are faster than those involving numbers of type double . Less
storage space is needed to store type int values. Also, operations with integers are
always precise, whereas some loss of accuracy or round-off error may occur when
dealing with type double numbers.

 These differences result from the way numbers are represented in the compu-
ter’s memory. All data are represented in memory as binary strings, strings of 0s and
1s. However, the binary string stored for the type int value 13 is not the same as
the binary string stored for the type double number 13.0. The actual internal rep-
resentation is computer dependent, and type double numbers usually require more
bytes of computer memory than type int. Compare the sample int and double
formats shown in Fig. 2.2 .

 Positive integers are represented by standard binary numbers. If you are famil-
iar with the binary number system, you know that the integer 13 is represented as
the binary number 01101.

 The format of type double values (also called floating-point format) is analo-
gous to scientific notation. The storage area occupied by the number is divided into
three sections: the sign (0 for positive numbers, 1 for negative numbers), the man-
tissa , and the exponent. The mantissa is a binary fraction between 0.5 and 1.0. The
exponent is an integer. The mantissa and exponent are chosen so that the following
formula is correct.

 real number � mantissa � 2exponent

 If 64 bits are used for storage of a type double number, the sign would occupy 1
bit, the exponent 11 bits, and the mantissa 52 bits. Because of the finite size of a
memory cell, not all real numbers in the range allowed can be represented precisely
as type double values. We will discuss this concept later.

 We have seen that type double values may include a fractional part, whereas
type int values cannot. An additional advantage of the type double format is that
a much larger range of numbers can be represented as compared to type int .
Actual ranges vary from one implementation to another, but the ANSI standard
for C specifies that the minimum range of positive values of type int is from 1 to
32,767 (approximately 3.3 � 10 4). The minimum range specified for positive values

 FIGURE 2.2

 Internal Formats of
Type int and Type
double

binary number

type int format

sign exponent mantissa

type double format

2.2 • Variable Declarations and Data Types 57

of type double is from 10 �37 to 10 37 . To understand how small 10 �37 is, consider the
fact that the mass of one electron is approximately 10 �27 grams, and 10 �37 is one
ten-billionth of 10 �27 . The enormity of 10 37 may be clearer when you realize that if
you multiply the diameter of the Milky Way galaxy in kilometers by a trillion, your
numeric result is just one ten-thousandth of 10 37 .

 ANSI C provides several integer data types in addition to int. Table 2.5 lists these
types along with their ranges in a typical microprocessor-based C implementation
(short <= int <= long). Notice that the largest number represented by an unsigned
integer type is about twice the magnitude of the largest value in the corresponding
 signed type. This results from using the sign bit as part of the number’s magnitude.

 Similarly, ANSI C defines three floating-point types that differ in their memory
requirements: float , double , and long double . Values of type float must have at
least six decimal digits of precision; both type double and long double values must
have at least ten decimal digits. Table 2.6 lists the range of positive numbers repre-
sentable by each of these types in a typical C microprocessor-based implementation.

 Data Type char

 Data type char represents an individual character value—a letter, a digit, or a
special symbol. Each type char value is enclosed in apostrophes (single quotes) as
shown here.

 'A' 'z' '2' '9' '*' ':' '"' ' '

 TABLE 2.5 Integer Types in C

 Type Range in Typical Microprocessor Implementation

 short −32,767 .. 32,767

 unsigned short 0 .. 65,535

 int −2,147,483,647 .. 2,147,483,647

 unsigned 0 .. 4,294,967,295

 long −2,147,483,647 .. 2,147,483,647

 unsigned long 0 .. 4,294,967,295

 TABLE 2.6 Floating-Point Types in C

 Type Approximate Range* Significant Digits*

 float 10 −37 .. 10 38 6

 double 10 −307 .. 10 308 15

 long double 10 −4931 .. 10 4932 19

 *In a typical microprocessor-based C implementation

58 Chapter 2 • Overview of C

 In the line above Table 2.6, the character value '"' represents the character"; the
character value ' ' represents the blank character, which is typed by pressing
the apostrophe key, the space bar, and the apostrophe key.

 Although a type char value in a program requires apostrophes, a type char data
value should not have them. Thus, for example, when entering the letter z as a char-
acter data item to be read by a program, press the z key instead of the sequence ' z '.

 The ASCII Code

 You should know that a character is represented in memory as an integer. The
value stored is determined by the code used by your C compiler. The ASCII code
(American Standard Code for Information Interchange) is the most common. Table 2.7
shows the ASCII (pronounced “askey”) code values for several characters. Appendix D
shows the complete ASCII code.

 The digit characters '0' through '9' have code values of 48 through 57 (decimal).
The order relationship that follows holds for the digit characters (i.e., '0' < '1' ,
 '1' < '2' , and so on).

 '0' < '1' < '2' < '3' < '4' < '5' < '6' < '7' < '8' < '9'

 In ASCII, uppercase letters have the decimal code values 65 through 90. The
order relationship that follows holds for uppercase letters.

 'A' < 'B' < 'C' < ... < 'X' < 'Y' < 'Z'

 Lowercase letters have the consecutive decimal code values 97 through 122, and the
following order relationship holds:

 'a' < 'b' < 'c' < ... < 'x' < 'y' < 'z'

 ASCII code a
particular code that
specifies the integer
representing each
 char value.

 TABLE 2.7 ASCII Codes for Characters

 Character ASCII Code

 ' ' 32

 '*' 42

 'A' 65

 'B' 66

 'Z' 90

 'a' 97

 'b' 98

 'z' 122

 '0' 48

 '9' 57

2.3 • Executable Statements 59

 In ASCII, the printable characters have codes from 32 (code for a blank or
space) to 126 (code for the symbol ~). The other codes represent nonprintable con-
trol characters. Sending a control character to an output device causes the device to
perform a special operation such as returning the cursor to column one, advancing
the cursor to the next line, or ringing a bell.

 EXERCISES FOR SECTION 2.2

 Self-Check

 1. a. Write the following numbers in normal decimal notation:

 103e-4 1.2345e+6 123.45e+3

 b. Write the following numbers in C scientific notation:

 1300 123.45 0.00426

 2. Indicate which of the following are valid type int , double , or char constants
in C and which are not. Identify the data type of each valid constant.

 'PQR' 15E-2 35 'h' -37.491 .912 4,719 'true' "T"
 & 4.5e3 '$'

 3. What would be the best variable type for the area of a circle in square inches?
Which type for the number of cars passing through an intersection in an hour?
The first letter of your last name?

 Programming

 1. Write the #define preprocessor directive and declarations for a program
that has a constant macro for PI (3.14159) and variables radius , area , and
cir cumf declared as double , variable num_circ as an int , and variable
circ_name as a char .

 2.3 Executable Statements
 The executable statements follow the declarations in a function. They are the C
statements used to write or code the algorithm and its refinements. The C compiler
translates the executable statements into machine language; the computer executes
the machine language version of these statements when we run the program.

 Programs in Memory

 Before examining the executable statements in the miles-to-kilometers conver-
sion program (Fig. 2.1), let’s see what computer memory looks like before and

60 Chapter 2 • Overview of C

after that program executes. Figure 2.3 a shows the program loaded into memory
and the program memory area before the program executes. The question marks
in memory cells miles and kms indicate that the values of these cells are unde-
fined before program execution begins. During program execution, the data
value 10.00 is copied from the input device into the variable miles . After the
program executes, the variables are defined as shown in Fig. 2.3 b. We will see
why next.

 Assignment Statements

 An assignment statement stores a value or a computational result in a variable,
and is used to perform most arithmetic operations in a program. The assignment
statement

 kms = KMS_PER_MILE * miles;

 assigns a value to the variable kms . The value assigned is the result of the multiplica-
tion (* means multiply) of the constant macro KMS_PER_MILE (1.609) by the variable
 miles . The memory cell for miles must contain valid information (in this case, a
real number) before the assignment statement is executed. Figure 2.4 shows the
contents of memory before and after the assignment statement executes; only the
value of kms is changed.

 In C the symbol = is the assignment operator. Read it as “becomes,” “gets,”
or “takes the value of” rather than “equals” because it is not equivalent to the
equal sign of mathematics. In mathematics, this symbol states a relationship
between two values, but in C it represents an action to be carried out by the
computer.

machine language
miles-to-kms con-
version program

memory

kms

16.09

miles

10.00

machine language
miles-to-kms con-
version program

memory

?

?

kms

miles

(a) (b)

 FIGURE 2.3

 Memory (a) Before
and (b) After
Execution of a
Program

 assignment statement
 an instruction that
stores a value or a
computational result
in a variable

2.3 • Executable Statements 61

miles

10.00

KMS_PER_MILE

1.609

*

kms

?

miles

10.00

KMS_PER_MILE

1.609

kms

16.090

16.090

Before assignment

After assignment

 FIGURE 2.4

 Effect of kms =
KMS_PER_MILE *
 miles;

 Assignment Statement

 FORM: variable = expression;

 EXAMPLE: x = y + z + 2.0;

 INTERPRETATION: The variable before the assignment operator is assigned the value of the expres-

sion after it. The previous value of variable is destroyed. The expression can be a variable, a constant,

or a combination of these connected by appropriate operators (for example, + , − , / , and *).

 EXAMPLE 2.1 In C you can write assignment statements of the form

 sum = sum + item;

 where the variable sum appears on both sides of the assignment operator. This is obvi-
ously not an algebraic equation, but it illustrates a common programming practice.
This statement instructs the computer to add the current value of sum to the value of
 item ; the result is then stored back into sum . The previous value of sum is destroyed
in the process, as illustrated in Fig. 2.5 . The value of item , however, is unchanged.

sum

item

10

sum

100

+

110

Before assignment

After assignment

 FIGURE 2.5

 Effect of sum =
sum + item;

62 Chapter 2 • Overview of C

 EXAMPLE 2.2 You can also write assignment statements that assign the value of a single variable
or constant to a variable. If x and new_x are type double variables, the statement

 new_x = x;

 copies the value of variable x into variable new_x . The statement

 new_x = -x;

 instructs the computer to get the value of x , negate that value, and store the result
in new_x . For example, if x is 3.5 , new_x is −3.5 . Neither of the assignment state-
ments above changes the value of x .

 Section 2.5 continues the discussion of type int and double expressions and
operators.

 Assignment to a char Variable

 The char variable next_letter is assigned the character value 'A' by the assign-
ment statement

 next_letter = 'A';

 A single character variable or value may appear on the right-hand side of a character
assignment statement.

 Input/Output Operations and Functions

 Data can be stored in memory in two different ways: either by assignment to a vari-
able or by copying the data from an input device into a variable using a function like
 scanf . You copy data into a variable if you want a program to manipulate different
data each time it executes. This data transfer from the outside world into memory is
called an input operation .

 As it executes, a program performs computations and stores the results in
memory. These program results can be displayed to the program user by an output
operation .

 All input/output operations in C are performed by special program units called
 input/output functions . The most common input/output functions are supplied
as part of the C standard input/output library to which we gain access through the
preprocessor directive

 #include <stdio.h>

 In this section we show how to use the input function scanf and the output func-
tion printf .

 input operation an
instruction that copies
data from an input
device into memory

 output operation an
instruction that displays
information stored in
memory

 input/output
function a C function
that performs an input
or output operation

2.3 • Executable Statements 63

 In C a function call is used to call or activate a function. Calling a function is
analogous to asking a friend to perform an urgent task. You tell your friend what to
do (but not how to do it) and wait for your friend to report back that the task is fin-
ished. After hearing from your friend, you can go on and do something else.

 The printf Function

 To see the results of a program execution, we must have a way to specify what vari-
able values should be displayed. In Fig. 2.1 the statement

 function call calling
or activating a function

printf("That equals %f kilometers.\n", kms);

function name function arguments

format string print list

 calls function printf (pronounced “print-eff”) to display a line of program output.
A function call consists of two parts: the function name and the function argu-
ments , enclosed in parentheses. The arguments for printf consist of a format
string (in quotes) and a print list (the variable kms). The function call above dis-
plays the line

 That equals 16.090000 kilometers.

 which is the result of displaying the format string "That equals %f kilo-
meters.\n" after substituting the value of kms for its placeholder (%f) in the format
string. A placeholder always begins with the symbol % . Here the placeholder %f
marks the display position for a type double variable.

 Table 2.8 shows placeholders for type char , double , and int variables. Each
placeholder is an abbreviation for the type of data it represents. C uses %f (or %lf)
and not %d with type d ouble because programmers often refer to real numbers as
 floating point numbers.

 The placeholders used with scanf are the same as those used with printf
except for variables of type double . Type double variables use a %f placeholder in
a printf format string and a %lf placeholder in a scanf format string.

 The format string shown on page 60 also contains the newline escape sequence
 \n . Like all C escape sequences, \n begins with the backslash character. Including this
sequence at the end of the format string terminates the current output line.

 Multiple Placeholders Format strings can have multiple placeholders. If the
print list of a printf call has several variables, the format string should contain the
same number of placeholders. C matches variables with placeholders in left-to-right
order.

 function argument
enclosed in parentheses
following the function
name; provides
information needed by
the function

 format string in a call
to printf, a string
of characters enclosed
in quotes ("), which
specifies the form of the
output line

 print list in a call to
printf, the variables
or expressions whose
values are displayed

 placeholder a symbol
beginning with % in
a format string that
indicates where to
display the output value

 newline escape
sequence the
character sequence
\n, which is used in
a format string to
terminate an output
line

64 Chapter 2 • Overview of C

 EXAMPLE 2.3 If letter_1 , letter_2 , and letter_3 are type char variables and age is type int ,
the printf call

 printf("Hi %c%c%c - your age is %d\n",
 letter_1, letter_2, letter_3, age);

 displays a line such as

 Hi EBK - your age is 35

 The placeholders %c%c%c indicate the display position of the letters (E , B , and K)
stored in the three type char variables, and the placeholder %d indicates the posi-
tion of the value of age (35) .

 TABLE 2.8 Placeholders in Format Strings

 Placeholder Variable Type Function Use

 %c char printf/scanf

 %d int printf/scanf

 %f double printf

 %lf double scanf

 Syntax Display for printf Function Call

 SYNTAX: printf(format string, print list);
 printf(format string);

 EXAMPLES: printf("I am %d years old, and my gpa is %f\n",
 age, gpa);
 printf("Enter the object mass in grams> ");

 INTERPRETATION: The printf function displays the value of its format string after substitut-

ing in left-to-right order the values of the expressions in the print list for their placeholders in

the format string and after replacing escape sequences such as \n by their meanings.

 More About \n The cursor is a moving place marker that indicates the next
position on the screen where information will be displayed. When executing a
 printf function call, the cursor is advanced to the start of the next line on the
screen if the \n escape sequence is encountered in the format string.

 We often end a printf format string with a \n (newline escape sequence) so
that the call to printf produces a completed line of output. If no characters are

 cursor a moving place
marker that indicates
the next position on
the screen where
information will be
displayed

2.3 • Executable Statements 65

printed on the next line before another newline character is printed, a blank line will
appear in the output. For example, the calls

 printf("Here is the first line\n");
 printf("\nand this is the second.\n");

 produce two lines of text with a blank line in between:

 Here is the first line

 and this is the second.

 The blank line appears because the newline character terminates the first format
string and begins the second. Notice that because the format strings of these calls to
 printf contain no placeholders, no print list of variables is needed.

 If a printf format string contains a \n in the middle of the string

 printf("This sentence appears \non two lines.\n");

 the characters after the \n appear on a new output line:

 This sentence appears
 on two lines.

 In the next section we will see examples where the newline escape sequence is
omitted.

 Displaying Prompts When input data are needed in an interactive program, you
should use the printf function to display a prompting message , or prompt , that
tells the program user what data to enter. The printf statement below

 printf("Enter the distance in miles> ");
 scanf("%lf", &miles);

 displays a prompt for square meters (a numeric value). The printf statement dis-
plays the format string and advances the cursor to the screen position following this
string. The program user can then type in the data value requested, which is proc-
essed by the scanf function as described next. The cursor is advanced to the next
line when the user presses the <return> or <enter> key.

 The scanf Function

 The statement

 scanf("%lf", &miles);

 calls function scanf (pronounced “scan-eff”) to copy data into the variable miles .
Where does function scanf get the data it stores in the variable miles ? It copies
the data from the standard input device. In most cases the standard input device is
the keyboard; consequently, the computer will attempt to store in miles whatever
data the program user types at the keyboard.

 prompt (prompting
message) a message
displayed to indicate
what data to enter and
in what form

66 Chapter 2 • Overview of C

 The format string “%lf” consists of a single placeholder that tells scanf what
kind of data to copy into the variable miles . Because the placeholder is %lf , the
input operation will proceed without error only if the program user types in a
number. Figure 2.6 shows the effect of the scanf operation.

 Notice that in a call to scanf , the name of each variable that is to be given a
value is preceded by the ampersand character (&). The & is the C address-of opera-
tor. In the context of this input operation, the & operator tells the scanf function
 where to find each variable into which it is to store a new value. If the ampersand
were omitted, scanf would know only a variable’s current value, not its location in
memory, so scanf would be unable to store a new value in the variable.

 When scanf executes, the program pauses until the required data are entered
and the <return> or <enter> key is pressed. If an incorrect data character is typed,
the program user can press the backspace key () to edit the data. However, once
<return> or <enter> is pressed, the data are processed exactly as typed in and it is
too late to correct any data entry errors.
 The function call

 scanf("%c%c%c", &letter_1, &letter_2, &letter_3);

 causes the scanf function to copy data into each of the three variables, and the
format string includes one %c placeholder for each variable. Assuming these vari-
ables are declared as type char , one character will be stored in each variable. The
next three characters that are entered at the keyboard are stored in these variables.
Note that case is important for character data, so the letters B and b have different
representations in memory. Again, the program user should press the <return>
or <enter> key after typing in three characters. Figure 2.7 shows the effect of this
statement when the letters Bob are entered.

30.5number entered
miles

30.5

 FIGURE 2.6

 Effect of
 scanf("%lf",
 &miles);

Bobletters entered
letter_1

B

letter_2

o

letter_3

b

 FIGURE 2.7
 Scanning Data
Line Bob

2.3 • Executable Statements 67

 The number of input characters consumed by the scanf function depends
on the current format placeholder, which should reflect the type of the variable in
which the data will be stored. Only one input character is used for a %c (type char
variable). For a %lf or %d (type double or int variable), the program first skips any
spaces and then scans characters until it reaches a character that cannot be part of
the number. Usually the program user indicates the end of a number by pressing
the space bar or by pressing the <return> or <enter> key.

 If you would like scanf to skip spaces before scanning a character, put a blank
in the format string before the %c placeholder. If you type more data characters
on a line than are needed by the current call to scanf , the extra characters will be
processed by the next call to scanf .

 Some C compilers require you to use the format string "\n%c" to read the
first character of a data line. The \n causes scanf to skip over any extra characters
(including the newline character) not scanned from the previous data line.

 Syntax Display for scanf Function Call

 SYNTAX: scanf(format string , input list);

 EXAMPLE: scanf("%c%d", &first_initial, &age);

 INTERPRETATION: The scanf function copies into memory data typed at the keyboard by

the program user during program execution. The format string is a quoted string of place-

holders, one placeholder for each variable in the input list. Each int , double , or char

variable in the input list is preceded by an ampersand (&). Commas are used to separate

variable names. The order of the placeholders must correspond to the order of the variables

in the input list.

 You must enter data in the same order as the variables in the input list. You should insert

one or more blank characters or carriage returns between numeric items. If you plan to insert

blanks or carriage returns between character data, you must include a blank in the format

string before the %c placeholder.

 The return Statement

 The last line in the main function (Fig. 2.1)

 return (0);

 transfers control from your program to the operating system. The value in paren-
theses, 0, is considered the result of function main ’s execution, and it indicates that
your program executed without error.

68 Chapter 2 • Overview of C

 EXERCISES FOR SECTION 2.3

 Self-Check

 1. Show the output displayed by the following program lines when the data
entered are 5 and 7:

 printf("Enter two integers> ");
 scanf("%d%d", &m, &n);
 m = m + 5;
 n = 3 * n;
 printf("m = %d\nn = %d\n", m, n);

 2. Show the contents of memory before and after the execution of the program
lines shown in Exercise 1.

 3. Show the output displayed by the following lines if the value of exp is 11 :

 printf("My name is ");
 printf("Jane Doe.");
 printf("\n");
 printf("I live in ");
 printf("Ann Arbor, MI\n");
 printf("and I have %d years ", exp);
 printf("of programming experience.\n");

 4. How could you modify the code in Exercise 3 so that “My name is Jane Doe.”
and “I live in Ann Arbor, MI” would appear on the same line without running
together (i.e., with a space between the period and the “I”)?

 Programming

 1. Write a statement that asks the user to type three integers and another state-
ment that stores the three user responses into first , second , and third .

 2. a. Write a statement that displays the following line with the value of the
type int variable n before the period.

 The value of n is ___________.

 Syntax Display for return Statement

 SYNTAX: return expression ;

 EXAMPLE: return (0);

 INTERPRETATION: The return statement transfers control from a function back to the

 activator of the function. For function main , control is transferred back to the operating

system. The value of expression is returned as the result of the function execution.

2.4 • General Form of a C Program 69

 b. Assuming that side and area are type double variables containing the
length of one side in cm and the area of a square in square cm, write a
statement that will display this information in this form:

 The area of a square whose side length is ______ cm
 is ______ square cm.

 3. Write a program that asks the user to enter the radius of a circle and then
computes and displays the circle’s area. Use the formula

 Area � PI � Radius � Radius

 where PI is the constant macro 3.14159 .

 2.4 General Form of a C Program
 Now that we have discussed the individual statements that can appear in C pro-
grams, we review the rules for combining them into programs. We also discuss the
use of punctuation, spacing, and comments in a program.

 As shown in Fig. 2.8 , each program begins with preprocessor directives that
serve to provide information about functions from standard libraries and definitions
of necessary program constants. Examples of such directives are #include and
 #define . Unlike the declarations and executable statements of the main function
body, the preprocessor directives we have seen do not end in semicolons.

 A simple C program defines the main function after the preprocessor directives.
An open curly brace ({) signals the beginning of the main function body. Within this
body, we first see the declarations of all the variables to be used by the main func-
tion. These variables are followed by the statements that are translated into machine
language and are eventually executed. The statements we have looked at so far per-
form computations or input/output operations. The end of the main function body
is marked by a closing curly brace (}).

 C treats most line breaks like spaces so a C statement can extend over more
than one line. You should not split a statement that extends over more than one line
in the middle of an identifier, a reserved word, a constant, or a format string.

 preprocessor directives
 main function heading
 {
 declarations
 executable statements

 }

 FIGURE 2.8

 General Form of a
C Program

70 Chapter 2 • Overview of C

 You can write more than one statement on a line. For example, the line

 printf("Enter distance in miles> "); scanf("%lf", &miles);

 contains a statement that displays a prompt and a statement that gets the data
requested. We recommend that you place only one statement on a line because it
improves readability and makes it easier to maintain a program.

 Program Style Spaces in Programs

 The consistent and careful use of blank spaces can improve the style of a program.
A blank space is required between consecutive words in a program line.

 The compiler ignores extra blanks between words and symbols, but you may
insert space to improve the readability and style of a program. You should always
leave a blank space after a comma and before and after operators such as * , − , and
 = . You should indent the body of the main function and insert blank lines between
sections of the program.

 Although stylistic issues have no effect whatever on the meaning of the program as
far as the computer is concerned, they can make it easier for people to read and under-
stand the program. Take care, however, not to insert blank spaces where they do not
belong. For example, there cannot be a space between the characters that surround a
comment (/* and */). Also, you cannot write the identifier MAX_ITEMS as MAX ITEMS .

 Comments in Programs

 Programmers can make a program easier to understand by using comments to
describe the purpose of the program, the use of identifiers, and the purpose of each
program step. Comments are part of the program documentation because they
help others read and understand the program. The compiler, however, ignores com-
ments and they are not translated into machine language.

 A comment can appear by itself on a program line, at the end of a line following a
statement, or embedded in a statement. In the following variable declarations, the first
comment is embedded in the declaration, while the second one follows the declaration.

 double miles, /* input - distance in miles */
 kms; /* output - distance in kilometers */

 We document most variables in this way.

 Program Style Using Comments

 Each program should begin with a header section that consists of a series of com-
ments specifying

 ■ the programmer’s name
 ■ the date of the current version
 ■ a brief description of what the program does

 program
documentation
information
(comments) that
enhances the
readability of a
program

2.4 • General Form of a C Program 71

 If you write the program for a class assignment, you should also list the class
identification and your instructor’s name.

 /*
 * Programmer: William Bell Date completed: May 9, 2003
 * Instructor: Janet Smith Class: CIS61
 *
 * Calculates and displays the area and circumference of a
 * circle
 */

 Before you implement each step in the initial algorithm, you should write a
comment that summarizes the purpose of the algorithm step. This comment should

 Program Comment

 SYNTAX: /* comment text */

 EXAMPLES: /* This is a one-line or partial-line comment */

 /*

 * This is a multiple-line comment in which the stars

 * not immediately preceded or followed by slashes

 * have no special syntactic significance, but simply

 * help the comment to stand out as a block. This

 * style is often used to document the purpose of a

 * program.

 */

 INTERPRETATION: A slash-star indicates the start of a comment; a star-slash indicates the end

of a comment. Comments are listed with the program but are otherwise ignored by the C

compiler. A comment may be put in a C program anywhere a blank space would be valid.

 Note : ANSI C does not permit the placement of one comment inside another.

 C++ Style Comment

 SYNTAX: // comment text

 EXAMPLES: // This is a one-line comment
 int sales; // input - amount of sales

 INTERPRETATION: A slash-slash indicates the start of a comment; the comment continues

until the end of the line.

 Note: C++ style comments were added to standard C in 1999. However, it is possible that

the options set for a compiler may prevent it from recognizing them. For that reason, we do

not use them in the book.

72 Chapter 2 • Overview of C

describe what the step does rather than simply restate the step in English. For
example, the comment

 /* Convert the distance to kilometers. */
 kms = KMS_PER_MILE * miles;

 is more descriptive and hence preferable to

 /* Multiply KMS_PER_MILE by miles and store result in kms. */
 kms = KMS_PER_MILE * miles;

 EXERCISES FOR SECTION 2.4

 Self-Check

 1. Change the following comments so they are syntactically correct.

 /* This is a comment? *\
 /* This one /* seems like a comment */ doesn't it */

 2. Correct the syntax errors in the following program, and rewrite the program
so that it follows our style conventions. What does each statement of your
 corrected program do? What output does it display?

 /*
 * Calculate and display the difference of two input values
 *)
 #include <stdio.h>
 int
 main(void) {int X, /* first input value */ x, /* second
 input value */
 sum; /* sum of inputs */
 scanf("%i%i"; X; x); X + x = sum;
 printf("%d + %d = %d\n"; X; x; sum); return (0);}

 Programming

 1. Write a program that stores the values 'X' and 76.1 in separate memory cells.
Your program should get the values as data items and display them again for
the user when done.

 2.5 Arithmetic Expressions
 To solve most programming problems, you will need to write arithmetic expressions
that manipulate type int and double data. This section describes the operators
used in arithmetic expressions, and rules for writing and evaluating the expressions.

2.5 • Arithmetic Expressions 73

 Table 2.9 shows all the arithmetic operators. Each operator manipulates two
 operands, which may be constants, variables, or other arithmetic expressions. The
operators + , − , * , and / may be used with type int or double operands. As shown
in the last column, the data type of the result is the same as the data type of its oper-
ands. An additional operator, the remainder operator (%), can be used with integer
operands to find the remainder of longhand division. We will discuss the division
and remainder operators in the next subsection.

 Operators / and %

 When applied to two positive integers, the division operator (/) computes the inte-
gral part of the result of dividing its first operand by its second. For example, the
value of 7.0 / 2.0 is 3.5 , but the value of 7 / 2 is the integral part of this result, or
 3 . Similarly, the value of 299.0 / 100.0 is 2.99 , but the value of 299 / 100 is the
integral part of this result, or 2 . If the / operator is used with a negative and a positive
integer, the result may vary from one C implementation to another. For this reason,
you should avoid using division with negative integers. The / operation is undefined
when the divisor (the second operand) is 0 . Table 2.10 shows some examples of inte-
ger division.

 TABLE 2.9 Arithmetic Operators

 Arithmetic Operator Meaning Examples

 + addition 5 + 2 is 7
 5.0 + 2.0 is 7.0

 − subtraction 5 − 2 is 3
 5.0 − 2.0 is 3.0

 * multiplication 5 * 2 is 10
 5.0 * 2.0 is 10.0

 / division 5.0 / 2.0 is 2.5
 5 / 2 is 2

 % remainder 5 % 2 is 1

 TABLE 2.10 Results of Integer Division

 3 / 15 = 0 18 / 3 = 6

 15 / 3 = 5 16 / −3 varies

 16 / 3 = 5 0 / 4 = 0

 17 / 3 = 5 4 / 0 is undefined

74 Chapter 2 • Overview of C

 The remainder operator (%) returns the integer remainder of the result of divid-
ing its first operand by its second. For example, the value of 7 % 2 is 1 because the
integer remainder is 1 .

7 / 2

3
7
6
1

2

299 / 100

2
299
200
99

100

7 % 2 299 % 100

 You can use longhand division to determine the result of a / or % operation with
integers. The calculation on the left shows the effect of dividing 7 by 2 by longhand
division: we get a quotient of 3 (7 / 2) and a remainder of 1 (7 % 2). The calculation
on the right shows that 299 % 100 is 99 because we get a remainder of 99 when we
divide 299 by 100 .

 The magnitude of m % n must always be less than the divisor n, so if m is
 positive, the value of m % 100 must be between 0 and 99 . The % operation is unde-
fined when n is zero and varies from one implementation to another if n is negative.
 Table 2.11 shows some examples of the % operator.

 The formula

 m equals (m / n)* n � (m % n)

 defines the relationship between the operators / and % for an integer dividend of m
and an integer divisor of n. We can see that this formula holds for the two problems
discussed earlier by plugging in values for m, n, m / n, and m % n. In the first exam-
ple that follows, m is 7 and n is 2; in the second, m is 299 and n is 100.

 7 equals (7 / 2) * 2 + (7 % 2)
 equals 3 * 2 + 1

 299 equals (299 / 100) * 100 + (299 % 100)
 equals 2 * 100 + 99

 TABLE 2.11 Results of % Operation

 3 % 5 = 3 5 % 3 = 2

 4 % 5 = 4 5 % 4 = 1

 5 % 5 = 0 15 % 5 = 0

 6 % 5 = 1 15 % 6 = 3

 7 % 5 = 2 15 % −7 varies

 8 % 5 = 3 15 % 0 is undefined

2.5 • Arithmetic Expressions 75

 EXAMPLE 2.4 If you have p pieces of candy and c children and want to distribute the candy
equally, the expression

 p / c

 tells you how many pieces to give each child. For example, if p is 18 and c is 4 , give
each child 4 pieces. The expression

 p % c

 tells you how many pieces would be left over (18 % 4 is 2).

 Data Type of an Expression

 The data type of each variable must be specified in its declaration, but how does C
determine the data type of an expression? The data type of an expression depends
on the type(s) of its operands. Let’s consider the types of expressions involving oper-
ands that are integers of type int or real numbers of type double. * For example,
the expression

 ace + bandage

 is type int if both ace and bandage are type int ; otherwise, it is type double . In
general, an expression of the form

 ace arithmetic_operator bandage

 is of type int if both ace and bandage are of type int ; otherwise, it is of type double .
 An expression that has operands of both type int and double is a mixed-type

expression . The data type of such a mixed-type expression will be double .

 Mixed-Type Assignment Statement

 When an assignment statement is executed, the expression is first evaluated; then
the result is assigned to the variable listed to the left of the assignment operator (=).
Either a type double or a type int expression may be assigned to a type double
variable, so if m and n are type int and p , x , and y are type double , the statements
that follow assign the values shown in the boxes.

 m = 3;
 n = 2;
 p = 2.0;
 x = m / p;
 y = m / n;

 * C defines additional integer and real data types besides int and double , but these two types can
represent most numbers used in programming applications.

 mixed-type
expression an
expression with
operands of different
types

76 Chapter 2 • Overview of C

 In a mixed-type assignment such as

 y = m / n;
 the expression has a different data type from the variable y getting its value. A com-
mon error is to assume that because y is type double , the expression will be evaluated
as if m and n were also type double instead of type int . Remember, the expression is
evaluated before the assignment is made, and the type of the variable being assigned
has no effect whatsoever on the expression value. The expression m / n evaluates to
the integer 1 . This value is converted to type double (1.0) before it is stored in y .

 Assignment of a type double expression to a type int variable causes the
 fractional part of the expression to be lost since it cannot be represented in a type
 int variable. The expression in the assignment statements

 x = 9 * 0.5;
 n = 9 * 0.5;

 evaluates to the real number 4.5 . If x is of type double , the number 4.5 is stored
in x , as expected. If n is of type int , only the integral part of the expression value is
stored in n , as shown.

x

4.5

n

4

 Type Conversion through Casts

 C allows the programmer to convert the type of an expression by placing the desired
type in parentheses before the expression, an operation called a type cast . In the
previous section, we saw that the fractional part of a real value is lost when it is
assigned to an int . Use a type cast to show that this happens.

 n = (int)(9 * 0.5);

 Two common uses of type casts are shown in Table 2.12 —avoiding integer divi-
sion when computing an average and rounding a type double value by adding 0.5
and converting the result to int .

 Characters as Integers

 Since characters are represented by integer codes, C permits conversion of type
 char to type int and vice versa. For example, you could use the following to find
out the code your implementation uses for a question mark:

 qmark_code = (int)'?';
 printf("Code for ? = %d\n", qmark_code);

 type cast converting
an expression to a
different type by writing
the desired type in
parentheses in front of
the expression

m

3

n

2

p

2.0

x

1.5

y

1.0

 mixed-type
assignment the
expression being
evaluated and the
variable to which it is
assigned have different
data types

2.5 • Arithmetic Expressions 77

 TABLE 2.12 Examples of the Use of Type Casts

 Application Example Explanation

 Avoiding integer
division

 int num_students; /* number of
 students who took a test */
 int total_score; /* total of
 all students' test scores */
 double average;
 average = (double)total_score /
 (double)num_students;

 If the assignment statement were written

 average = (double) (total_score
 / num_students);

 integer division would cause the loss
of the fractional part of the average.

 Rounding a
positive number

 double x;
 int rounded_x;
 /* code to give x a value
 omitted */
 rounded_x = (int)(x + 0.5);

 Consider cases when x’s fractional part is greater than
or equal to 0.5, and cases when it is less. On the left
we see how 35.51 is rounded to 36; on the right how
35.12 is rounded to 35.

35.51
+0.50
36.01

35.12
+0.50
35.62

 You can perform arithmetic operations on characters. For example, the expres-
sion 'A' + 1 adds 1 to the code for 'A' and its value is the next character after 'A'
which is 'B' in ASCII.

 Expressions with Multiple Operators

 In our programs so far, most expressions have involved a single arithmetic operator;
however, expressions with multiple operators are common in C. Expressions can
include both unary and binary operators. Unary operators take only one operand.
In these expressions, we see the unary negation (−) and plus (+) operators.

 x = -y;
 p = +x * y;

 Binary operators require two operands. When + and − are used to represent addi-
tion and subtraction, they are binary operators.

 x = y + z;
 z = y - x;

 To understand and write expressions with multiple operators, we must know the
C rules for evaluating expressions. For example, in the expression x + y / z , is +
performed before / or is + performed after / ? Is the expression x / y * z evaluated
as (x / y) * z or as x / (y * z)? Verify for yourself that the order of evaluation does
make a difference by substituting some simple values for x , y , and z . In both of

 unary operator an
operator with one
operand

 binary operator an
operator with two
operands

78 Chapter 2 • Overview of C

these expressions, the / operator is evaluated first; the reasons are explained in the
C rules for evaluation of arithmetic expressions that follow. These rules are based
on familiar algebraic rules.

 Rules for Evaluating Expressions

 a. Parentheses rule: All expressions in parentheses must be evaluated separately.
Nested parenthesized expressions must be evaluated from the inside out, with
the innermost expression evaluated first.

 b. Operator precedence rule: Operators in the same expression are evaluated in
the following order:

 unary +, - first
 *, /, % next
 binary +, - last

 c. Associativity rule: Unary operators in the same subexpression and at the same
precedence level (such as + and −) are evaluated right to left (right associativity).
Binary operators in the same subexpression and at the same precedence level
(such as + and −) are evaluated left to right (left associativity).

 These rules will help you understand how C evaluates expressions. Use parentheses
as needed to specify the order of evaluation. Often it is a good idea in complicated
expressions to use extra parentheses to document clearly the order of operator
evaluation. For example, the expression

 x * y * z + a / b - c * d

 can be written in a more readable form using parentheses:

 (x * y * z) + (a / b) - (c * d)

 EXAMPLE 2.5 The formula for the area of a circle

 a = pr2

 can be written in C as

 area = PI * radius * radius;

 where the meaning of the constant macro PI is 3.14159 . Figure 2.9 shows the eval-
uation tree for this formula. In this tree, which you read from top to bottom, arrows
connect each operand with its operator. The order of operator evaluation is shown
by the number to the left of each operator; the letter to the right of the operator
indicates which evaluation rule applies.

2.5 • Arithmetic Expressions 79

 In Fig. 2.10 , we see a step-by-step evaluation of the same expression for a
 radius value of 2.0 . You may want to use a similar notation when computing by
hand the value of an expression with multiple operators.

 EXAMPLE 2.6 The formula for the average velocity, v, of a particle traveling on a line between
points p 1 and p 2 in time t 1 to t 2 is

 v =
p2 - p1

t2 - t1

 This formula can be written and evaluated in C as shown in Fig. 2.11 .

 EXAMPLE 2.7 Consider the expression

 z - (a + b / 2) + w * -y

 containing type int variables only. The parenthesized expression

 (a + b / 2)

 is evaluated first (rule a) beginning with b / 2 (rule b). Once the value of b / 2
is determined, it can be added to a to obtain the value of (a + b / 2). Next, y is
negated (rule b). The multiplication operation can now be performed (rule b) and
the value for w * −y is determined. Then, the value of (a + b / 2) is subtracted from
 z (rule c). Finally, this result is added to w * −y . The evaluation tree and step-by-
step evaluation for this expression are shown in Fig. 2.12 .

area = PI * radius * radius

*

*

1

2

area

c

 FIGURE 2.9

 Evaluation Tree
for area = PI *
radius * radius;

area =

3.14159

PI

6.28318

*

2.0

radius *

2.0

radius

12.56636

 FIGURE 2.10

 Step-by-Step
Expression
Evaluation

80 Chapter 2 • Overview of C

 Writing Mathematical Formulas in C

 You may encounter two problems in writing a mathematical formula in C. First,
multiplication often can be implied in a formula by writing the two items to be mul-
tiplied next to each other, for example, a = bc . In C, however, you must always use
the * operator to indicate multiplication, as in

 a = b * C;

 The other difficulty arises in formulas with division. We normally write the
numerator and the denominator on separate lines:

 m =
y - b
x - a

v = (p2 – p1) / (t2 – t1)

–1 a –2 a

/3

v

p1

4.5

p2

9.0

t1

0.0

t2

60.0

v = (p2 – p1) / (t2 – t1)

9.0 4.5 60.0 0.0

4.5 60.0

0.075

 FIGURE 2.11

 Evaluation Tree
and Evaluation for
 v = (p2 − p1) /
(t2 − t1);

z – (a + b / 2) + w * -y

–3 b

+2

z

8

a

3

b

9

w

2

3 9 2

4

7

/1 a,b

*4 b

6

–5 c

a

z

–5

y

z – (a + b / 2) + w * –y

8 –5

11

10

1

+

5

 FIGURE 2.12

 Evaluation Tree
and Evaluation for
 z − (a + b / 2)
+ w * −y

2.5 • Arithmetic Expressions 81

 In C, however, the numerator and denominator are placed on the same line.
Consequently, parentheses are often needed to separate the numerator from the
denominator and to indicate clearly the order of evaluation of the operators in the
expression. The above formula would be written in C as

 m = (y - b) / (x - a);

 Table 2.13 shows several mathematical formulas rewritten in C.
 The points illustrated in these examples can be summarized as follows:

 ■ Always specify multiplication explicitly by using the operator * where needed
(formulas 1 and 4).

 ■ Use parentheses when required to control the order of operator evaluation
(formulas 3 and 4).

 ■ Two arithmetic operators can be written in succession if the second is a unary
operator (formula 5).

 Numerical Inaccuracies

 One of the problems in processing data of type double is that sometimes an error
occurs in representing real numbers. Just as certain fractions cannot be represented
exactly in the decimal number system (e.g., the fraction 1/3 is 0.333333 . . .), so
some fractions cannot be represented exactly as binary numbers in the mantissa of
the type double format. The representational error (sometimes called round-off
error) will depend on the number of bits used in the mantissa: the more bits, the
smaller the error.

 Errors may occur when manipulating very large and very small real numbers.
When you add a large number and a small number, the larger number may “cancel
out” the smaller number, resulting in a cancellation error . If x is much larger than
 y, then x + y may have the same value as x (for example, 1000.0 + 0.0000001234 is
equal to 1000.0 on some computers).

 TABLE 2.13 Mathematical Formulas as C Expressions

 Mathematical Formula C Expression

 1. b 2 - 4 ac b * b − 4 * a * c

 2. a + b - c a + b − c

 3.
a + b
c + d

 (a + b) / (c + d)

 4.
1

1 + x2

 1 / (1 + x * x)

 5. a * - (b + c) a * −(b + c)

 representational
error an error due to
coding a real number
as a finite number of
binary digits

 cancellation error an
error resulting from
applying an arithmetic
operation to operands
of vastly different
magnitudes; effect of
smaller operand is lost

82 Chapter 2 • Overview of C

 If two very small numbers are multiplied, the result may be too small to be
represented accurately, so it will be represented as zero. This phenomenon is called
 arithmetic underflow . Similarly, if two very large numbers are multiplied, the
result may be too large to be represented. This phenomenon, called arithmetic
overflow , is handled in different ways by different C compilers. (Arithmetic over-
flow can occur when processing very large integer values as well.)

 arithmetic underflow
an error in which a very
small computational
result is represented
as zero

 arithmetic overflow
an error that is an
attempt to represent
a computational result
that is too large

 CASE STUDY Supermarket Coin Processor

 This case study demonstrates the manipulation of type int data (using / and %) and
type char data.

 PROBLEM

 You are drafting software for the machines placed at the front of supermarkets to
convert change to personalized credit slips. In this draft, the user will manually
enter the number of each kind of coin in the collection, but in the final version,
these counts will be provided by code that interfaces with the counting devices in
the machine.

 ANALYSIS

 To solve this problem, you need to get the customer’s initials to use in personalizing
the credit slip along with the count of each type of coin (dollars, quarters, dimes,
nickels, pennies). From the counts, you can determine the total value of the coins
in cents. Once you have that figure, you can do an integer division using 100 as the
divisor to get the dollar value; the remainder of this division will be the leftover
change. In the data requirements, list the total value in cents (total_cents) as a
program variable, because it is needed as part of the computation process but is not
a required problem output.

 DATA REQUIREMENTS

 Problem Inputs

 char first, middle, last /* a customer's initials */
 int dollars /* number of dollars */
 int quarters /* number of quarters */
 int dimes /* number of dimes */
 int nickels /* number of nickels */
 int pennies /* number of pennies */

2.5 • Arithmetic Expressions 83

 Problem Outputs
 int total_dollars /* total dollar value */
 int change /* leftover change */

 Additional Program Variables
 int total_cents /* total value in cents */

 DESIGN

 INITIAL ALGORITHM

 1. Get and display the customer’s initials.
 2. Get the count of each kind of coin.
 3. Compute the total value in cents.
 4. Find the value in dollars and change.
 5. Display the value in dollars and change.

 Steps 3 and 4 may need refinement. Their refinements are:

 Step 3 Refinement
 3.1 Find the equivalent value of each kind of coin in pennies and add these
values.

 Step 4 Refinement
 4.1 total_dollars is the integer quotient of total_cents and 100.
 4.2 change is the integer remainder of total_cents and 100.

 IMPLEMENTATION

 The program is shown in Fig. 2.13 . The statements

 scanf("%c%c%c", &first, &middle, &last);
 printf("\n%c%c%c, please enter your coin information.\n",
 first, middle, last);

 copy three data characters into first , middle , and last and display those charac-
ters as part of the instructions to the customer.

 The statement

 total_cents = 100 * dollars + 25 * quarters + 10 * dimes +
 5 * nickels + pennies;

 implements algorithm step 3.1. The statements

 total_dollars = total_cents / 100;
 change = total_cents % 100;

 implement steps 4.1 and 4.2. The last call to printf displays the results.

84 Chapter 2 • Overview of C

(Continued)

 FIGURE 2.13 Supermarket Coin Value Program

 1. /*
 2. * Determines the value of a collection of coins.
 3. */
 4. #include <stdio.h>
 5. int
 6. main(void)
 7. {
 8. char first, middle, last; /* input - 3 initials */
 9. int pennies, nickels; /* input - count of each coin type */
 10. int dimes, quarters; /* input - count of each coin type */
 11. int dollars; /* input - count of each coin type */
 12. int change; /* output - change amount */
 13. int total_dollars; /* output - dollar amount */
 14. int total_cents; /* total cents */
 15.
 16. /* Get and display the customer's initials. */
 17. printf("Type in your 3 initials and press return> ");
 18. scanf("%c%c%c", &first, &middle, &last);
 19. printf("\n%c%c%c, please enter your coin information.\n",
 20. first, middle, last);
 21.
 22. /* Get the count of each kind of coin. */
 23. printf("Number of $ coins > ");
 24. scanf("%d", &dollars);
 25. printf("Number of quarters> ");
 26. scanf("%d", &quarters);
 27. printf("Number of dimes > ");
 28. scanf("%d", &dimes);
 29. printf("Number of nickels > ");
 30. scanf("%d", &nickels);
 31. printf("Number of pennies > ");
 32. scanf("%d", &pennies);
 33.
 34. /* Compute the total value in cents. */
 35. total_cents = 100 * dollars +25 * quarters + 10 * dimes +
 36. 5 * nickels + pennies;
 37.
 38. /* Find the value in dollars and change. */
 39. total_dollars = total_cents / 100;
 40. change = total_cents % 100;
 41.
 42. /* Display the credit slip with value in dollars and change. */

2.5 • Arithmetic Expressions 85

 43. printf("\n\n%c%c%c Coin Credit\nDollars: %d\nChange: %d cents\n",
 44. first, middle, last, total_dollars, change);
 45.
 46. return (0);
 47. }

 Type in your 3 initials and press return> JRH
 JRH, please enter your coin information.
 Number of $ coins > 2
 Number of quarters> 14
 Number of dimes > 12
 Number of nickels > 25
 Number of pennies > 131

 JRH Coin Credit
 Dollars: 9
 Change: 26 cents

 TESTING

 To test this program, try running it with a combination of coins that yield an exact
dollar amount with no leftover change. For example, 1 dollar, 8 quarters, 0 dimes,
35 nickels, and 25 pennies should yield a value of 5 dollars and 0 cents. Then
increase and decrease the quantity of pennies by 1 (26 and 24 pennies) to make sure
that these cases are also handled properly.

 EXERCISES FOR SECTION 2.5

 Self-Check

 1. a. Evaluate the following expressions with 7 and 22 as operands.

 22 / 7 7 / 22 22 % 7 7 % 22

 Repeat this exercise for the following pairs of integers:

 b. 15, 16
 c. 3, 23
 d. �3, 16

86 Chapter 2 • Overview of C

 2. Do a step-by-step evaluation of the expressions that follow if the value of
 celsius is 38.1 and salary is 38450.00 .

 1.8 * Celsius + 32.0
 (salary - 5000.00) * 0.20 + 1425.00

 3. Given the constants and variable declarations

 #define PI 3.14159
 #define MAX_I 1000
 . . .
 double x, y;
 int a, b, i;

 indicate which of the following statements are valid, and find the value stored
by each valid statement. Also indicate which are invalid and why. Assume that
 a is 3 , b is 4 , and y is −1.0 .

 a. i = a % b;
 b. i = (989 − MAX_I) / a;
 c. i = b % a;
 d. x = PI * y;
 e. i = a / −b;
 f. x = a / b;
 g. x = a % (a / b);
 h. i = b / 0;
 i. i = a % (990 − MAX_I);
 j. i = (MAX_I − 990) / a;
 k. x = a / y;
 l. i = PI * a;
 m. x = PI / y;
 n. x = b / a;
 o. i = (MAX_I − 990) % a;
 p. i = a % 0;
 q. i = a % (MAX_I − 990);
 r. x = (double) a / b;

 4. What values are assigned by the legal statements in Exercise 3, assuming a is
 7 , b is 3 , and y is 2.0 ?

 5. Assume that you have the following variable declarations:

 int color, lime, straw, red, orange;
 double white, green, blue, purple, crayon;

 Evaluate each of the statements below using the following values: color is 2 ,
 crayon is −1.3 , straw is 1 , red is 3 , purple is 0.3E+1 .

 a. white = color * 2.5 / purple;
 b. green = color / purple;

2.6 • Formatting Numbers in Program Output 87

 c. orange = color / red;
 d. blue = (color + straw) / (crayon + 0.3);
 e. lime = red / color + red % color;
 f. purple = straw / red * color;

 6. Let a , b , c , and x be the names of four type double variables, and let i , j , and
 k be the names of three type int variables. Each of the following statements
contains one or more violations of the rules for forming arithmetic expressions.
Rewrite each statement so that it is consistent with these rules.

 a. a = a remainder c;
 b. x = 3a − bc;
 c. j = 4(i + k);

 7. Evaluate the following, assuming that letters have consecutive character codes.

 a. (int)'D' − (int)'A'
 b. (char)((int)'C' + 2)
 c. (int)'6' − (int)'7'

 8. How does cancellation error differ from representational error?
 9. If squaring 10 −20 gives a result of zero, the type of error that has occurred is

called .
 10. Evaluate the following expressions if x is 10.5 , y is 7.2 , m is 5 , and n is 2 .

 a. x / (double)m
 b. x / m
 c. (double)(n * m)
 d. (double)(n / m) + y
 e. (double)(n / m)

 Programming

 1. Write an assignment statement that might be used to implement the following
equation in C.

 q =
kA(T1 - T2)

L

 2. Write a program that stores the values 'A' , 'B' , 19 , and −0.42E7 in separate
memory cells that you have declared. Use an assignment statement to store
the first value, but get the other three values as input data from the user.

 2.6 Formatting Numbers in Program Output
 C displays all numbers in its default notation unless you instruct it to do otherwise.
This section explains how to specify the format or appearance of your output.

88 Chapter 2 • Overview of C

 Formatting Values of Type int

 Specifying the format of an integer value displayed by a C program is fairly easy.
You simply add a number between the % and the d of the %d placeholder in the
 printf format string. This number specifies the field width —the number of col-
umns to use for the display of the value. The statement

 printf("Results: %3d meters = %4d ft. %2d in.\n",
 meters, feet, inches);

 indicates that 3 columns will be used to display the value of meters , 4 columns will
be used for feet , and 2 columns will be used for inches (a number between 0 and
 11). If meters is 21 , feet is 68 , and inches is 11 , the program output will be

 Results: 21 meters = 68 ft. 11 in.

 In this line, notice that there is an extra space before the value of meters (21) and
two extra spaces before the value of feet (68). The reason is that the placeholder
for meters (%3d) allows space for 3 digits to be printed. Because the value of
 meters is between 10 and 99 , its two digits are displayed right-justified, preceded
by one blank space. Because the placeholder for feet (%4d) allows room for 4 digits,
printing its two-digit value right-justified leaves two extra blank spaces. We can use
the placeholder %2d to display any integer value between −9 and 99 . The place-
holder %4d works for values in the range −999 to 9999 . For negative numbers, the
minus sign is included in the count of digits displayed.

 Table 2.14 shows how two integer values are displayed using different format
string placeholders. The character ❚ represents a blank character. The last line
shows that C expands the field width if it is too small for the integer value displayed.

 Formatting Values of Type double

 To describe the format specification for a type double value, we must indicate both
the total field width needed and the number of decimal places desired. The total
field width should be large enough to accommodate all digits before and after the
decimal point. There will be at least one digit before the decimal point because a

 field width the
number of columns
used to display a value

 TABLE 2.14 Displaying 234 and –234 Using Different Placeholders

 Value Format Displayed Output Value Format Displayed Output

 234 %4d ❚ 234 −234 %4d −234

 234 %5d ❚❚ 234 −234 %5d ❚ −234

 234 %6d ❚❚❚ 234 −234 %6d ❚❚ −234

 234 %1d 234 −234 %2d −234

2.6 • Formatting Numbers in Program Output 89

zero is printed as the whole-number part of fractions that are less than 1.0 and
greater than −1.0 . We should also include a display column for the decimal point
and for the minus sign if the number can be negative. The form of the format string
placeholder is % n . m f where n is a number representing the total field width, and m
is the desired number of decimal places.

 If x is a type double variable whose value will be between −99.99 and
 999.99 , we could use the placeholder %6.2f to display the value of x to an
accuracy of two decimal places. Table 2.15 shows different values of x displayed
using this format specification. The values displayed are rounded to two decimal
places and are displayed right-justified in six columns. When you round to two
decimal places, if the third digit of the value’s fractional part is 5 or greater, the
second digit is incremented by 1 (−9.536 becomes −9.54). Otherwise, the digits
after the second digit in the fraction are simply dropped (−25.554 becomes
 −25.55).

 Table 2.16 shows some values that were displayed using other placehold-
ers. The last line shows it is legal to omit the total field width in the format string
placeholder. If you use a placeholder such as % . m f to specify only the number of
 decimal places, the value will be printed with no leading blanks.

 TABLE 2.15 Displaying x Using Format String Placeholder %6.2f

 Value of x
 Displayed
Output Value of X

 Displayed
Output

 −99.42 −99.42 −25.554 −25.55

 .123 ❚❚ 0.12 99.999 100.00

 −9.536 ❚ −9.54 999.4 999.40

 TABLE 2.16 Formatting Type double Values

 Value Format
 Displayed
Output Value Format

 Displayed
Output

 3.14159 %5.2f ❚ 3.14 3.14159 %4.2f 3.14

 3.14159 %3.2f 3.14 3.14159 %5.1f ❚❚ 3.1

 3.14159 %5.3f 3.142 3.14159 %8.5f ❚ 3.14159

 .1234 %4.2f 0.12 −.006 %4.2f −0.01

 −.006 %8.3f ❚❚ −0.006 −.006 %8.5f −0.00600

 −.006 %.3f −0.006 −3.14159 %.4f −3.1416

90 Chapter 2 • Overview of C

 Program Style Eliminating Leading Blanks

 As shown in Tables 2.14 through 2.16 , a value whose whole-number part requires
fewer display columns than are specified by the format field width is displayed with
leading blanks. To eliminate extra leading blanks, omit the field width from the
format string placeholder. The simple placeholder %d will cause an integer value to
be displayed with no leading blanks. A placeholder of the form % . m f has the same
effect for values of type double , and this placeholder still allows you to choose the
number of decimal places you wish.

 EXERCISES FOR SECTION 2.6

 Self-Check

 1. Correct the statement

 printf("Salary is %2.10f\n", salary);

 2. Show how the value −3.6175 would be printed using the formats %8.4f ,
 %8.3f , %8.2f , %8.1f , %8.0f , %.2f .

 3. Assuming x (type double) is 12.335 and i (type int) is 100 , show the lines
displayed by the following statements. For clarity, use the symbol ❚ to denote
a blank space.

 printf("x is %6.2f i is %4d\n", x, i);
 printf("i is %d\n", i);
 printf ("x is %.1f\n", x);

 Programming

 1. If the variables a , b , and c are 504 , 302.558 , and −12.31 , respectively, write
a statement that will display the following line. (For clarity, a ❚ denotes a
blank space.)

 ❚❚504❚❚❚❚❚302.56❚❚❚❚-12.3

 2.7 Interactive Mode, Batch Mode, and Data Files
 There are two basic modes of computer operation: batch mode and interactive
mode. The programs that we have written so far run in interactive mode. In inter-
active mode , the program user interacts with the program and types in data while
it is running. We include prompts so the program user knows when to enter each

 interactive mode
a mode of program
execution in which
the user responds to
prompts by entering
(typing in) data

2.7 • Interactive Mode, Batch Mode, and Data Files 91

data item. In batch mode , the program scans its data from a data file prepared
beforehand instead of interacting with its user.

 Input Redirection

 Figure 2.14 shows the miles-to-kilometers conversion program rewritten as a batch
program. We assume here that the standard input device is associated with a batch
data file instead of with the keyboard. In most systems, this association can be
accomplished relatively easily through input/output redirection using operating sys-
tem commands. For example, in the UNIX® and MS-DOS® operating systems, you
can instruct your program to take its input from file mydata.txt instead of from
the keyboard by placing the symbols <mydata.txt at the end of the command line
that causes your compiled and linked program to execute. You should use an editor
program or word processor to create the text file mydata.txt before attempting to
run the program. If you normally used the command line

 metric

 to execute this program, your new command line would be

 metric <mydata.txt

 Program Style Echo Prints versus Prompts

 In Fig. 2.14 , the statement

 scanf("%lf", &miles);

 gets a value for miles from the first (and only) line of the data file. Because the
program input comes from a data file, there is no need to precede this statement
with a prompting message. Instead, we follow the call to scanf with the statement

 printf("The distance in miles is %.2f.\n", miles);

 This statement echo prints or displays the value just stored in miles and pro-
vides a record of the data manipulated by the program. Without it, we would have
no easy way of knowing what value scanf obtained for miles . Whenever you con-
vert an interactive program to a batch program, make sure you replace each prompt
with an echo print that follows the call to scanf .

 Output Redirection

 You can also redirect program output to a disk file instead of to the screen. Then
you can send the output file to the printer (using an operating system command) to
obtain a hard copy of the program output. In UNIX or MS-DOS, use the symbols
 >myoutput.txt to redirect output from the screen to file myoutput.txt . You
do not need to create file myoutput.txt before running the program, but if you

 batch mode a mode
of program execution
in which the program
scans its data from a
previously prepared
data file

92 Chapter 2 • Overview of C

 FIGURE 2.14 Batch Version of Miles-to-Kilometers Conversion Program

 1. /* Converts distances from miles to kilometers. */
 2.
 3. #include <stdio.h> /* printf, scanf definitions */
 4. #define KMS_PER_MILE 1.609 /* conversion constant */
 5.
 6. int
 7. main(void)
 8. {
 9. double miles, /* distance in miles */
 10. kms; /* equivalent distance in kilometers */
 11.
 12. /* Get and echo the distance in miles. */
 13. scanf("%lf", &miles);
 14. printf("The distance in miles is %.2f.\n", miles);
 15.
 16. /* Convert the distance to kilometers. */
 17. kms = KMS_PER_MILE * miles;
 18.
 19. /* Display the distance in kilometers. */
 20. printf("That equals %.2f kilometers.\n", kms);
 21.
 22. return (0);
 23. }

 The distance in miles is 112.00.
 That equals 180.21 kilometers.

do have an existing file with this name, its contents will be overwritten when your
 program runs. The command line

 metric >myoutput.txt

 executes the compiled and linked code for program metric , taking program input
from the keyboard and writing program output to file myoutput.txt . However,
interacting with the running program will be difficult because all program output,
including any prompting messages, will be sent to the output file. It would be better
to use the command line

 metric <mydata.txt >myoutput.txt

 which takes program input from data file mydata.txt and sends program output to
output file myoutput.txt .

2.8 • Common Programming Errors 93

 EXERCISES FOR SECTION 2.7

 Self-Check

 1. Explain the difference in placement of calls to printf used to display
prompts and calls to printf used to echo data. Which calls are used in
 interactive programs, and which are used in batch programs?

 2. How is input data provided to an interactive program? How is input data
 provided to a batch program?

 Programming

 1. Rewrite the program in Fig. 2.13 as a batch program. Assume that the data file
will be made accessible through input redirection.

 2.8 Common Programming Errors
 As you begin to program, soon you will discover that a program rarely runs cor-
rectly the first time it executes. Murphy’s Law, “If something can go wrong, it will,”
seems to have been written with the computer program in mind. In fact, errors
are so common that they have their own special name— bugs —and the process of
correcting them is called debugging a program. (According to computer folklore,
computer pioneer Dr. Grace Murray Hopper diagnosed the first hardware error
caused by a large insect found inside a computer component.) To alert you to
potential problems, we will provide a section on common programming errors at
the end of each chapter.

 When the compiler detects an error, the computer displays an error message,
which indicates that you have made a mistake and what the likely cause of the error
might be. Unfortunately, error messages are often difficult to interpret and are
sometimes misleading. As you gain experience, you will become more proficient at
locating and correcting errors.

 Three kinds of errors—syntax errors, run-time errors, and logic errors—can
occur, as discussed in the following sections.

 Syntax Errors

 A syntax error occurs when your code violates one or more grammar rules of
C and is detected by the compiler as it attempts to translate your program. If a
statement has a syntax error, it cannot be translated and your program will not be
executed.

 Figure 2.15 shows a compiler listing of the miles-to-kilometers conversion
 program. A compiler listing is a listing created by the compiler during program

 debugging removing
errors from a program

 syntax error
a violation of the
C grammar rules,
detected during
program translation
(compilation)

94 Chapter 2 • Overview of C

translation that shows each line of the source program (preceded by a line number)
and any syntax errors detected by the compiler. For this particular compiler, errors
are indicated by lines that begin with five asterisks. The program contains the fol-
lowing syntax errors:

 ■ Missing semicolon at the end of the variable declaration (in line 271)
 ■ Undeclared variable miles (detected in lines 275 and 278)
 ■ Last comment is not closed because of blank in */ close-comment sequence

(in line 280)

 The actual formats of the listing and the error messages produced by a com-
piler may differ from those in Fig. 2.15 . Indeed, many C compilers do not produce
a listing at all, but merely display error messages. In this listing, whenever an error
is detected, the compiler displays a line starting with five asterisks followed by the
error message. Notice that the line marked for an error is not always the line con-
taining the programmer’s mistake. (For example, the error occurring in line 271 is
marked after line 274.)

 The compiler attempts to correct errors wherever it can. Look at line 271
in the listing; it is missing a semicolon at the end. The compiler cannot be sure
that this semicolon is missing until it processes the printf symbol on line 274.
Because the printf is not a comma or a semicolon, the compiler then knows that
the variable declaration statement begun on line 271 is not being continued to
another line.

 We see several cases in this listing where one mistake of the programmer leads
to the generation of multiple error messages. For example, the missing declaration
for variable miles causes an error message to be printed each time miles is used
in the program. This message would also occur if we remembered to declare miles
but mistyped it (perhaps as milles) in the declaration statement. The missing dec-
laration for miles also causes the second error message on line 275. Because the
address-of operator must have a variable as its operand, the fact that miles is not
declared as a variable makes it an invalid operand.

 The mistyped close-comment character sequence also causes multiple mes-
sages. Because any text is valid inside a comment, the compiler is unaware that
there is a problem until it comes to the end of the source file without having
encountered a } to end the program! After complaining about this unexpected turn
of events (see line following line 284), it does what it can to correct the situation
by closing the comment at the end of the source file text and adding a } to end the
program properly.

 Mistyping a close-comment sequence can cause errors that are very difficult
to find. If the comment that is not correctly closed is in the middle of a program,
the compiler will simply continue to treat program lines as comment text until it
comes to the */ that closes the next comment. When you begin getting error mes-
sages that make you think your compiler isn’t seeing part of your program, recheck
your comments carefully. In the worst case, treating these executable statements as

2.8 • Common Programming Errors 95

 FIGURE 2.15 Compiler Listing of a Program with Syntax Errors

 221 /* Converts distances from miles to kilometers. */
 222
 223 #include <stdio.h> /* printf, scanf definitions */
 266 #define KMS_PER_MILE 1.609 /* conversion constant */
 267
 268 int
 269 main(void)
 270 {
 271 double kms
 272
 273 /* Get the distance in miles. */
 274 printf("Enter the distance in miles> ");
 ***** Semicolon added at the end of the previous source line
 275 scanf("%lf", &miles);
 ***** Identifier "miles" is not declared within this scope
 ***** Invalid operand of address-of operator
 276
 277 /* Convert the distance to kilometers. */
 278 kms = KMS_PER_MILE * miles;
 ***** Identifier "miles" is not declared within this scope
 279
 280 /* Display the distance in kilometers. * /
 281 printf("That equals %f kilometers.\n", kms);
 282
 283 return (0);
 284 }
 ***** Unexpected end-of-file encountered in a comment
 ***** "}" inserted before end-of-file

 comments may not cause a syntax error—then the program will simply run incor-
rectly. Mistyping the open-comment sequence /* will make the compiler attempt
to process the comment as a C statement, causing a syntax error.

 Your strategy for correcting syntax errors should take into account the fact that
one error can lead to many error messages. It is often a good idea to concentrate on
correcting the errors in the declaration part of a program first. Then recompile the
program before you attempt to fix other errors. Many of the other error messages
will disappear once the declarations are correct.

 Syntax errors are often caused by the improper use of quotation marks with
format strings. Make sure that you always use a quote (") to begin and end a string.

96 Chapter 2 • Overview of C

 Run-Time Errors

 Run-time errors are detected and displayed by the computer during the execution
of a program. A run-time error occurs when the program directs the computer to
perform an illegal operation, such as dividing a number by zero. When a run-time
error occurs, the computer will stop executing your program and will display a diag-
nostic message that indicates the line where the error was detected.

 The program in Fig. 2.16 compiles successfully, but cannot run to completion
if the first integer entered is greater than the second. In this case, integer division
causes the value assigned to temp in line 271 to be zero. Using temp as a divisor in
line 272 causes the divide by zero error shown.

 Undetected Errors

 Many execution errors may not prevent a C program from running to completion,
but they may simply lead to incorrect results. Therefore, it is essential that you
predict the results your program should produce and verify that the actual output
is correct.

 A very common source of incorrect results in C programs is the input of a mix-
ture of character and numeric data. Errors can be avoided if the programmer always
keeps in mind scanf ’s different treatment of the %c placeholder on the one hand

 run-time error
an attempt to perform
an invalid operation,
detected during
program execution

 FIGURE 2.16 A Program with a Run-Time Error

 111 #include <stdio.h>
 262
 263 int
 264 main(void)
 265 {
 266 int first, second;
 267 double temp, ans;
 268
 269 printf("Enter two integers> ");
 270 scanf("%d%d", &first, &second);
 271 temp = second / first;
 272 ans = first / temp;
 273 printf("The result is %.3f\n", ans);
 274
 275 return (0);
 276 }

 Enter two integers> 14 3
 Arithmetic fault, divide by zero at line 272 of routine main

2.8 • Common Programming Errors 97

and of the %d and %lf placeholders on the other. We noted that scanf first skips
any blanks and carriage returns in the input when a numeric value is scanned. In
contrast, scanf skips nothing when it scans a character unless the %c placeholder is
preceded by a blank.

 Figure 2.17 shows what appears to be a minor revision to the start of function
main for the supermarket coin processor program from Fig. 2.13 . We have added
an integer variable year , and we ask for a value of year before getting the user’s
 initials. If the user types in 2011 and then the letters BMC , we would expect the sec-
ond call to printf to display the message

 BMC, please enter your coin information for 2011.

 Instead, it displays a blank line followed by

 BM, please enter your coin information for 2011.

 To understand why, let’s examine the status of memory at the time of the call
to printf .

 FIGURE 2.17 Revised Start of main Function for Supermarket Coin Value Program

 1. int
 2. main(void)
 3. {
 4. char first, middle, last; /* input - 3 initials */
 5. int pennies, nickels; /* input - count of each coin type */
 6. int dimes, quarters; /* input - count of each coin type */
 7. int dollars; /* input - count of each coin type */
 8. int change; /* output - change amount */
 9. int total_dollars; /* output - dollar amount */
 10. int total_cents; /* total cents */
 11. int year; /* input – year */
 12.
 13. /* Get the current year. */
 14. printf("Enter the current year and press return> ");
 15. scanf("%d", &year);
 16.
 17. /* Get and display the customer's initials. */
 18. printf("Type in 3 initials and press return> ");
 19. scanf("%c%c%c", &first, &middle, &last);
 20. printf("\n%c%c%c, please enter your coin information for %d.\n",
 21. first, middle, last, year);
 ...

98 Chapter 2 • Overview of C

2011

year first

\n B

middle

M

last

 The value of year is correct, but the three characters stored are not 'B' , 'M' ,
 'C' , but '\n' , 'B' , and 'M' . The \n in first is the character that results from the
user pressing the <Enter> key after entering the number 2011 . The scan of 2011
stopped at this character, so it was the first character processed by the statement

 scanf("%c%c%c", &first, &middle, &last);

 Because the letter C was not yet scanned, it will be scanned during the next
 scanf call. This will lead to further problems. The statement

 scanf("%d", &dollars);

 does not copy a value into dollars because the next character to scan is C , which is
not a digit character. Consequently, dollars will retain whatever value it happens
to have. The same is true for variables quarters , dimes , nickels , and pennies ,
and, therefore, the results displayed by the program will be meaningless.

 One simple way to repair the program would be to insert a space before the
first %c placeholder. Then scanf will skip spaces (including carriage returns) before
scanning a character.

 scanf(" %c%c%c", &first, &middle, &last);

 Figure 2.18 shows another error that does not cause the program to abort with
a run-time error message. The programmer has left out the & (address-of) operators
on the variables in the call to scanf . Because scanf does not know where to find
 first and second , it is unable to store in them the values entered by the user. In
this instance, the program runs to completion using whatever “garbage” values were
originally in the memory locations named first and second .

 Logic Errors

 Logic errors occur when a program follows a faulty algorithm. Because logic
errors usually do not cause run-time errors and do not display error messages,
they are very difficult to detect. The only sign of a logic error may be incorrect
program output. You can detect logic errors by testing the program thoroughly,
comparing its output to calculated results. You can prevent logic errors by care-
fully desk checking the algorithm and the program before you type it in.

 Because debugging can be time-consuming, plan your program solutions
carefully and desk check them to eliminate bugs early. If you are unsure of the
syntax for a particular statement, look it up in the text or in the syntax guide
printed on the inside back covers. Following this approach will save time and
avoid trouble.

 logic error an error
caused by following an
incorrect algorithm

99Chapter Review

 FIGURE 2.18 A Program That Produces Incorrect Results Due to & Omission

 1. #include <stdio.h>
 2.
 3. int
 4. main(void)
 5. {
 6. int first, second, sum;
 7.
 8. printf("Enter two integers> ");
 9. scanf("%d%d", first, second); /* ERROR!! should be &first, &second */
 10. sum = first + second;
 11. printf("%d + %d = %d\n", first, second, sum);
 12.
 13. return (0);
 14. }

 Enter two integers> 14 3
 5971289 + 5971297 = 11942586

 ■ Chapter Review

 1. Every C program has preprocessor directives and a main function. The main
function contains variable declarations and executable statements.

 2. Variable names must begin with a letter or an underscore (the latter not rec-
ommended) and consist of letters, digits, and underscore symbols. A reserved
word cannot be used as an identifier.

 3. C’s data types enable the compiler to determine how to store a particu-
lar value in memory and what operations can be performed on that value.
Three standard data types are int , d ouble , and char . The data type of each
 variable must be declared.

 4. The executable statements are derived from the algorithm and are trans-
lated into machine language. Assignment statements are used to perform
computations and store results in memory. Function calls are used to get
data (function scanf) and to display values stored in memory (function
 printf).

100 Chapter 2 • Overview of C

 NEW C CONSTRUCTS

 Construct Effect

 #include directive
 #include <stdio.h> Tells the preprocessor to give the program access to the header file

for standard I/O library. This includes information about the printf
 and scanf functions.

 #define directive for naming constant macros
 #define PI 3.14159
 #define STAR '*'

 Tells the preprocessor to use 3.14159 as the definition of the
name PI and '*' as the meaning of the identifier STAR.

 main function heading
 int Marks the start of the function where program execution begins.
 main(void)
 variable declaration
 double pct, wt;
 int high, mid, low;
 FILE *inp, *outp;

 Allocates memory cells named pct and wt for storage of double-
precision real numbers, cells named high , mid , and low for storage
of integers, and cells named inp and outp for storage of file pointers.

 assignment statement
 distance = speed * time; Stores the product of speed and time as the value of the variable

 distance .

 calls to input functions
 scanf("%lf%d", &pct, &high); Copies input data from the keyboard into the type double variable

 pct and the type int variable high .

 calls to output functions
 printf("Percentage is %.3f\n", pct); Displays a line with the string "Percentage is" followed by the

value of pct rounded to three decimal places.

 return statement
 return (0); Final statement of function main.

 ■ Quick-Check Exercises

 1. What value is assigned to the type double variable x by the statement
 x = 25.0 * 3.0 / 2.5;

 2. What value is assigned to x by the following statement, assuming x is 10.0 ?
 x = x - 20.0;

 3. Show the exact form of the output line displayed when x is 3.456 .
 printf("Three values of x are %4.1f*%5.2f*%.3f\n",
 x, x, x);

101Review Questions

 4. Show the exact form of the output line when n is 345 .

 printf("Three values of n are %4d*%5d*%d\n",
 n, n, n);

 5. What data types would you use to represent the following items: number of
children at school, a letter grade on an exam, the average number of school
days a child is absent each year?

 6. In which step of the software development method are the problem inputs
and outputs identified?

 7. If function scanf is getting two numbers from the same line of input, what
characters should be used to separate them?

 8. How does the computer determine how many data values to get from the
input device when a scanf operation is performed?

 9. In an interactive program, how does the program user know how many data
values to enter when the scanf function is called?

 10. Does the compiler listing show syntax or run-time errors?

 ■ Answers to Quick-Check Exercises

 1. 30.0
 2. −10.0
 3. Three values of x are ❚3.5*❚3.46*3.456 (❚ = 1 blank)
 4. Three values of n are ❚345*❚❚345*345
 5. int , char , double
 6. analysis
 7. blanks
 8. It depends on the number of placeholders in the format string.
 9. from reading the prompt
 10. syntax errors

 ■ Review Questions

 1. What type of information should be specified in the block comment at the
very beginning of the program?

 2. Which variables below are syntactically correct?

 income two fold
 1time c3po
 int income#1
 Tom's item

102 Chapter 2 • Overview of C

 3. What is illegal about the following program fragment?

 #include <stdio.h>
 #define PI 3.14159
 int
 main(void)
 {
 double c, r;

 scanf("%lf%lf", c, r);
 PI = c / (2 * r);
 . . .
 }

 4. Stylistically, which of the following identifiers would be good choices for
names of constant macros?

 gravity G MAX_SPEED Sphere_Size

 5. Write the data requirements, necessary formulas, and algorithm for
Programming Project 9 in the next section.

 6. The average pH of citrus fruits is 2.2, and this value has been stored in the
variable avg_citrus_pH . Provide a statement to display this information in a
readable way.

 7. List three standard data types of C.
 8. Convert the program statements below to take input data and echo it in

batch mode.

 printf("Enter two characters> ");
 scanf("%c%c", &c1, &c2);
 printf("Enter three integers separated by spaces> ");
 scanf("%d%d%d", &n, &m, &p);

 9. Write an algorithm that allows for the input of an integer value, doubles it,
subtracts 10, and displays the result.

 ■ Programming Projects

 1. Write a program that calculates mileage reimbursement for a salesperson at
a rate of $.35 per mile. Your program should interact with the user in this
manner:

 MILEAGE REIMBURSEMENT CALCULATOR
 Enter beginning odometer reading=> 13505.2
 Enter ending odometer reading=> 13810.6
 You traveled 305.4 miles. At $0.35 per mile,
 your reimbursement is $106.89.

103Programming Projects

 2. Write a program to assist in the design of a hydroelectric dam. Prompt
the user for the height of the dam and for the number of cubic meters of
water that are projected to flow from the top to the bottom of the dam each
second. Predict how many megawatts (1MW � 106 W) of power will be
produced if 90% of the work done on the water by gravity is converted to
 electrical energy. Note that the mass of one cubic meter of water is 1000 kg.
Use 9.80 meters/second2 as the gravitational constant g . Be sure to use
meaningful names for both the gravitational constant and the 90% efficiency
constant. For one run, use a height of 170 m and flow of 1.30 � 10 3 m 3 /s.
The relevant formula (w � work, m � mass, g � gravity, h � height) is:
 w � mgh.

 3. Write a program that estimates the temperature in a freezer (in °C) given the
elapsed time (hours) since a power failure. Assume this temperature (T) is
given by

 T =
4t2

t + 2
- 20

 where t is the time since the power failure. Your program should prompt the
user to enter how long it has been since the start of the power failure in whole
hours and minutes. Note that you will need to convert the elapsed time into
hours. For example, if the user entered 2 30 (2 hours 30 minutes), you would
need to convert this to 2.5 hours.

 4. Write a program to convert a temperature in degrees Fahrenheit to degrees
Celsius.

 DATA REQUIREMENTS

 Problem Input
 int fahrenheit /* temperature in degrees Fahrenheit */

 Problem Output
 double celsius /* temperature in degrees Celsius */

 Relevant Formula
 celsius = 5/9 (fahrenheit − 32)

 5. Hospitals use programmable pumps to deliver medications and fluids to intra-
venous lines at a set number of milliliters per hour. Write a program to output
information for the labels the hospital pharmacy places on bags of I.V. medica-
tions indicating the volume of medication to be infused and the rate at which the
pump should be set. The program should prompt the user to enter the quantity
of fluid in the bag and the number of minutes over which it should be infused.
Output the VTBI (volume to be infused) in ml and the infusion rate in ml/hr.

104 Chapter 2 • Overview of C

 Sample run:

 Volume to be infused (ml) => 100
 Minutes over which to infuse => 20

 VTBI: 100 ml
 Rate: 300 ml/hr

 6. Write a program that predicts the score needed on a final exam to achieve a
desired grade in a course. The program should interact with the user as follows:

 Enter desired grade> B
 Enter minimum average required> 79.5
 Enter current average in course> 74.6
 Enter how much the final counts
as a percentage of the course grade> 25

 You need a score of 94.20 on the final to get a B.

 In the example shown, the final counts 25 percent of the course grade.
 7. Write a program that calculates how many BTUs of heat are delivered to a

house given the number of gallons of oil burned and the efficiency of the
house’s oil furnace. Assume that a barrel of oil (42 gallons) has an energy
equivalent of 5,800,000 BTU. (Note: This number is too large to represent as an
 int on some personal computers.) For one test use an efficiency of 65 percent
and 100 gallons of oil.

 8. Metro City Planners proposes that a community conserve its water supply by
replacing all the community’s toilets with low-flush models that use only 2
liters per flush. Assume that there is about 1 toilet for every 3 persons, that
existing toilets use an average of 15 liters per flush, that a toilet is flushed on
average 14 times per day, and that the cost to install each new toilet is $150.
Write a program that would estimate the magnitude (liters/day) and cost of the
water saved based on the community’s population.

 9. Write a program that takes the length and width of a rectangular yard and the
length and width of a rectangular house situated in the yard. Your program
should compute the time required to cut the grass at the rate of two square
feet a second.

 10. Write a program that outputs the equation of the perpendicular bisector of the
line segment between two points. Your program should

 ■ prompt for and input the coordinates of the two points [for example, try the
points (2.0, −4.0) and (7.0, −2.0)];

 ■ compute the slope of the line between those two points;
 ■ compute the coordinates of the midpoint of the line segment between the

two points by averaging the two x coordinates and the two y coordinates;
 ■ compute the slope of the perpendicular bisector by taking the negative

reciprocal of the slope of the line segment;

105Programming Projects

 ■ compute the y intercept of the perpendicular bisector (you now have
the slope m of the bisector and a point (x mid , y mid) on the bisector, so the y
intercept is y mid − m x mid); and

 ■ output with labels the original two points, and output in y = mx + b for-
mat the equation of the perpendicular bisector. Figure 2.19 illustrates the
 sample line segment mentioned above and its perpendicular bisector.

 Test your program to be sure it works on different pairs of points. However,
there will be some pairs of points for which you can’t make your program
work (at least not at this stage). Think about what points will cause your
 program to fail, and write a paragraph describing which points fall in this
 category.

 11. The Pythagorean theorem states that the sum of the squares of the sides of
a right triangle is equal to the square of the hypotenuse. For example, if two
sides of a right triangle have lengths of 3 and 4, then the hypotenuse must
have a length of 5. Together the integers 3, 4, and 5 form a Pythagorean triple.
There are an infinite number of such triples. Given two positive integers, m
and n, where m > n, a Pythagorean triple can be generated by the following
formulas:

 side1 = m2 - n2
 side2 = 2mn

 hypotenuse = m2 + n2

 The triple (side1 = 3, side2 = 4, hypotenuse = 5) is generated by this formula
when m = 2 and n = 1. Write a program that takes values for m and n as input
and displays the values of the Pythagorean triple generated by the formulas
above.

5

0

y

5 10
x

�5

y � �2.5x � 8.25

(2.0, �4.0)

(7.0, �2.0)

 FIGURE 2.19

106 Chapter 2 • Overview of C

 12. Write a program that calculates the acceleration (m/s2) of a jet fighter
launched from an aircraft-carrier catapult, given the jet’s takeoff speed in
km/hr and the distance (meters) over which the catapult accelerates the
jet from rest to takeoff. Assume constant acceleration. Also calculate the
time (seconds) for the fighter to be accelerated to takeoff speed. When
you prompt the user, be sure to indicate the units for each input. For one
run, use a takeoff speed of 278 km/hr and a distance of 94 meters. Relevant
 formulas (v = velocity, a = acceleration, t = time, s = distance)

 v = at

 s = 1
2 at2

 Top-Down Design
with Functions

 CHAPTER OBJECTIVES
 • To learn about functions and how to use them to write

programs with separate modules

 • To understand the capabilities of some standard
 functions in C

 • To introduce structure charts as a system documentation
tool

 • To understand how control flows between function
 main and other functions

 • To learn how to pass information to functions using
input arguments

 • To learn how to return a value from a function

 C H A P T E R

3

 P rogrammers who use the software development method to solve problems
seldom tackle each new program as a unique event. Information contained in the
problem statement and amassed during the analysis and design phases helps the
programmer plan and complete the finished program. Programmers also use seg-
ments of earlier program solutions as building blocks to construct new programs.

 In the first part of this chapter, we demonstrate how you can tap existing infor-
mation and code in the form of predefined functions to write programs. In addition
to using existing information, programmers can use top-down design techniques to
simplify the development of algorithms and the structure of the resulting programs.
To apply top-down design, the programmer starts with the broadest statement of the
problem solution and works down to more detailed subproblems. In the second part
of this chapter, we demonstrate top-down design and emphasize the role of modular
programming using functions.

 3.1 Building Programs from Existing Information
 Programmers seldom start off with a blank slate (or empty screen) when they
develop a program. Often some—or all—of the solution can be developed from
information that already exists or from the solution to another problem, as we dem-
onstrate in this section.

 Carefully following the software development method generates important
system documentation before you even begin to code a program. This system docu-
mentation, consisting of a description of a problem’s data requirements (developed
during the Analysis phase) and its solution algorithm (developed during the Design
phase), summarizes your intentions and thought processes.

 You can use this documentation as a starting point in coding your program. For
example, you can begin by editing the data requirements to conform to the C syntax
for constant macro definitions and variable declarations, as shown in Fig. 3.1 for the
miles-to-kilometers conversion program. This approach is especially helpful if the
documentation was created with a word processor and is in a file that you can edit.

 To develop the executable statements in the main function, first use the ini-
tial algorithm and its refinements as program comments. The comments describe
each algorithm step and provide program documentation that guides your C code.
 Figure 3.1 shows how the program will look at this point. After the comments are
in place in the main function, you can begin to write the C statements. Place the C
code for an unrefined step directly under that step. For a step that is refined, either
edit the refinement to change it from English to C or replace it with C code. We
illustrate this entire process in the next case study.

3.1 • Building Programs from Existing Information 109

 FIGURE 3.1 Edited Data Requirements and Algorithm for Conversion Program

 1. /*
 2. * Converts distance in miles to kilometers.
 3. */
 4.
 5. #include <stdio.h> /* printf, scanf definitions */
 6. #define KMS_PER_MILE 1.609 /* conversion constant */
 7.
 8. int
 9. main(void)
 10. {
 11. double miles; /* input - distance in miles. */
 12. double kms; /* output - distance in kilometers */
 13.
 14. /* Get the distance in miles. */
 15.
 16. /* Convert the distance to kilometers. */
 17. /* Distance in kilometers is
 18. 1.609 * distance in miles. */
 19.
 20. /* Display the distance in kilometers. */
 21.
 22. return (0);
 23. }

 CASE STUDY Finding the Area and Circumference of

a Circle

 PROBLEM

 Get the radius of a circle. Compute and display the circle’s area and circumference.

 ANALYSIS

 Clearly, the problem input is the circle’s radius. Two outputs are requested: the
circle’s area and circumference. These variables should be type double because
the inputs and outputs may contain fractional parts. The geometric relationships of
a circle’s radius to its area and circumference are listed below, along with the data
requirements.

110 Chapter 3 • Top-Down Design with Functions

 DATA REQUIREMENTS

 Problem Constant

 PI 3.14159

 Problem Input
 radius /* radius of a circle */

 Problem Outputs
 area /* area of a circle */
 circum /* circumference of a circle */

 Relevant Formulas
 area of a circle = � * radius2
 circumference of a circle = 2 � * radius

 DESIGN

 After identifying the problem inputs and outputs, list the steps necessary to solve
the problem. Pay close attention to the order of the steps.

 INITIAL ALGORITHM

 1. Get the circle radius.
 2. Calculate the area.
 3. Calculate the circumference.
 4. Display the area and the circumference.

 ALGORITHM REFINEMENTS

 Next refine any steps that do not have an obvious solution (steps 2 and 3).

 Step 2 Refinement
 2.1 Assign PI * radius * radius to area.

 Step 3 Refinement
 3.1 Assign 2 * PI * radius to circum.

 IMPLEMENTATION

 Figure 3.2 shows the C program so far. The main function lists the initial algorithm
and its refinements as comments. To write the final program, convert the refinements
(steps 2.1 and 3.1) to C and write C code for the unrefined steps (steps 1 and 4).
 Figure 3.3 shows the final program.

3.1 • Building Programs from Existing Information 111

(continued)

 FIGURE 3.2 Outline of Program Circle

 1. /*
 2. * Calculates and displays the area and circumference of a circle
 3. */
 4.
 5. #include <stdio.h> /* printf, scanf definitions */
 6. #define PI 3.14159
 7.
 8. int
 9. main(void)
 10. {
 11. double radius; /* input - radius of a circle */
 12. double area; /* output - area of a circle */
 13. double circum; /* output - circumference */
 14.
 15. /* Get the circle radius */
 16.
 17. /* Calculate the area */
 18. /* Assign PI * radius * radius to area. */
 19.
 20. /* Calculate the circumference */
 21. /* Assign 2 * PI * radius to circum */
 22.
 23. /* Display the area and circumference */
 24.
 25. return (0);
 26. }

 FIGURE 3.3 Calculating the Area and the Circumference of a Circle

 1. /*
 2. * Calculates and displays the area and circumference of a circle
 3. */
 4.
 5. #include <stdio.h> /* printf, scanf definitions */
 6. #define PI 3.14159
 7.
 8. int
 9. main(void)

112 Chapter 3 • Top-Down Design with Functions

 10. {
 11. double radius; /* input - radius of a circle */
 12. double area; /* output - area of a circle */
 13. double circum; /* output - circumference */
 14.
 15. /* Get the circle radius */
 16. printf("Enter radius> ");
 17. scanf("%lf", &radius);
 18.
 19. /* Calculate the area */
 20. area = PI * radius * radius;
 21.
 22. /* Calculate the circumference */
 23. circum = 2 * PI * radius;
 24.
 25. /* Display the area and circumference */
 26. printf("The area is %.4f\n", area);
 27. printf("The circumference is %.4f\n", circum);
 28.
 29. return (0);
 30. }

 Enter radius> 5.0
 The area is 78.5397
 The circumference is 31.4159

 FIGURE 3.3 (continued)

 TESTING

 The sample output in Fig. 3.3 provides a good test of the solution because it is rela-
tively easy to compute by hand the area and the circumference for a radius value
of 5.0. The radius squared is 25.0 and � is approximately 3, so the value of the area
appears to be correct. The circumference should be 10 times �, which is also an
easy number to compute by hand.

 CASE STUDY Computing the Weight of a Batch of

Flat Washers
 Another way in which programmers use existing information is by extending the
solution for one problem to solve another . For example, you can easily solve this
problem by building on the solution to the previous one.

3.1 • Building Programs from Existing Information 113

 PROBLEM

 You work for a hardware company that manufactures flat washers. To estimate ship-
ping costs, your company needs a program that computes the weight of a specified
quantity of flat washers.

 ANALYSIS

 A flat washer resembles a small donut. To compute the weight of a single flat
washer, you need to know its rim area, its thickness, and the density of the material
used in its construction. The last two quantities are problem inputs. However, the
rim area (see Fig. 3.4) must be computed from two measurements that are provided
as inputs: the washer’s outer diameter and its inner diameter (diameter of the hole).

 In the following data requirements, we list the washer’s inner and outer radius
(half the diameter) as program variables. We also list the rim area and weight of one
washer (unit_weight) as program variables.

 DATA REQUIREMENTS

 Problem Constant
 PI 3.14159

 Problem Inputs
 double hole_diameter /* diameter of hole */
 double edge_diameter /* diameter of outer edge */
 double thickness /* thickness of washer */
 double density /* density of material used */
 double quantity /* number of washers made */

d1

d2 rim area = �(d2/2)2 - �(d1/2)2

 FIGURE 3.4

 Computing the
Rim Area of a Flat
Washer

114 Chapter 3 • Top-Down Design with Functions

 Problem Outputs
 double weight /* weight of batch of washers */

 Program Variables
 double hole_radius /* radius of hole */
 double edge_radius /* radius of outer edge */
 double rim_area /* area of rim */
 double unit_weight /* weight of 1 washer */

 Relevant Formulas
 area of a circle = � * radius 2
 radius of a circle = diameter / 2
 rim area = area of outer circle − area of hole
 unit weight = rim area * thickness * density

 DESIGN

 We list the algorithm next, followed by the refinement of Steps 3 and 4.

 INITIAL ALGORITHM

 1. Get the washer’s inner diameter, outer diameter, and thickness.
 2. Get the material density and quantity of washers manufactured.
 3. Compute the rim area.
 4. Compute the weight of one flat washer.
 5. Compute the weight of the batch of washers.
 6. Display the weight of the batch of washers.

 Step 3 Refinement
 3.1 Compute hole_radius and edge_radius .
 3.2 rim_area is PI * edge_radius * edge_radius − PI * hole_radius *

hole_radius

 Step 4 Refinement
 4.1 unit_weight is rim_area * thickness * density

 IMPLEMENTATION

 To write this program, edit the data requirements to write the variable declarations
and use the initial algorithm with refinements as a starting point for the executable
statements. Figure 3.5 shows the C program.

3.1 • Building Programs from Existing Information 115

 FIGURE 3.5 Flat Washer Program

 1. /*
 2. * Computes the weight of a batch of flat washers.
 3. */
 4.
 5. #include <stdio.h> /* printf, scanf definitions */
 6. #define PI 3.14159
 7.
 8. int
 9. main(void)
 10. {
 11. double hole_diameter; /* input - diameter of hole */
 12. double edge_diameter; /* input - diameter of outer edge */
 13. double thickness; /* input - thickness of washer */
 14. double density; /* input - density of material used */
 15. double quantity; /* input - number of washers made */
 16. double weight; /* output - weight of washer batch */
 17. double hole_radius; /* radius of hole */
 18. double edge_radius; /* radius of outer edge */
 19. double rim_area; /* area of rim */
 20. double unit_weight; /* weight of 1 washer */
 21.
 22. /* Get the inner diameter, outer diameter, and thickness.*/
 23. printf("Inner diameter in centimeters> ");
 24. scanf("%lf", &hole_diameter);
 25. printf("Outer diameter in centimeters> ");
 26. scanf("%lf", &edge_diameter);
 27. printf("Thickness in centimeters> ");
 28. scanf("%lf", &thickness);
 29.
 30. /* Get the material density and quantity manufactured. */
 31. printf("Material density in grams per cubic centimeter> ");
 32. scanf("%lf", &density);
 33. printf("Quantity in batch> ");
 34. scanf("%lf", &quantity);
 35.
 36. /* Compute the rim area. */
 37. hole_radius = hole_diameter / 2.0;
 38. edge_radius = edge_diameter / 2.0;

(continued)

116 Chapter 3 • Top-Down Design with Functions

 TESTING

 To test this program, run it with inner and outer diameters such as 2 centimeters
and 4 centimeters that lead to easy calculations for rim area (3 * PI square cen-
timeters). You can verify that the program is computing the correct unit weight by
entering 1 for quantity, and then verify that the batch weight is correct by running
it for larger quantities.

 39. rim_area = PI * edge_radius * edge_radius -
 40. PI * hole_radius * hole_radius;
 41.
 42. /* Compute the weight of a flat washer. */
 43. unit_weight = rim_area * thickness * density;
 44. /* Compute the weight of the batch of washers. */
 45. weight = unit_weight * quantity;
 46.
 47. /* Display the weight of the batch of washers. */
 48. printf("\nThe expected weight of the batch is %.2f", weight);
 49. printf(" grams.\n");
 50.
 51. return (0);
 52. }

 Inner diameter in centimeters> 1.2
 Outer diameter in centimeters> 2.4
 Thickness in centimeters> 0.1
 Material density in grams per cubic centimeter> 7.87
 Quantity in batch> 1000

 The expected weight of the batch is 2670.23 grams.

 FIGURE 3.5 (continued)

 EXERCISES FOR SECTION 3.1

 Self-Check

 1. Describe the problem inputs and outputs and write the algorithm for a pro-
gram that computes an employee’s gross salary given the hours worked and
the hourly rate.

1173.2 • Library Functions

 2. Write a preliminary version of the program from your solution to Self-Check
Exercise 1. Show the declaration part of the program and the program com-
ments corresponding to the algorithm and its refinements.

 3. In computing gross salary, what changes should you make to extend the pay-
roll algorithm in Self-Check Exercise 1 to include overtime hours to be paid at
1.5 times an employee’s normal hourly rate? Assume that overtime hours are
entered separately.

 Programming

 1. Add refinements to the program outline that follows and write the final C program.

 /*
 * Compute the sum and average of two numbers.
 */

 #include <stdio.h> /* printf, scanf definitions */

 int
 main(void)
 {
 double one, two, /* input - numbers to process */
 sum, /* output - sum of one and two */
 average; /* output - average of one and two */
 /* Get two numbers. */
 /* Compute sum of numbers. */
 /* Compute average of numbers. */
 /* Display sum and average. */

 return (0);
 }

 2. Write a complete C program for Self-Check Exercise 1.
 3. Write a complete C program for the revised payroll algorithm developed in

Self-Check Exercise 3.
 4. Assume that flat washers are manufactured by stamping them out from a rectan-

gular piece of material of uniform thickness. Extend the washer program to com-
pute (a) the number of square centimeters of material needed to manufacture a
specified quantity of flat washers and (b) the weight of the leftover material.

 3.2 Library Functions

 Predefined Functions and Code Reuse

 A primary goal of software engineering is to write error-free code. Code reuse, reus-
ing program fragments that have already been written and tested whenever possible,
is one way to accomplish this goal. Stated more simply, “Why reinvent the wheel?”

118 Chapter 3 • Top-Down Design with Functions

 C promotes reuse by providing many predefined functions that can be used to
perform mathematical computations. C’s standard math library defines a function
named sqrt that performs the square root computation. The function call in the
assignment statement

y = sqrt(x);

function call

function
name

argument

 activates the code for function sqrt , passing the argument x to the function. You
activate a function by writing a function call. After the function executes, the func-
tion result is substituted for the function call. If x is 16.0 , the assignment statement
above is evaluated as follows:

 1. x is 16.0 , so function sqrt computes the 116.0 or 4.0.
 2. The function result, 4.0 , is assigned to y .

 A function can be thought of as a “black box” that has passed one or more input
values and automatically returns a single output value. Figure 3.6 illustrates this for
the call to function sqrt . The value of x (16.0) is the function input, and the func-
tion result, or output, is 116.0 (result is 4.0).

 If w is 9.0 , the assignment statement

 z = 5.7 + sqrt(w);

 is evaluated as follows:

 1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
 2. The values 5.7 and 3.0 are added together.
 3. The sum, 8.7 , is stored in z .

 EXAMPLE 3.1 The program in Fig. 3.7 displays the square root of two numbers provided as input
data (first and second) and the square root of their sum. To do so, it must call the
C function sqrt three times:

square root
computation

x is 16.0

function sqrt

result is 4.0

 FIGURE 3.6

 Function sqrt as a
“Black Box”

3.2 • Library Functions 119

 first_sqrt = sqrt(first);
 second_sqrt = sqrt(second);
 sum_sqrt = sqrt(first + second);

 For the first two calls, the function arguments are variables (first and second).
The third call shows that a function argument can also be an expression (first +
second). For all three calls, the result returned by function sqrt is assigned to a
variable. Because the definition of the standard sqrt function is found in the stand-
ard math library, the program begins with an additional #include directive.

 If you look closely at the program in Fig. 3.7 , you will see that each statement
contains a call to a library function (printf , scanf , sqrt)—we have used C’s pre-
defined functions as building blocks to construct a new program.

 Use of Color to Highlight New Constructs

 In Fig. 3.7 , program lines that illustrate new constructs are in color, so that you
can find them easily. We will continue to use color for this purpose in figures that
contain programs.

 FIGURE 3.7 Square Root Program

 1. /*
 2. * Performs three square root computations
 3. */
 4.
 5. #include <stdio.h> /* definitions of printf, scanf */
 6. #include <math.h> /* definition of sqrt */
 7.
 8. int
 9. main(void)
 10. {
 11. double first, second, /* input - two data values */
 12. first_sqrt, /* output - square root of first */
 13. second_sqrt, /* output - square root of second */
 14. sum_sqrt; /* output - square root of sum */
 15.
 16. /* Get first number and display its square root. */
 17. printf("Enter the first number> ");
 18. scanf("%lf", &first);
 19. first_sqrt = sqrt(first);
 20. printf("The square root of the first number is %.2f\n", first_sqrt);

(continued)

120 Chapter 3 • Top-Down Design with Functions

 C Library Functions

 Table 3.1 lists the names and descriptions of some of the most commonly used
functions along with the name of the standard header file to #include in order to
have access to each function. A complete list of standard library functions appears
in Appendix B.

 If one of the functions in Table 3.1 is called with a numeric argument that is
not of the argument type listed, the argument value is converted to the required
type before it is used. Conversions of type int to type double cause no prob-
lems, but a conversion of type double to type int leads to the loss of any frac-
tional part, just as in a mixed-type assignment. For example, if we call the abs
function with the type double value −3.47 , the result returned is the type int
value 3 . For this reason, the library has a separate absolute value function (fabs)
for type double arguments.

 Most of the functions in Table 3.1 perform common mathematical computa-
tions. The arguments for log and log10 must be positive; the argument for sqrt
cannot be negative. The arguments for sin , cos , and tan must be expressed in
radians, not in degrees.

 21. /* Get second number and display its square root. */
 22. printf("Enter the second number> ");
 23. scanf("%lf", &second);
 24. second_sqrt = sqrt(second);
 25. printf("The square root of the second number is %.2f\n", second_sqrt);
 26.
 27. /* Display the square root of the sum of the two numbers. */
 28. sum_sqrt = sqrt(first + second);
 29. printf("The square root of the sum of the two numbers is %.2f\n",
 30. sum_sqrt);
 31.
 32. return (0);
 33. }

 Enter the first number> 9.0
 The square root of the first number is 3.00
 Enter the second number> 16.0
 The square root of the second number is 4.00
 The square root of the sum of the two numbers is 5.00

 FIGURE 3.7 (continued)

1213.2 • Library Functions

 EXAMPLE 3.2 We can use the C functions pow (power) and sqrt to compute the roots of a quad-
ratic equation in x of the form

 ax2 + bx + c = 0

 TABLE 3.1 Some Mathematical Library Functions

 Function
 Standard
Header File Purpose: Example Argument(s) Result

 abs(x) <stdlib.h> Returns the absolute value of
its integer argument:
if x is −5 , abs(x) is 5

 int int

 ceil(x) <math.h> Returns the smallest integral
value that is not less than x :
if x is 45.23 , ceil(x) is 46.0

 double double

 cos(x) <math.h> Returns the cosine of angle x :
if x is 0.0 , cos(x) is 1.0

 double
(radians)

 double

 exp(x) <math.h> Returns e x where e = 2.71828... :
if x is 1.0 , exp(x) is 2.71828

 double double

 fabs(x) <math.h> Returns the absolute value of
its type double argument:
if x is −8.432 , fabs(x) is 8.432

 double double

 floor(x) <math.h> Returns the largest integral value
that is not greater than x :
if x is 45.23 , floor(x) is 45.0

 double double

 log(x) <math.h> Returns the natural logarithm
of x for x > 0.0 :
if x is 2.71828 , log(x) is 1.0

 double double

 log10(x) <math.h> Returns the base-10 logarithm
of x for x > 0.0 :
if x is 100.0 , log10(x) is 2.0

 double double

 pow(x, y) <math.h> Returns x y . If x is negative, y must
be integral: if x is 0.16 and y is
 0.5 , pow(x,y) is 0.4

 double,
double

 double

 sin(x) <math.h> Returns the sine of angle x :
if x is 1.5708 , sin(x) is 1.0

 double
(radians)

 double

 sqrt(x) <math.h> Returns the nonnegative square
root of x (1x) for x ≥ 0.0 :
if x is 2.25 , sqrt(x) is 1.5

 double double

 tan(x) <math.h> Returns the tangent of angle x :
if x is 0.0 , tan(x) is 0.0

 double
(radians)

 double

122 Chapter 3 • Top-Down Design with Functions

 The two roots are defined as

 root1 =
-b + 2b2 - 4ac

2a
 root2 =

-b - 2b2 - 4ac
2a

 when the discriminant (b 2 − 4 ac) is greater than zero. If we assume that this is
the case, we can use these assignment statements to assign values to root_1 and
 root_2 .

 /* Compute two roots, root_1 and root_2, for disc > 0.0 */
 disc = pow(b,2) - 4 * a * c;
 root_1 = (-b + sqrt(disc)) / (2 * a);
 root_2 = (-b - sqrt(disc)) / (2 * a);

 In the first assignment statement above, the expression begins with pow(b, 2)
which calls function pow with b and 2 as arguments; the function result (b 2) is sub-
stituted for the function call when the expression is evaluated.

 EXAMPLE 3.3 If we know the lengths of two sides (b and c) of a triangle and the angle between
them in degrees (�), we can compute the length of the third side (a) using the fol-
lowing formula (see Fig. 3.8).

 a2 = b2 + c2 - 2bc cos �

 To use the math library cosine function (cos), we must express its argument
angle in radians instead of degrees. To convert an angle from degrees to radians,
we multiply the angle by �/180. If we assume PI represents the constant �, the C
assignment statement that follows computes the unknown side length:

 a = sqrt(pow(b,2) + pow(c,2)
 - 2 * b * c * cos(alpha * PI / 180.0));

ab

c

α

 FIGURE 3.8

 Triangle with
Unknown Side a

1233.2 • Library Functions

 A Look at Where We Are Heading

 C also allows us to write our own functions. Let’s assume that we have already writ-
ten functions find_area and find_circum :

 ■ Function find_area(r) returns the area of a circle with radius r .
 ■ Function find_circum(r) returns the circumference of a circle with radius r .

 We can reuse these functions in two programs shown earlier in this chapter (see
 Figs. 3.3 and 3.5). The program in Fig. 3.3 computes the area and the circumfer-
ence of a circle. The statements

 area = find_area(radius);
 circum = find_circum(radius);

 can be used to find these values. The expression part for each of the assignment
statements is a function call with argument radius (the circle radius). The result
returned by each function execution is stored in an output variable for the program
(area or circum).

 For the flat washer program (Fig. 3.5), we can use the statement

 rim_area = find_area(edge_radius) - find_area(hole_radius);

 to compute the rim area for a washer. This statement is clearer than the one shown
in the original program (lines 39–40).

 EXERCISES FOR SECTION 3.2

 Self-Check

 1. Rewrite the following mathematical expressions using C functions:

 a. 1u + v * w2 c. 2(x - y)3
 b. loge (xy) d. � xy - w>z �

 2. Evaluate the following:

 a. log10(10000.0)
 b. ceil(16.2)
 c. floor(−7.5) * pow(3.0, 2.0)
 d. floor(21.8 + 0.8)
 e. sqrt(ceil(fabs(−7.4)))

 Programming

 1. Write statements that compute and display the absolute difference of two type
 double variables, x and y (� x − y �).

124 Chapter 3 • Top-Down Design with Functions

 2. Write a complete C program that prompts the user for the coordinates of two
3-D points (x 1 , y 1 , z 1) and (x 2 , y 2 , z 2) and displays the distance between them
computed using the following formula:

 distance = 2(x1 - x2)2 + (y1 - y2)2 + (z1 - z2)2

 3.3 Top-Down Design and Structure Charts
 Often the algorithm needed to solve a problem is more complex than those we have
seen so far and the programmer must break up the problem into subproblems to
develop the program solution. In attempting to solve a subproblem at one level, we
introduce new subproblems at lower levels. This process, called top-down design ,
proceeds from the original problem at the top level to the subproblems at each
lower level. The splitting of a problem into its related subproblems is analogous to
the process of refining an algorithm. The case study below introduces a documenta-
tion tool—the structure chart —that will help you to keep track of the relationships
among subproblems.

 CASE STUDY Drawing Simple Diagrams

 PROBLEM

 You want to draw some simple diagrams on your printer or screen. Two examples
are the house and female stick figure in Fig. 3.9 .

 ANALYSIS

 The house is formed by displaying a triangle without its base on top of a rectangle.
The stick figure consists of a circular shape, a triangle, and a triangle without its
base. We can draw both figures with these four basic components:

 ■ a circle ■ parallel lines
 ■ a base line ■ intersecting lines

 top-down design
a problem-solving
method in which you
first break a problem
up into its major
subproblems and then
solve the subproblems
to derive the solution to
the original problem

 structure chart a
documentation tool that
shows the relationships
among the subproblems
of a problem

* *
* *

* FIGURE 3.9

 House and Stick
Figure

1253.3 • Top-Down Design and Structure Charts

 DESIGN

 To create the stick figure, you can divide the problem into three subproblems.

 INITIAL ALGORITHM

 1. Draw a circle.
 2. Draw a triangle.
 3. Draw intersecting lines.

 ALGORITHM REFINEMENTS

 Because a triangle is not a basic component, you must refine step 2, generating the
following subproblems:

 Step 2 Refinement
 2.1 Draw intersecting lines.
 2.2 Draw a base.

 You can use a structure chart to show the relationship between the original
problem and its subproblems, as in Fig. 3.10 , where the original problem (level 0)
is in the darker color and its three subordinate subproblems are shown at level 1.
The subproblem Draw a triangle is also in color because it has its own subproblems
(shown at level 2).

 The subproblems appear in both the algorithm and the structure chart. The
algorithm, not the structure chart, shows the order in which you carry out each step
to solve the problem. The structure chart simply illustrates the subordination of
subproblems to each other and to the original problem.

Draw
intersecting
lines

Draw a
figure

Draw a
triangle

Draw a
circle

Draw
intersecting
lines

Draw a
base

Subproblems

Original
problem

Detailed
subproblems

Level 0

Level 1

Level 2

 FIGURE 3.10

 Structure Chart for
Drawing a Stick
Figure

126 Chapter 3 • Top-Down Design with Functions

 EXERCISES FOR SECTION 3.3

 Self-Check

 1. In which phase of the software development method do you apply top-down
design to break the problem into suitable subproblems?

 2. Draw the structure chart for the problem of drawing the house shown in
 Fig. 3.9 .

 3.4 Functions without Arguments
 One way that programmers implement top-down design in their programs is by
defining their own functions. Often, a programmer will write one function subpro-
gram for each subproblem in the structure chart. In this section, we show how to
use and define your own functions, focusing on simple functions that have no argu-
ments and return no value.

 As an example of top-down design with functions, you could use the main
function in Fig. 3.11 to draw the stick figure of a person. In Fig. 3.11 , the three
algorithm steps are coded as calls to three function subprograms. For example, the
statement

 draw_circle();

 calls a function (draw_circle) that implements the algorithm step Draw a circle.
 We call function draw_circle just like we call function printf . The empty

parentheses after the function name indicate that draw_circle requires no
 arguments.

 Function Call Statement (Function without Arguments)

 SYNTAX: fname ();

 EXAMPLE: draw_circle();

 INTERPRETATION: The function fname is called. After fname has finished execution, the

 program statement that follows the function call will be executed.

 Function Prototypes

 Just like other identifiers in C, a function must be declared before it can be refer-
enced. One way to declare a function is to insert a function prototype before the

1273.4 • Functions without Arguments

main function. A function prototype tells the C compiler the data type of the func-
tion, the function name, and information about the arguments that the function
expects. The data type of a function is determined by the type of value returned by
the function. The functions declared in Fig. 3.11 are void functions (that is, their
type is void) because they do not return a value. In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

 FIGURE 3.11 Function Prototypes and Main Function for Stick Figure

 1. /*
 2. * Draws a stick figure
 3. */
 4.
 5. #include <stdio.h> /* printf definition */
 6.
 7. /* function prototypes */
 8.
 9. void draw_circle(void); /* Draws a circle */
 10.
 11. void draw_intersect(void); /* Draws intersecting lines */
 12.
 13. void draw_base(void); /* Draws a base line */
 14.
 15. void draw_triangle(void); /* Draws a triangle */
 16.
 17. int
 18. main(void)
 19. {
 20. /* Draw a circle. */
 21. draw_circle();
 22.
 23. /* Draw a triangle. */
 24. draw_triangle();
 25.
 26. /* Draw intersecting lines. */
 27. draw_intersect();
 28.
 29. return (0);
 30. }

 void function
a function that does
not return a value

128 Chapter 3 • Top-Down Design with Functions

 Function Definitions

 Although the prototype specifies the number of arguments a function takes and the
type of its result, it does not specify the function operation. To do this, you need to
provide a definition for each function subprogram similar to the definition of the
main function. Figure 3.12 shows the definition for function draw_circle .

 The function heading is similar to the function prototype in Fig. 3.11 except
that it is not ended by the symbol ; . We have adopted a style that places the func-
tion type on a separate line. (Industrial C developers often use this style to make
function definitions easy to find in long source files.) The function body, enclosed in
braces, consists of three calls to function printf that cause the computer to display
a circular shape. We omit the return statement because draw_circle does not
return a result.

 Function Prototype (Function without Arguments)

 FORM: ftype fname (void);

 EXAMPLE: void draw_circle(void);

 INTERPRETATION: The identifier fname is declared to be the name of a function. The identifier

 ftype specifies the data type of the function result.

 Note: ftype is void if the function does not return a value. The argument list (void) indi-

cates that the function has no arguments. The function prototype must appear before the

first call to the function.

 FIGURE 3.12 Function draw_circle

 1. /*
 2. * Draws a circle
 3. */
 4. void
 5. draw_circle(void)
 6. {
 7. printf(" * \n");
 8. printf(" * *\n");
 9. printf(" * * \n");
 10. }

1293.4 • Functions without Arguments

 The function call statement

 draw_circle();

 causes these printf statements to execute. Control returns to the main function
after the circle shape is displayed.

 Function Definition (Function without Arguments)

 SYNTAX: ftype

 fname (void)
 {
 local declarations

 executable statements
 }
 EXAMPLE: /*
 * Displays a block-letter H
 */
 void
 print_h(void)
 {
 printf("** **\n");
 printf("** **\n");
 printf("*****\n");
 printf("** **\n");
 printf("** **\n");
 }

 INTERPRETATION: The function fname is defined. In the function heading, the identifier ftype

specifies the data type of the function result. Notice that there are no semicolons after the

lines of the function heading. The braces enclose the function body. Any identifiers that are

declared in the optional local declarations are defined only during the execution of the func-

tion and can be referenced only within the function. The executable statements of the func-

tion body describe the data manipulation to be performed by the function.

 Note: ftype is void if the function does not return a value. The argument list (void) indi-

cates that the function has no arguments. You can omit the void and write the argument

list as () .

 Each function body may contain declarations for its own variables. These vari-
ables are considered local to the function; in other words, they can be referenced
only within the function. There will be more on this topic later.

 The structure chart in Fig. 3.10 shows that the subproblem Draw a triangle
(level 1) depends on the solutions to its subordinate subproblems Draw intersecting

130 Chapter 3 • Top-Down Design with Functions

lines and Draw a base (both level 2). Figure 3.13 shows how you can use top-down
design to code function draw_triangle . Instead of using printf statements to
display a triangular pattern, the body of function draw_triangle calls functions
 draw_intersect and draw_base to draw a triangle.

 Placement of Functions in a Program

 Figure 3.14 shows the complete program with function subprograms. The subpro-
gram prototypes precede the main function (after any #include or #define direc-
tives) and the subprogram definitions follow the main function. The relative order of
the function definitions does not affect their order of execution; that is determined
by the order of execution of the function call statements.

 FIGURE 3.13 Function draw_triangle

 1. /*
 2. * Draws a triangle
 3. */
 4. void
 5. draw_triangle(void)
 6. {
 7. draw_intersect();
 8. draw_base();
 9. }

 FIGURE 3.14 Program to Draw a Stick Figure

 1. /* Draws a stick figure */
 2.
 3. #include <stdio.h> /* printf definition */
 4.
 5. /* Function prototypes */
 6. void draw_circle(void); /* Draws a circle */
 7.
 8. void draw_intersect(void); /* Draws intersecting lines */
 9.
 10. void draw_base(void); /* Draws a base line */
 11.
 12. void draw_triangle(void); /* Draws a triangle */
 13.

(continued)

1313.4 • Functions without Arguments

 14. int
 15. main(void)
 16. {
 17.
 18. /* Draw a circle. */
 19. draw_circle();
 20.
 21. /* Draw a triangle. */
 22. draw_triangle();
 23.
 24. /* Draw intersecting lines. */
 25. draw_intersect();
 26.
 27. return (0);
 28. }
 29.
 30. /*
 31. * Draws a circle
 32. */
 33. void
 34. draw_circle(void)
 35. {
 36. printf(" * \n");
 37. printf(" * * \n");
 38. printf(" * * \n");
 39. }
 40.
 41. /*
 42. * Draws intersecting lines
 43. */
 44. void
 45. draw_intersect(void)
 46. {
 47. printf(" / \\ \n"); /* Use 2 \'s to print 1 */
 48. printf(" / \\ \n");
 49. printf("/ \\\n");
 50. }
 51.

(continued)

 FIGURE 3.14 (continued)

132 Chapter 3 • Top-Down Design with Functions

 If you look closely at function draw_intersect , you will notice that the symbol
pair \\ represents a single backslash character in a format string. This convention
enables C to differentiate the backslash character from the escape symbol (just \).

 Program Style Use of Comments in a Program with Functions

 Figure 3.14 includes several comments. Each function begins with a comment that
describes its purpose. If the function subprograms were more complex, we would
include comments on each major algorithm step just as we do in function main .
From now on throughout this text, the block comment and heading of each function
definition are in color to help you locate functions in the program listing.

 Order of Execution of Function Subprograms and

Main Function

 Because the prototypes for the function subprograms appear before the main func-
tion, the compiler processes the function prototypes before it translates the main
function. The information in each prototype enables the compiler to correctly
translate a call to that function. The compiler translates a function call statement as
a transfer of control to the function.

 FIGURE 3.14 (continued)

 52. /*
 53. * Draws a base line
 54. */
 55. void
 56. draw_base(void)
 57. {
 58. printf("-------\n");
 59. }
 60.
 61. /*
 62. * Draws a triangle
 63. */
 64. void
 65. draw_triangle(void)
 66. {
 67. draw_intersect();
 68. draw_base();
 69. }

1333.4 • Functions without Arguments

 After compiling the main function, the compiler translates each function sub-
program. During translation, when the compiler reaches the end of a function body,
it inserts a machine language statement that causes a transfer of control back from
the function to the calling statement.

 Figure 3.15 shows the main function and function draw_circle of the stick
figure program in separate areas of memory. Although the C statements are shown
in Fig. 3.15 , it is actually the object code corresponding to each statement that is
stored in memory.

 When we run the program, the first statement in the main function is the
first statement executed (the call to draw_circle in Fig. 3.15). When the com-
puter executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15). The computer allocates
any memory that may be needed for variables declared in the function and then
performs the statements in the function body. After the last statement in function
 draw_circle is executed, control returns to the main function (indicated by the
black line in Fig. 3.15), and the computer releases any memory that was allocated
to the function. After the return to the main function, the next statement is exe-
cuted (the call to draw_triangle).

 Advantages of Using Function Subprograms

 There are many advantages to using function subprograms. Their availability
changes the way in which an individual programmer organizes the solution to a
programming problem. For a team of programmers working together on a large
program, subprograms make it easier to apportion programming tasks: Each pro-
grammer will be responsible for a particular set of functions. Finally, they simplify
programming tasks because existing functions can be reused as the building blocks
for new programs.

 Procedural Abstraction Function subprograms allow us to remove from the
main function the code that provides the detailed solution to a subproblem. Because
these details are provided in the function subprograms and not in the main function,

in main function

draw_circle();

draw_triangle();

draw_intersect();

/* Draw a circle. */
void
draw_cir cle (void)
{
printf(" * \n");
printf("* *
printf(" * *

\n");
\n");

return to calling program

computer memory

}

 FIGURE 3.15

 Flow of Control
Between the
main Function
and a Function
Subprogram

134 Chapter 3 • Top-Down Design with Functions

we can write the main function as a sequence of function call statements as soon
as we have specified the initial algorithm and before we refine any of the steps.
We should delay writing the function for an algorithm step until we have finished
refining that step. With this approach to program design, called procedural
abstraction , we defer implementation details until we are ready to write an
individual function subprogram. Focusing on one function at a time is much easier
than trying to write the complete program all at once.

 Reuse of Function Subprograms Another advantage of using function
subprograms is that functions can be executed more than once in a program.
For example, function draw_intersect is called twice in Fig. 3.14 (once by
 draw_triangle and once by the main function). Each time draw_intersect is
called, the list of output statements shown in Fig. 3.14 is executed and a pair of
intersecting lines is drawn. Without functions, the printf statements that draw
the lines would be listed twice in the main function, thereby increasing the main
function’s length and the chance of error.

 Finally, once you have written and tested a function, you can use it in other
programs or functions. For example, the functions in the stick figure program could
easily be reused in programs that draw other diagrams.

 Displaying User Instructions

 The simple functions introduced in this section have limited capability. Without
the ability to pass information into or out of a function, we can use functions only to
display multiple lines of program output, such as instructions to a program user or a
title page or a special message that precedes a program’s results.

 EXAMPLE 3.4 Let’s write a function (Fig. 3.16) that displays instructions to a user of the program
that computes the area and the circumference of a circle (see Fig. 3.3). This simple
function demonstrates one of the benefits of separating the statements that display
user instructions from the main function body: Editing these instructions is simpli-
fied when they are separated from the code that performs the calculations.

 If you place the prototype for function instruct

 void instruct(void);

 just before the main function, you can insert the function call statement

 instruct();

 as the first executable statement in the main function. The rest of the main function
consists of the executable statements shown earlier. Figure 3.16 shows the output
displayed by calling function instruct.

 procedural
abstraction
a programming tech-
nique in which a main
function consists of a
sequence of function
calls and each function
is implemented
separately

1353.4 • Functions without Arguments

 FIGURE 3.16 Function instruct and the Output Produced by a Call

 1. /*
 2. * Displays instructions to a user of program to compute
 3. * the area and circumference of a circle.
 4. */
 5. void
 6. instruct(void)
 7. {
 8. printf("This program computes the area\n");
 9. printf("and circumference of a circle.\n\n");
 10. printf("To use this program, enter the radius of\n");
 11. printf("the circle after the prompt: Enter radius>\n");
 12. }

 This program computes the area
 and circumference of a circle.

 To use this program, enter the radius of
 the circle after the prompt: Enter radius>

 EXERCISES FOR SECTION 3.4

 Self-Check

 1. Assume that you have functions print_h , print_i , print_m , and print_o ,
each of which draws a large block letter (for example, print_o draws a block
letter O). What is the effect of executing the following main function?

 int
 main(void)
 {
 print_h();
 print_i();
 printf("\n\n\n");
 print_m();
 print_o();
 print_m();

 return (0);
 }

 2. Draw a structure chart for a program with three function subprograms that
displays DOLL in a vertical column of block letters.

136 Chapter 3 • Top-Down Design with Functions

 Programming

 1. Write a function draw_parallel that draws parallel lines and a function draw_
rectangle that uses draw_parallel and draw_base to draw a rectangle.

 2. Write a complete program for the problem described in Self-Check
Exercise 2.

 3. Rewrite the miles-to-kilometers conversion program shown in Fig. 2.1 , so that
it includes a function that displays instructions to its user.

 4. Show the revised program that calls function instruct for the circle area and
circumference problem.

 3.5 Functions with Input Arguments
 Programmers use functions like building blocks to construct large programs.
Functions are more like Lego® blocks (Fig. 3.17) than the smooth-sided wooden
blocks you might have used as a young child to demonstrate your potential as a
budding architect. Your first blocks were big and did not link together, so buildings
over a certain size would topple over. Legos, in contrast, have one surface with lit-
tle protrusions and one surface with little cups. By placing the protrusions into the
cups, you could build rather elaborate structures.

 What does this have to do with programming? Simple functions like draw_circle
and instruct are like wooden blocks. They can display information on the screen,
but they are not particularly useful. To be able to construct more interesting pro-
grams, we must provide functions with “protrusions” and “cups” so they can be easily
interconnected.

 FIGURE 3.17

 Lego® Blocks

1373.5 • Functions with Input Arguments

 The arguments of a function are used to carry information into the function
subprogram from the main function (or from another function subprogram) or to
return multiple results computed by a function subprogram. Arguments that carry
information into the function subprogram are called input arguments ; arguments
that return results are called output arguments . We can also return a single result
from a function by executing a return statement in the function body. We study
functions with input arguments in this section and functions with output arguments
in Chapter 6 .

 The use of arguments is a very important concept in programming. Arguments
make function subprograms more versatile because they enable a function to manip-
ulate different data each time it is called. For example, in the statement

 rim_area = find_area(edge_radius) - find_area(hole_area);

 each call to function find_area calculates the area of a circle with a different radius.

 void Functions with Input Arguments

 In the last section, we used void functions like instruct and draw_circle to
display several lines of program output. Recall that a void function does not return
a result. We can use a void function with an argument to “dress up” our program
output by having the function display its argument value in a more attractive way.

 EXAMPLE 3.5 Function print_rboxed (Fig. 3.18) displays the value of its argument, a real
number, in a box. The real number is displayed on the third line starting at the posi-
tion of the placeholder %7.2f . When function print_rboxed is called, the value

 input arguments
arguments used to
pass information into a
function subprogram

 output arguments
arguments used to
return results to the
calling function

 FIGURE 3.18 Function print_rboxed and Sample Run

 1. /*
 2. * Displays a real number in a box.
 3. */
 4.
 5. void
 6. print_rboxed(double rnum)
 7. {
 8. printf("***********\n");
 9. printf("* *\n");
 10. printf("* %7.2f *\n", rnum);
 11. printf("* *\n");
 12. printf("***********\n");
 13. }

(continued)

138 Chapter 3 • Top-Down Design with Functions

of its actual argument (135.68) is passed into the function and substituted for its
 formal parameter rnum . Because rnum appears only in the third call to printf ,
the real number 135.68 is displayed once inside the box. Figure 3.19 shows the
effect of the function call

 print_rboxed(135.68);

 Functions with Input Arguments and a Single Result

 Next we show how to write functions with input arguments that return a single result,
as diagrammed in Fig. 3.20 . We can call or reference these functions in expressions
just like the library functions described in Section 3.2 . For example, if we write our
own function f that has 2 type double inputs, we can reference it in an expression
such as w + f(2.5, 4.0) . This expression means execute function f with a first
argument of 2.5 and a second argument of 4.0 . Add the function result to w .

 Let’s reconsider the problem of finding the area and circumference of a circle
using functions with just one argument. Section 3.2 described functions find_cir-
cum and find_area , each of which has a single input argument (a circle radius) and
returns a single result (the circle circumference or area). Figure 3.21 shows these
functions.

 formal parameter an
identifier that represents
a corresponding actual
argument in a function
definition

 actual argument an
expression used inside
the parentheses of a
function call

 * *
 * 135.68 *
 * *

 FIGURE 3.18 (continued)

print_rboxed(135.68);
Call print_rboxed with rnum = 135.68

 void
 print_rboxed(double rnum)

 printf("***********\n");
 printf("* *\n");
 printf("* %7.2f *\n", rnum);
 printf("* *\n");
 printf("***********\n");
 }

{

 FIGURE 3.19

 Effect of Executing
 print_rboxed
(135.68);

1393.5 • Functions with Input Arguments

function

i

n

p

u

t

s

value

result

 FIGURE 3.20

 Function with
Input Arguments
and One Result

 FIGURE 3.21 Functions find_circum and find_area

 1. /*
 2. * Computes the circumference of a circle with radius r.
 3. * Pre: r is defined and is > 0.
 4. * PI is a constant macro representing an approximation of pi.
 5. */
 6. double
 7. find_circum(double r)
 8. {
 9. return (2.0 * PI * r);
 10. }
 11.
 12. /*
 13. * Computes the area of a circle with radius r.
 14. * Pre: r is defined and is > 0.
 15. * PI is a constant macro representing an approximation of pi.
 16. * Library math.h is included.
 17. */
 18. double
 19. find_area(double r)
 20. {
 21. return (PI * pow(r, 2));
 22. }

 Each function heading begins with the word double , indicating that the func-
tion result is a real number. Both function bodies consist of a single return state-
ment. When either function executes, the expression in its return statement is
evaluated and returned as the function result. If PI is the constant macro 3.14159 ,
calling function find_circum causes the expression 2.0 * 3.14159 * r to be

140 Chapter 3 • Top-Down Design with Functions

evaluated. To evaluate this expression, C substitutes the actual argument used in the
function call for the formal parameter r .

 For the function call below

 radius = 10.0;
 circum = find_circum(radius);

 the actual argument, radius , has a value of 10.0 , so the function result is 62.8318
(2.0 * 3.14159 * 10.0). The function result is assigned to circum . Figure 3.22
illustrates the function execution.

 The function call to find_area

 area = find_area(radius);

 causes C to evaluate the expression 3.14159 * pow(r, 2) , where pow is a library
function (part of math.h) that raises its first argument to the power indicated by its
second argument (pow(r, 2) computes r 2). When radius is 10.0 , pow returns
 100.0 and find_area returns a result of 314.59 , which is assigned to area . This
example shows that a user-defined function can call a C library function.

circum = find_circum(radius);
Call find_circum with r = 10.0

Return result of 62.8318

 double
 find_circum(double r)
 {

return (2.0 * PI * r);
 }

 FIGURE 3.22

 Effect of Executing
 circum = find_
circum(radius);

 Function Definition (Input Arguments and Single Result)

 SYNTAX: function interface comment

 ftype

 fname (formal parameter declaration list)
 {

 local variable declarations

 executable statements

 }

(continued)

1413.5 • Functions with Input Arguments

 Program Style Function Interface Comment

 The block comment and heading that begin each function in Fig. 3.21 contain all
the information required in order to use the function. The function interface block
comment begins with a statement of what the function does. Then the line

 * Pre: n is defined.

 describes the condition that should be true before the function is called; this con-
dition is known as the precondition . You will also want to include a statement
describing the condition that must be true after the function completes execution,
if some details of this postcondition are not included in the initial statement of the
function’s purpose.

 We recommend that you begin all function definitions in this way. The function
interface comment combined with the heading (or prototype) provides valuable
documentation to other programmers who might want to reuse your functions in a
new program without reading the function code.

 EXAMPLE: /*
 * Finds the cube of its argument.
 * Pre: n is defined.
 */
 int
 cube(int n)
 {
 return (n * n * n);
 }

 INTERPRETATION: The function interface comment is described in the next Program Style

display. The next two lines are the function heading, which specifies the function name,

 fname , and the type of the result returned, ftype . It also indicates the names and types of the

formal parameters in the formal parameter declaration list . Note that the lines of the heading

do not end in semicolons. The braces enclose the function body. The type of any additional

variables needed should be declared in the local variable declarations . The executable state-

ments describe the data manipulation that the function performs on the parameters and local

variables in order to compute the result value. Execution of a return statement causes the

function to return control to the statement that called it. The function returns the value of

the expression following return as its result.

 Note: Use void as the formal parameter declaration list to indicate that a function has no

arguments. The parentheses around the expression that follows return are not required.

 precondition
a condition assumed
to be true before a
function call

 postcondition
a condition assumed to
be true after a function
executes

142 Chapter 3 • Top-Down Design with Functions

 Functions with Multiple Arguments

 Functions find_area and find_circum each have a single argument. We can also
define functions with multiple arguments.

 EXAMPLE 3.6 Function scale (Fig. 3.23) multiplies its first argument (a real number) by 10 raised
to the power indicated by its second argument (an integer). For example, the func-
tion call

 scale(2.5, 2)

 returns the value 250.0 (2.5 × 10 2) . The function call

 scale(2.5, -2)

 returns the value 0.025 (2.5 × 10 −2) .

 In function scale , the statement

 scale_factor = pow(10, n);

 calls function pow to raise 10 to the power specified by the second formal para-
meter n . Local variable scale_factor , defined only during the execution of the
function, stores this value. The return statement defines the function result as the
product of the first formal parameter, x , and scale_factor .

 Figure 3.24 shows a very simple main function written to test function scale . The
prototype for function scale is

 double scale(double x, int n);

 FIGURE 3.23 Function scale

 1. /*
 2. * Multiplies its first argument by the power of 10 specified
 3. * by its second argument.
 4. * Pre : x and n are defined and math.h is included.
 5. */
 6. double
 7. scale(double x, int n)
 8. {
 9. double scale_factor; /* local variable */
 10. scale_factor = pow(10, n);
 11.
 12. return (x * scale_factor);
 13. }

1433.5 • Functions with Input Arguments

 FIGURE 3.24 Testing Function scale

 1. /*
 2. * Tests function scale.
 3. */
 4. #include <stdio.h> /* printf, scanf definitions */
 5. #include <math.h> /* pow definition */
 6.
 7. /* Function prototype */
 8. double scale(double x, int n);
 9.
 10. int
 11. main(void)
 12. {
 13. double num_1;
 14. int num_2;
 15.
 16. /* Get values for num_1 and num_2 */
 17. printf("Enter a real number> ");
 18. scanf("%lf", &num_1);
 19. printf("Enter an integer> ");
 20. scanf("%d", &num_2);
 21.
 22. /* Call scale and display result. */
 23. printf("Result of call to function scale is %f\n",
 24. scale(num_1, num_2)); actual arguments
 25.
 26. return (0);
 27. }
 28. information flow
 29.
 30. double
 31. scale(double x, int n) formal parameters
 32. {
 33. double scale_factor; /* local variable - 10 to power n */
 34.
 35. scale_factor = pow(10, n);
 36.
 37. return (x * scale_factor);
 38. }

 Enter a real number> 2.5
 Enter an integer> -2
 Result of call to function scale is 0.025

144 Chapter 3 • Top-Down Design with Functions

 The printf statement calls function scale and displays the function result after it is
returned. The arrows drawn in Fig. 3.24 show the information flow between the two
actual arguments and formal parameters. To clarify the information flow, we omitted
the function interface comment. The argument list correspondence is shown below.

 Actual Argument corresponds to Formal Parameter
 num_1 x

 num_2 n

 Argument List Correspondence

 When using multiple-argument functions, you must be careful to include the
correct number of arguments in the function call. Also, the order of the actual
arguments used in the function call must correspond to the order of the formal
parameters listed in the function prototype or heading.

 Finally, if the function is to return meaningful results, assignment of each actual
argument to the corresponding formal parameter must not cause any loss of infor-
mation. Usually, you should use an actual argument of the same data type as the
corresponding formal parameter, although this is not always essential. For example,
the <math.h> library description indicates that both parameters of the function
 pow are of type double . Function scale calls pow with two actual arguments of
type int . This call does not cause a problem because there is no loss of information
when an int is assigned to a type double variable. If you pass an actual argument
of type double to a formal parameter of type int , loss of the fractional part of the
actual argument would likely lead to an unexpected function result. Next, we sum-
marize these constraints on the n umber, o rder, and t ype (not) of input arguments.

 Argument List Correspondence

 ■ The n umber of actual arguments used in a call to a function must be the same
as the number of formal parameters listed in the function prototype.

 ■ The o rder of arguments in the lists determines correspondence. The first
actual argument corresponds to the first formal parameter, the second actual
argument corresponds to the second formal parameter, and so on.

 ■ Each actual argument must be of a data t ype that can be assigned to the cor-
responding formal parameter with no unexpected loss of information.

 The Function Data Area

 Each time a function call is executed, an area of memory is allocated for storage
of that function’s data. Included in the function data area are storage cells for its
formal parameters and any local variables that may be declared in the function. The
function data area is always lost when the function terminates; it is recreated empty
(all values undefined) when the function is called again.

1453.5 • Functions with Input Arguments

 Figure 3.25 shows the main function data area and the data area for function
 scale after the function call scale(num_1, num_2) executes. The values 2.5 and
 −2 are passed into the formal parameters x and n , respectively. The local variable,
 scale_factor , is initially undefined; the execution of the function body changes
the value of this variable to 0.01 .

 The local variable scale_factor can be accessed only in function scale .
Similarly, the variables num_1 and num_2 declared in function main can be accessed
only in function main . If you want a function subprogram to use the value stored in
 num_1 , you must provide num_1 as an actual argument when you call the function.

 Testing Functions Using Drivers

 A function is an independent program module, and as such, it can be tested sepa-
rately from the program that uses it. To run such a test, you should write a short
 driver function that defines the function arguments, calls the function, and displays
the value returned. For example, the function main in Fig. 3.24 acts as a driver to
test function scale .

 EXERCISES FOR SECTION 3.5

 Self-Check

 1. Evaluate each of the following:

 a. scale(3.14159, 3)
 b. find_circum(5.0)

x

2.5

n

scale_factor

Function scale
Data Area

–2

?

num_1

2.5

num_2

Function main
Data Area

–2

 FIGURE 3.25

 Data Areas After
Call scale(num_1,
num_2);

 driver a short
function written to test
another function by
defining its arguments,
calling it, and displaying
its result

146 Chapter 3 • Top-Down Design with Functions

 c. print_rboxed(find_circum(5.0))
 d. find_area(1.0)
 e. scale(find_area(10.0), −2)

 2. Explain the effect of reversing the function arguments in the call to scale
shown in Example 3 .6—that is, scale(num_2, num_1) .

 3. How does the use of function arguments make it possible to write larger, more
useful programs?

 Programming

 1. Revise the flat-washer program (Fig. 3.5) to use function subprograms
 find_area , find_rim_area , find_unit_weight , and instruct . Show the
complete program.

 2. Write a function that computes the time one must leave in order to reach a
certain destination by a designated time. You need to deal only with arrivals
occurring later in the same day as the departure. Function inputs include the
arrival time as an integer on a 24-hour clock (8:30 P.M. = 2030), the distance to
the destination in kilometers, and the speed you plan to average in km/h. The
function result should be the required departure time (rounded to the nearest
minute) as an integer on a 24-hour clock. Also, write a driver program to test
your function.

 3.6 Introduction to Computer Graphics (Optional)
 In normal computer display mode (called text mode), we use printf to display
lines of characters to the standard output device, or console. In Section 3.3 , we
showed how to write C functions for drawing simple stick figures using text mode.
In several optional sections beginning with this one, we discuss another display
mode (called graphics mode) that enables a C program to draw pictures or graphi-
cal patterns in an output window. To write graphics programs, you must learn how
to use special graphics functions that enable you to draw lines and various geometric
shapes (for example, rectangles, circles, ellipses) anywhere on your screen and color
and shade them in different ways.

 Several programming languages include graphics libraries. Although there is
no standard graphics library for C, several libraries have been developed for use
with C. We will study a simple graphics library called WinBGIm which is based on
Borland Turbo Pascal Graphics, with the addition of mouse control. This library
was developed by Professor Michael Main of the Computer Science Department,
University of Colorado, Boulder. The principles we study will apply to other graph-
ics libraries you may use in the future.

 graphics mode A
display mode in which
a C program draws
graphics patterns and
shapes in an output
window

 text mode A display
mode in which a C
program displays only
characters

1473.6 • Introduction to Computer Graphics (Optional)

 Composition of a Window

 In text mode, you don’t pay much attention to the position of each line of charac-
ters displayed on the screen. In graphics programming, you control the location of
each line or shape that you draw in a window. Consequently, you must know your
window size and how to reference the individual picture elements (called pixels)
in a window.

 You can visualize a window as an x - y grid of pixels. Assume that your window
has the dimensions 400 * 300. Figure 3.26 shows the coordinates for the four pixels
at the corners. The pixel at the top-left corner has x - y coordinates (0, 0), and the
pixel at the top-right corner has x - y coordinates (400, 0).

 Notice the pixels in the y -direction are numbered differently from how we are
accustomed. The pixel (0, 0) is at the top-left corner of the screen, and the y -coor-
dinate values increase as we move down the screen. In a normal x - y coordinate
system, the point (0, 0) is at the bottom-left corner.

 Some Common Graphics Functions

 A graphics program is a sequence of statements that call graphics functions to
do the work. Figure 3.27 is a program that uses several key functions. The func-
tions getmaxwidth and getmaxheight return the position of the last pixel in the
 X and Y -directions on your computer screen. Some typical screen dimensions are
640 * 480 for 14-inch screens and 1366 * 768 for 15-inch screens, but the largest
window will be slightly smaller. Therefore, the statements

 bigx = getmaxwidth(); /* get largest x-coordinate. */
 bigy = getmaxheight(); /* get largest y-coordinate. */
 initwindow(bigx, bigy,
 "Full screen window - press a character to close window");

 pixel A picture
element on a computer
screen

pixel
(400, 0)

pixel
(0, 0)

pixel
(0, 300)

pixel
(400, 300)

x

y

 FIGURE 3.26

 Referencing pixels
in a window

148 Chapter 3 • Top-Down Design with Functions

 pop up a window of maximum width and height with the third argument as the
window label (see Fig. 3.28). The window position is set by the optional fourth and
fifth arguments. If they are missing, the top-left corner of the window is at (0, 0).

 In the statements
 line(0, 0, bigX, bigY); /* Draw white line from(0, 0) to
 (bigX, bigY) */
 setcolor(BLUE); /* Change color to blue */
 line(bigX, 0, 0, bigY); /* Draw blue line from (bigX, 0) to (0, bigY) */

 FIGURE 3.27 Drawing intersecting lines

 1. /* Displays screen size and draws intersecting lines */
 2.
 3. #include <graphics.h>
 4.
 5. int
 6. main(void)
 7. {
 8. int bigX; /* largest x-coordinate */
 9. int bigY; /* largest y-coordinate */
 10.
 11. bigX = getmaxwidth(); /* get largest x-coordinate */
 12. bigY = getmaxheight(); /* get largest y-coordinate */
 13. initwindow(bigX, bigY,
 14. "Full screen window - press a key to close");
 15.
 16. /* Draw intersecting lines */
 17. /* Draw white line from (0, 0) to (bigX, bigY) */
 18. line(0, 0, bigX, bigY);
 19. setcolor(BLUE); /* Change color to blue */
 20. /* Draw blue line from (bigX, 0) to (0, bigY) */
 21. line(bigX, 0, 0, bigY);
 22.
 23. /* Display window size in console */
 24. printf("Window size is %d X %d", bigX, bigY);
 25.
 26. /* Close screen when ready */
 27. getch(); /* pause until user presses a key */
 28. closegraph(); /* close the window */
 29.
 30. return(0);
 31. }

 Window size is 1018 X 736

1493.6 • Introduction to Computer Graphics (Optional)

 the two calls to function line draw a pair of intersecting lines in this window.
Method setcolor changes the drawing color from white (the default color) to blue
for the second line. Then, the statements

 getch(); /* pause until user presses a key */
 closegraph(); /* close the window */

 call the getch function (also part of graphics.h) to pause the program until the
user presses a key. Once a key is pressed, or the user clicks on the close icon on the
top right , the closegraph function closes the window. Finally, the statement
beginning with printf displays the window size in the console window as normal
text output.

 Program Style Camelback Notation

 In the optional graphics sections, we use CamelBack notation for variable names
rather than the usual C naming convention. This means that we will capitalize the
start of each new word in a variable name rather than use the underscore symbol
between words. For example, bigX instead of big_x and myLastName instead of
 my_last_name .

 FIGURE 3.28

 Window drawn by
 lines.c

150 Chapter 3 • Top-Down Design with Functions

 Background Color and Foreground Color

 In graphics mode, the computer displays all pixels continuously in one of 16
colors. The default color used to display a pixel is called the background color.
Consequently, your initial display window appears empty because all its pixels are
displayed in the background color . When you draw a line or a shape, the pixels it
contains stand out because they are changed to the foreground color .

 Black and white are the default values for the background and foreground
colors, respectively. The statements

 setbkcolor(GREEN); /* GREEN is the background color. */
 setcolor(RED); /* RED is the foreground color. */

 reset the background color to GREEN and the foreground color to RED where GREEN
and RED are color constants defined in graphics.h . You select a color constant from
the list shown in Table 3.2 , using either the constant name or its numeric value as a
parameter (for example, RED or 4). Once you change the foreground or background
color, it retains its new value until you change it again.

 Drawing Rectangles

 We use function rectangle to draw a rectangle in a window. The statement

 rectangle(x1, y1, x2, y2);

 draws a rectangle that has one diagonal with end points (x1, y1) and (x2, y2) .

 EXAMPLE 3.7 The program in Fig. 3.29 draws a house (Fig. 3.30). The program begins by
defining the corner points of the house, where the roof is a pair of lines intersecting

 background color
The default color for all
of the pixels in a display
window

 foreground color
The new color of
pixels that are part of
a graphics object in a
display window

 TABLE 3.2 Color Constants

 Constant Value Constant Value

 BLACK 0 DARKGRAY 8

 BLUE 1 LIGHTBLUE 9

 GREEN 2 LIGHTGREEN 10

 CYAN 3 LIGHTCYAN 11

 RED 4 LIGHTRED 12

 MAGENTA 5 LIGHTMAGENTA 13

 BROWN 6 YELLOW 14

 LIGHTGRAY 7 WHITE 15

1513.6 • Introduction to Computer Graphics (Optional)

at point (x2, y2) . The first call to rectangle draws the rest of the house, and
the second call to rectangle draws the door. We drew the house in a window of
size 640 * 500, with the top-left corner of the window at point (100, 50) of the
screen.

 FIGURE 3.29 Drawing a house

 1. /* Draws a house */
 2.
 3. #include <graphics.h>
 4.
 5. int
 6. main(void)
 7. {
 8. initwindow(640, 500,
 "House - press a key to close", 100, 50);
 9.
 10. /* Define corners of house */
 11. int x1 = 100; int y1 = 200; /* top-left corner */
 12. int x2 = 300; int y2 = 100; /* roof peak */
 13. int x3 = 500; int y3 = 200; /* top-right corner */
 14. int x4 = 500; int y4 = 400; /* bottom-right corner */
 15. int x5 = 325; int y5 = 400; /* bottom-right corner of door */
 16. int x6 = 275; int y6 = 325; /* top-left corner of door */
 17.
 18. /* Draw roof. */
 19. line(x1, y1, x2, y2); /* Draw line from (x1, y1) to (x2, y2) */
 20. line(x2, y2, x3, y3); /* Draw line from (x2, y2) to (x3, y3) */
 21.
 22. /* Draw rest of house. */
 23. rectangle(x1, y1, x4, y4);
 24.
 25. /* Draw door. */
 26. rectangle(x5, y5, x6, y6);
 27.
 28. getch(); /* pause until user presses a key */
 29. closegraph(); /* close the window */
 30.
 31. return(0);
 32. }

152 Chapter 3 • Top-Down Design with Functions

 Drawing Circles, Ellipses, and Arcs

 We use function circle to draw a circle. The function call statement

 circle(x, y, radius);

 draws a circle whose center is at (x , y). The third parameter is the circle radius.
 Function arc draws an arc, or part of a circle. To draw an arc, you must specify

its starting angle and ending angle in degrees. The statement

 arc(x, y, 0, 180, radius);

 draws the top half a circle with center at (x, y) . If you imagine a clock on the
screen, 0 degrees is at 3 o’clock (horizontal direction), 30 degrees is at 2 o’clock,
60 degrees is at 1 o’clock, 90 degrees is at 12 o’clock (vertical direction), and so on.

 Function ellipse draws an ellipse or a portion of an ellipse: the third argu-
ment is the start angle, the fourth argument is the end angle, the fifth argument is
the horizontal radius, and the sixth argument is the vertical radius. The statement

 ellipse(x, y, 0, 360, radius, 2 * radius);

 draws a complete ellipse that is twice as high as it is wide.

 FIGURE 3.30

 House drawn by
 house.c

1533.6 • Introduction to Computer Graphics (Optional)

 EXAMPLE 3.8 The program in Fig. 3.31 draws a happy face (Fig. 3.32). It begins by completing
an outer circle (radius headRadius), then it draws three smaller circles (radius
 eyeNoseRadius) representing the eyes and nose. Finally, it draws the smile as an

 FIGURE 3.31 Program to draw a happy face

 1. /* Draws a happy face */
 2.
 3. #include <graphics.h>
 4.
 5. int
 6. main(void)
 7. {
 8. int midX, midY, /* coordinates of center point */
 9. leftEyeX, rightEyeX, eyeY, /* eye center points */
 10. noseX, noseY, /* nose center point */
 11. headRadius, /* head radius */
 12. eyeNoseRadius, /* eye/nose radius */
 13. smileRadius, /* smile radius */
 14. stepX, stepY; /* x and y increments */
 15.
 16. initwindow(500, 400,
 17. "Happy Face - press key to close", 200, 150);
 18.
 19. /* draw head */
 20. midX = getmaxx() / 2; /* center head in x-direction */
 21. midY = getmaxy() / 2; /* center head in y-direction */
 22. headRadius = getmaxy() / 4; /* head will fill half the window */
 23. circle(midX, midY, headRadius); /* draw head */
 24.
 25. /* draw eyes */
 26. stepX = headRadius / 4; /* x-offset for eyes */
 27. stepY = stepX; /* y-offset for eyes and nose */
 28. leftEyeX = midX - stepX; /* x-coordinate for right eye */
 29. eyeY = midY - stepY; /* y-coordinate for both eyes */
 30. eyeNoseRadius = headRadius / 10;
 31. circle(leftEyeX, eyeY, eyeNoseRadius); /* draw left eye. */
 32. circle(rightEyeX, eyeY, eyeNoseRadius); /* draw right eye. */
 33.

(continued)

154 Chapter 3 • Top-Down Design with Functions

 FIGURE 3.32

 Happy face drawn
by happyFace.c

 34. /* draw nose */
 35. noseX = midX; /* nose is centered in x direction. */
 36. noseY = midY + stepY;
 37. circle(noseX, noseY, eyeNoseRadius);
 38.
 39. /* draw smile */
 40. smileRadius = (int)(0.75 * headRadius + 0.5);
 41. arc(midX, midY, 210, 330, smileRadius);
 42.
 43. getch();
 44. closegraph();
 45.
 46. return(0);
 47. }

 FIGURE 3.31 (continued)

1553.6 • Introduction to Computer Graphics (Optional)

arc from 210 degrees (8 o’clock) to 330 degrees (4 o’clock). The arc has the same
center as the outer circle, but its radius is 75 percent as large:

 smileRadius = int(0.75 * headRadius + 0.5);
 /* 3/4 of head radius */
 arc(midX, midY, 210, 330, smileRadius);

 Note that this program uses functions getmaxx and getmaxy to determine the width
and height of the drawing window, instead of getmaxwidth and getmaxheight
which return the screen width and height. The statements

 midX = getmaxx() / 2; /* center head in x-direction */
 midY = getmaxy() / 2; /* center head in y-direction */

 use these functions to find the coordinates of the center of the window.

 Program Style Writing General Graphics Programs

 The program in Fig. 3.31 is general and bases the happy face position and dimen-
sions on the window dimensions as determined by getmaxx and getmaxy. If
you change the window dimensions, the happy face will expand or shrink to fit.
Conversely, the size of the house drawn by the program in Fig. 3.29 is fixed and is
independent of the window size. If the window is too small, part of the house may
be missing. It is generally easier to draw figures with fixed dimensions; however,
with a little practice you should be able to draw general graphics figures. To gener-
alize the program in Fig. 3.29 , you could base the coordinates of the house corners
on the window dimensions as follows (see Self-Check Exercise 4).

 x1 = getmaxx() / 4; y1 = getmaxy() / 2; /* top-left corner */
 x2 = getmaxx() / 2; y2 = getmaxy() / 4; /* roof peak */

 Drawing Filled Figures So far, all our graphics figures have been line drawings.
To fill in sections of the screen using different colors and patterns, you would
use function setfillstyle to specify the pattern and color. The function call
statement

 setfillstyle(SLASH_FILL, RED);

 sets the fill pattern to red slashes until you change it through another call to
 setfillstyle . Table 3.3 shows the options for the first parameter in a call to
 setfillstyle . Use either the constant name or its value (for example, SLASH_FILL
or 4) and any color constant in Table 3.2 as the second parameter.

 Use function floodfill to actually fill in a portion of a diagram. The function
call statement

 floodfill(x, y, WHITE);

156 Chapter 3 • Top-Down Design with Functions

 fills with the current fill pattern an area on the screen that contains the point (x, y)
and is bounded by white lines. If the point (x, y) is outside an area bounded by
 white lines, the exterior of the bounded figure is filled.

 The floodfill function sometimes gives unexpected results and is a bit ineffi-
cient. As an alternative to drawing a rectangle and then filling it, function bar draws
a filled rectangle. The function call statement

 setfillstyle(SOLID_FILL, GREEN);
 bar(x1, y1, x2, y2);

 draws a green rectangle that has a diagonal with end points (x1, y1) and (x2, y2) .

 EXAMPLE 3.9 We can insert the following program fragment at the end of the program in
 Fig. 3.29 to paint the house (Fig. 3.33).

 /* Paint the house
 setfillstyle(HATCH_FILL, LIGHTGRAY);
 floodfill(x2, y2 + 10, WHITE); /* Paint the roof */
 setfillstyle(LINE_FILL, WHITE);
 floodfill(x2, y1 + 10, WHITE); /* Paint the house front */

 In the two calls to floodfill , we use x2 , the midpoint in the X -direction, as the
first parameter. The second parameter (the Y -coordinate) determines which section
(roof or house front) to fill in. All boundary lines for the house are white (the default
foreground color), so the third parameter is WHITE . The roof is painted in a gray
hatch pattern, the house itself is painted in a white lined pattern.

 The call to function bar below paints the door blue. It replaces the earlier call to func-
tion rectangle with the same arguments. Figure 3.34 shows the complete program.

 setfillstyle(SOLID_FILL, BLUE);
 bar(x5, y5, x6, y6); /* Draw blue door */

 TABLE 3.3 Fill Pattern Constants

 Constant Value Fill Pattern Constant Value Fill Pattern

 EMPTY_FILL 0 Background color LTBKSLASH_FILL 6 \ \ \ (light)

 SOLID_FILL 1 Solid color HATCH_FILL 7 Hatch (light)

 LINE_FILL 2 --- XHATCH_FILL 8 Crosshatch

 LTSLASH_FILL 3 / / / (light) INTERLEAVE_FILL 9 Interleaving line

 SLASH_FILL 4 / / / (heavy) WIDE_DOT_FILL 10 Dots (light)

 BKSLASH_FILL 5 \ \ \ (heavy) CLOSE_DOT_FILL 11 Dots (heavy)

1573.6 • Introduction to Computer Graphics (Optional)

 FIGURE 3.33

 Painted house
drawn by
 paintedHouse.c

 FIGURE 3.34 Program to paint a house

 1. /* Paints a house */
 3. #include <graphics.h>
 4.
 5. int
 6. main(void)
 7. {
 8. /* Define corners of house */
 9. int x1 = 100; int y1 = 200; /* top-left corner */
 10. int x2 = 300; int y2 = 100; /* roof peak */
 11. int x3 = 500; int y3 = 200; /* top-right corner */
 12. int x4 = 500; int y4 = 400; /* bottom-right corner */
 13. int x5 = 325; int y5 = 400; /* bottom-right corner of door */
 14. int x6 = 275; int y6 = 325; /* top-left corner of door */
 15.

(continued)

158 Chapter 3 • Top-Down Design with Functions

 Program Pitfall Incorrect Order of Function Calls Draws Over

Earlier Results

 The order of statement execution is critical in all programs, but an incorrect order can
cause strange results in graphics program. If you call function bar to paint the door
blue before calling floodfill to paint the house front, floodfill will change the
color of the pixels in the door to white, and it will not appear in the window.

 Pie Slices and Filled Ellipses

 Function pieslice draws a filled pie slice (section of a circle) and fillellipse
draws a filled ellipse or circle. Insert the statement below at the end of Fig. 3.31 to
change the happy face smile to a frown (replaces the original call to function arc).

 16. initwindow(640, 500,
 17. "Painted house - press a key to close", 100, 50);
 18.
 19. /* Draw roof */
 20. line(x1, y1, x2, y2);
 21. line(x2, y2, x3, y3);
 22.
 23. /* Draw rest of house */
 24. rectangle(x1, y1, x4, y4);
 25.
 26. /* Paint the house */
 27. setfillstyle(HATCH_FILL, LIGHTGRAY);
 28. floodfill(x2, y2 + 10, WHITE); /* Paint the roof */
 29. setfillstyle(LINE_FILL, WHITE);
 30. floodfill(x2, y1 + 10, WHITE); /* Paint the house */
 31.
 32. setfillstyle(SOLID_FILL, BLUE);
 33. bar(x5, y5, x6, y6); /* Draw blue door */
 34.
 35. getch();
 36. closegraph();
 37.
 38. return(0);
 39. }

 FIGURE 3.34 (continued)

1593.6 • Introduction to Computer Graphics (Optional)

The last statement below calls pieslice to draw an eyepatch over the pirate’s right
eye (Fig. 3.35).

 arc(midX, midY + headRadius, 65, 115, smileRadius / 2);
 /* Draw frown */
 setfillstyle(CLOSE_DOT_FILL, WHITE);
 pieslice(midX, midY, 10, 60, smileRadius);
 /* Draw eye patch */

 The eye patch is a pie slice with radius smileRadius centered at point (midX,
midY) . The pie slice goes from 10 degrees to 60 degrees. The final program is
shown in Fig. 3.36 .

 You can use the pieslice and bar functions to draw pie charts and bar graphs
(see Programming Projects 16 and 17 at the end of the chapter). We describe how
to display the message shown under the happy face next.

 FIGURE 3.35

 Pirate drawn by
 pirate.c

160 Chapter 3 • Top-Down Design with Functions

 FIGURE 3.36 Program to draw a pirate

 1. /* Draws a pirate */
 3. #include <graphics.h>
 4.
 5. int
 6. main(void)
 7. {
 8. int midX, midY; /* coordinates of center point */
 9. int leftEyeX, rightEyeX, eyeY; /* eye center points */
 10. int noseX, noseY; /* nose center point */
 11. int headRadius; /* head radius */
 12. int eyeNoseRadius; /* eye/nose radius */
 13. int smileRadius; /* smile radius */
 14. int stepX, stepY; /* x and y increments */
 15.
 16. initwindow(500, 400,
 17. "Pirate - press key to close", 200, 150);
 18.
 19. /* Draw head. */
 20. midX = getmaxx() / 2; /* center head in x-direction. */
 21. midY = getmaxy() / 2; /* center head in y-direction. */
 22. headRadius = getmaxy() / 4;
 23. circle (midX, midY, headRadius); /* draw head. */
 24.
 25. /* Draw eyes. */
 26. stepX = headRadius / 4; /* x-offset for eyes */
 27. stepY = stepX; /* y-offset for eyes and nose */
 28. leftEyeX = midX - stepX; /* x-coordinate for left eye */
 29. rightEyeX = midX + stepX; /* x-coordinate for right eye */
 30. eyeY = midY - stepY; /* y-coordinate for both eyes */
 31. eyeNoseRadius = headRadius / 10;
 32. circle(leftEyeX, eyeY, eyeNoseRadius); /* draw left eye. */
 33. circle(rightEyeX, eyeY, eyeNoseRadius); /* draw right eye. */
 34.
 35. /* Draw nose. */
 36. noseX = midX; /* nose is centered in x direction. */
 37. noseY = midY + stepY;
 38. circle(noseX, noseY, eyeNoseRadius);
 39.
 40. /* Draw smile -- use 3/4 of head radius. */
 41. smileRadius = (int)(0.75 * headRadius + 0.5);

(continued)

1613.6 • Introduction to Computer Graphics (Optional)

 Adding Text to Drawings

 In graphics mode, you cannot use printf to display characters, but you must
instead draw characters just as you draw other shapes. Fortunately, the graphics
library provides a function that does this. The function call statement

 outtextxy(getmaxx() / 3, getmaxy() - 20,
 "PIRATE WITH AN EYE PATCH");

 draws each character in a string (its third parameter) starting at the pixel whose X-Y
coordinates are specified by its first two parameters (see Fig. 3.35). You may see a
warning message associated with outtextxy during program compilation, but you
can ignore it.

 Table 3.4 shows the functions in the graphics library. With the exception of
 label (in init) and textString (in outtextxy) , all arguments are type int . We
will pass string “literals” as arguments corresponding to label and textString .

 42. /* Draw frown */
 43. arc(midX, midY + headRadius, 65, 115, smileRadius / 2);
 44.
 45. setfillstyle(CLOSE_DOT_FILL, WHITE);
 46. pieslice(midX, midY, 10, 60, smileRadius); /* Draw eye patch */
 47.
 48. outtextxy(getmaxx() / 3, getmaxy() - 20,
 49. "PIRATE WITH AN EYE PATCH");
 50.
 51. getch();
 52. closegraph();
 53.
 54. return(0);
 55. }

 FIGURE 3.36 (continued)

 TABLE 3.4 Functions in Graphics Library

 Function Effect

 arc(x, y, stAng, endAng, r) draws an arc from angle stAng to endAng with center at (x, y)
and radius r

 bar(x1, y1, x2, y2) draws a filled rectangle with a diagonal through points (x1, y1)
and (x2, y2)

(continued)

162 Chapter 3 • Top-Down Design with Functions

 EXERCISES FOR SECTION 3.6

 Self-Check

 1. In Fig. 3.36 , what is the reason for basing the head radius on getmaxy and not
 getmaxx ?

 2. Describe or show the drawing produced by the following fragment. Assume a
640 * 480 window.

 circle(200, 50, 25);
 line(200, 75, 100, 100);

 Function Effect

 circle(x, y, r) draws a circle with center at (x, y) and radius r

 closegraph() closes graphics mode

 ellipse(x, y, stAng, endAng,
xRad, yRad)

 Draws an ellipse with center at (x, y) from stAng to endAng with
 xRad as horizontal radius and yRad as vertical radius

 fillellipse(x, y, xRad, yRad) Draws a filled ellipse with center at (x, y) with xRad as horizontal
radius and yRad as vertical radius

 floodfill(x, y, border) fills with the current fill pattern the figure containing the point (x, y)
and bounded by lines with color border

 getch() pauses the program until the user enters a character

 getmaxheight() returns the position of the last pixel in the y-direction in the screen

 getmaxwidth() returns the position of the last pixel in the x-direction in the screen

 getmaxx() returns the window width in pixels

 getmaxy() returns the window height in pixels

 initgraph(x, y, label) displays a window x pixels wide and y pixels high with the given label
and top-left corner at (0, 0)

 initgraph(x, y, label, x0, y0) displays a window x pixels wide and y pixels high with the given label
and top-left corner at (x0, y0)

 line(x1, y1, x2, y2) draws a line with end points (x1, y1) and (x2, y2)

 outtextxy(x, y, textString) draws the characters for textString starting at point (x, y)

 pieslice(x, y, stAng, endAng, r) draws a filled pie slice with center at (x, y) from angle stAng to
 endAng with radius r

 rectangle(x1, y1, x2, y2) draws a rectangle with a diagonal through points (x1, y1) and
 (x2, y2)

 setbkcolor(backColor) sets the background color to backColor

 setcolor(foreColor) sets the foreground color to foreColor

 setfillstyle(filPat, filCol) sets the fill pattern to filPat and the fill color to filCol

1633.7 • Common Programming Errors

 line(200, 75, 300, 100);
 pieslice(200, 75, 245, 295, 100);
 line(200, 150, 100, 250);
 line(200, 150, 300, 250);
 bar(50, 250, 350, 300)

 3. Write statements to add two windows to the second floor of the house in
 Fig. 3.30 .

 4. Modify the program in Fig. 3.34 so that it draws the house in the center of
the screen and with the same relative size regardless of the actual palette
dimensions.

 Programming

 1. Write the statements to draw a tennis racket in the appropriate place in the
figure for Self-Check Exercise 2. At the end of a thin bar, draw a circle and fill
it with a green crosshatch pattern.

 2. Write a graphics program that draws a rocket ship consisting of a triangle (the
cone) on top of a rectangle (the body). Draw a pair of intersecting lines under
the rectangle. Fill the cone with a blue hatch pattern and the body with a red
solid pattern.

 3. Write a program that draws a pair of nested rectangles at the center of the
screen, filling the inner rectangle in red and the outer rectangle in white. The
outer rectangle should have a width 1/4 of the X -dimension and a height 1/4
of the Y -dimension of the screen. The height and width of the inner rectangle
should be half that of the outer rectangle.

 4. Write a program that draws a male and a female stick figure side-by-side.

 3.7 Common Programming Errors
 Remember to use a #include preprocessor directive for every standard library from
which you are using functions. Place prototypes for your own function subprograms
in the source file preceding the main function; place the actual function definitions
after the main function.

 Syntax or run-time errors may occur when you use functions. The acronym
 not summarizes the requirements for argument list correspondence. Provide the
required n umber of arguments and make sure the o rder of arguments is correct.
Make sure that each function argument is the correct t ype or that conversion to the
correct type will lose no information. For user-defined functions, verify that each
argument list is correct by comparing it to the formal parameter list in the function
heading or prototype.

 Also, be careful in using functions that are undefined on some range of values.
For example, if the argument for function sqrt , log , or log10 is negative, a run-
time error will occur.

164 Chapter 3 • Top-Down Design with Functions

 ■ Chapter Review

 1. Develop your program solutions from existing information. Use the system
documentation derived from applying the software development method as
the initial framework for the program.

 ■ Edit the data requirements to obtain the main function declarations.
 ■ Use the refined algorithm as the starting point for the executable state-

ments in the main function.

 2. If a new problem is an extension of a previous one, modify the previous pro-
gram rather than starting from scratch.

 3. Use C’s library functions to simplify mathematical computations through the
reuse of code that has already been written and tested. Write a function call
(consisting of the function name and arguments) to activate a library func-
tion. After the function executes, the function result is substituted for the
function call.

 4. Use a structure chart to show subordinate relationships between subproblems.
 5. Utilize modular programming by writing separate function subprograms to

implement the different subproblems in a structure chart. Ideally, your main
function will consist of a sequence of function call statements that activate the
function subprograms.

 6. You can write functions without arguments and results to display a list of
instructions to a program user or to draw a diagram on the screen. Use a func-
tion call consisting of the function name followed by an empty pair of paren-
theses () to activate such a function.

 7. Write functions that have input arguments and that return a single result to
perform computations similar to those performed by library functions. When
you call such a function, each actual argument value is assigned to its corre-
sponding formal parameter.

 8. Place prototypes (similar to function headings) for each function subpro-
gram before the main function, and place the function definitions after the
main function in a source file. Use (void) to indicate that a function has
no parameters.

 NEW C CONSTRUCTS

 Construct Effect

 Function Prototype (void function without arguments)

 void star_line(void); Describes star_line as a function with no result
and no arguments

(continued)

165Quick-Check Exercises

 ■ Quick-Check Exercises

 1. Developing a program from its documentation means that every statement in
the program has a comment. True or false?

 2. The principle of code reuse states that every function in your program must be
used more than once. True or false?

 Construct Effect

 Function Prototype (function with arguments and a result)

 double ave(int n, double x); Describes ave as a function with a type double
result and two arguments, one type int and one
type double

 Function Call Statement (void function without arguments)

 star_line(); Calls function star_line and causes it to begin
execution

 Function Call (function with arguments and a result)

 money = ave(num_kids, funds); Calls function ave to compute a result that is
stored in money

 Function Definition (void function without arguments)

 void
 star_line(void)
 {
 printf("*\n*\n*\n*\n");
 }

 Defines star_line as a function that prints a
vertical line of four asterisks

 Function Definition (function with arguments and a result)

 /*
 * Returns the ave of
 * its 2 arguments.
 * Pre : x and n are
 * defined, x >= 0,
 * n > 0.
 * Post: result is x / n
 */
 double
 ave(int n, double x);
 {
 return (x / n);
 }

 Defines ave as a function that returns the result of
dividing its second argument by its first argument

NEW C CONSTRUCTS (continued)

166 Chapter 3 • Top-Down Design with Functions

 3. Write this equation as a C statement using functions exp , log , and pow :

 y = (en ln b)2

 4. What is the purpose of a function argument?
 5. Each function is executed in the order in which it is defined in the source file.

True or false?
 6. How is a function in a C program executed?
 7. What is a formal parameter?
 8. Explain how a structure chart differs from an algorithm.
 9. What does the following function do?

 void
 nonsense(void)
 {
 printf("*****\n");
 printf("* *\n");
 printf("*****\n");
 }

 10. What does the following main function do?

 int
 main(void)
 {
 nonsense();
 nonsense();
 nonsense();

 return (0);
 }

 11. If an actual argument of −35.7 is passed to a type int formal parameter, what
will happen? If an actual argument of 17 is passed to a type double formal
parameter, what will happen?

 ■ Answers to Quick-Check Exercises
 1. False
 2. False
 3. y = pow(exp(n * log(b)), 2);
 4. A function argument is used to pass information into a function.
 5. False
 6. It is called into execution by a function call, that is, the function name fol-

lowed by its arguments in parentheses.
 7. A formal parameter is used in a function definition to represent a correspond-

ing actual argument.

167Programming Projects

 8. A structure chart shows the subordinate relationships between subproblems;
an algorithm lists the sequence in which subproblem solutions are carried out.

 9. It displays a rectangle of asterisks.
 10. It displays three rectangles of asterisks on top of each other.
 11. The formal parameter’s value will be −35 . The formal parameter’s value will

be 17.0 .

 ■ Review Questions
 1. Define top-down design and structure charts.
 2. What is a function prototype?
 3. When is a function executed, and where should a function prototype and func-

tion definition appear in a source program?
 4. What are three advantages of using functions?
 5. Is the use of functions a more efficient use of the programmer’s time or the

computer’s time? Explain your answer.
 6. Write a program that prompts the user for the two legs of a right triangle and

makes use of the pow and sqrt functions and the Pythagorean theorem to
compute the length of the hypotenuse.

 7. Write a program that draws a rectangle made of a double border of asterisks.
Use two functions: draw_sides and draw_line .

 8. Draw a structure chart for the program described in Review Question 7.
 9. Write the prototype for a function called script that has three input parameters.

The first parameter will be the number of spaces to display at the beginning of a
line. The second parameter will be the character to display after the spaces, and
the third parameter will be the number of times to display the second parameter
on the same line.

 ■ Programming Projects
 1. You have saved $500 to use as a down payment on a car. Before beginning

your car shopping, you decide to write a program to help you figure out what
your monthly payment will be, given the car’s purchase price, the monthly
interest rate, and the time period over which you will pay back the loan. The
formula for calculating your payment is

 payment =
iP

1 - (1 + i)-n

 where
 P = principal (the amount you borrow)
 i = monthly interest rate (1

12 of the annual rate)
 n = total number of payments

168 Chapter 3 • Top-Down Design with Functions

 Your program should prompt the user for the purchase price, the down pay-
ment, the annual interest rate and the total number of payments (usually 36,
48, or 60). It should then display the amount borrowed and the monthly pay-
ment including a dollar sign and two decimal places.

 2. Write two functions, one that displays a triangle and one that displays a rectangle.
Use these functions to write a complete C program from the following outline:

 int
 main(void)
 {
 /* Draw triangle. */
 /* Draw rectangle. */
 /* Display 2 blank lines. */
 /* Draw triangle. */
 /* Draw rectangle. */
 }

 3. Add the functions from Fig. 3.14 to the ones for Programming Project 2. Use
these functions in a program that draws a rocket ship (triangle over rectangles
over intersecting lines), a male stick figure (circle over rectangle over intersect-
ing lines), and a female stick figure (circle over triangle over intersecting lines)
standing on the head of a male stick figure. Write function skip_5_lines and
call it to place five blank lines between drawings.

 4. For any integer n 7 0, n ! is defined as the product n * n - 1 * n − 2 … * 2 * 1. 0!
is defined to be 1. It is sometimes useful to have a closed-form definition instead;
for this purpose, an approximation can be used. R.W. Gosper proposed the fol-
lowing such approximation formula:

 n! � nne-nA a2n +
1
3 b�

 Create a program that prompts the user to enter an integer n , uses Gosper’s
formula to approximate n !, and then displays the result. The message display-
ing the result should look something like this:

 5! equals approximately 119.97003

 Your program will be easier to debug if you use some intermediate values
instead of trying to compute the result in a single expression. If you are not
getting the correct results, then you can compare the results of your inter-
mediate values to what you get when you do the calculations by hand. Use at
least two intermediate variables—one for 2n + 1

3 and one for 2(2n + 1
3)�.

Display each of these intermediate values to simplify debugging. Be sure to
use a named constant for PI, and use the approximation 3.14159265. Test the
program on nonnegative integers less than 8.

 5. Write a program that takes a positive number with a fractional part and rounds
it to two decimal places. For example, 32.4851 would round to 32.49, and

169Programming Projects

32.4431 would round to 32.44. (Hint: See “Rounding a number” in Table 2.12
and function scale in Fig. 3.23 .)

 6. Four track stars have entered the mile race at the Penn Relays. Write a pro-
gram that scans in the race time in minutes (minutes) and seconds (seconds)
for a runner and computes and displays the speed in feet per second (fps) and
in meters per second (mps). (Hints: There are 5,280 feet in one mile, and one
kilometer equals 3,282 feet .) Write and call a function that displays instruc-
tions to the program user. Run the program for each star’s data.

 Minutes Seconds

 3 52.83

 3 59.83

 4 00.03

 4 16.22

 7. In shopping for a new house, you must consider several factors. In this prob-
lem the initial cost of the house, the estimated annual fuel costs, and the
annual tax rate are available. Write a program that will determine the total cost
of a house after a five-year period and run the program for each of the follow-
ing sets of data.

 Initial House Cost Annual Fuel Cost Tax Rate

 67,000 2,300 0.025

 62,000 2,500 0.025

 75,000 1,850 0.020

 To calculate the house cost, add the initial cost to the fuel cost for five years,
then add the taxes for five years. Taxes for one year are computed by multi-
plying the tax rate by the initial cost. Write and call a function that displays
instructions to the program user.

 8. A cyclist coasting on a level road slows from a speed of 10 mi/hr to 2.5 mi/hr
in one minute. Write a computer program that calculates the cyclist’s constant
rate of acceleration and determines how long the cyclist will take to come to
rest, given an initial speed of 10 mi/hr. (Hint: Use the equation

 a =
vf - vi

t

 where a is acceleration, t is time interval, v i is initial velocity, and v f is final
velocity.) Write and call a function that displays instructions to the program
user and a function that computes a, given t, v f , and v i .

 9. A manufacturer wishes to determine the cost of producing an open-top cylin-
drical container. The surface area of the container is the sum of the area of the

170 Chapter 3 • Top-Down Design with Functions

circular base plus the area of the outside (the circumference of the base times
the height of the container). Write a program to take the radius of the base,
the height of the container, the cost per square centimeter of the material
(cost), and the number of containers to be produced (quantity). Calculate
the cost of each container and the total cost of producing all the containers.
Write and call a function that displays instructions to the user and a function
that computes surface area.

 10. Write a program to take a depth (in kilometers) inside the earth as input data;
compute and display the temperature at this depth in degrees Celsius and
degrees Fahrenheit. The relevant formulas are

 Celsius = 10 (depth) + 20 (Celsius temperature at depth in km)
 Fahrenheit = 1.8 (Celsius) + 32

 Include two functions in your program. Function celsius_at_depth should
compute and return the Celsius temperature at a depth measured in kilometers.
Function fahrenheit should convert a Celsius temperature to Fahrenheit.

 11. The ratio between successive speeds of a six-speed gearbox (assuming that the
gears are evenly spaced to allow for whole teeth) is

 25 M>m

 where M is the maximum speed in revolutions per minute and m is the mini-
mum speed. Write a function speeds_ratio that calculates this ratio for
any maximum and minimum speeds. Write a main function that prompts for
maximum and minimum speeds (rpm), calls speeds_ratio to calculate the
ratio, and displays the results in a sentence of the form

 The ratio between successive speeds of a six-speed gearbox
with maximum speed __________ rpm and minimum speed __________
rpm is __________.

 12. Write a program that calculates the speed of sound (a) in air of a given tem-
perature T (°F). Formula to compute the speed in ft/sec:

 a = 1086A
5T + 297

247

 Be sure your program does not lose the fractional part of the quotient in the
formula shown. As part of your solution, write and call a function that displays
instructions to the program user.

 13. After studying the population growth of Gotham City in the last decade of the
20th century, we have modeled Gotham’s population function as

 P(t) = 52.966 + 2.184t

 where t is years after 1990, and P is population in thousands. Thus, P (0) rep-
resents the population in 1990, which was 52.966 thousand people. Write a

171Programming Projects

program that defines a function named population that predicts Gotham’s
population in the year provided as an input argument. Write a program that
calls the function and interacts with the user as follows:

 Enter a year after 1990> 2015
 Predicted Gotham City population for 2010 (in thousands):
 107.566

 Graphics Projects
 14. Use graphics functions in programs that draw a rocket ship (triangle over

 rectangle over intersecting lines), a male stick figure (circle over rectangle
over intersecting lines), and a female stick figure standing on the head of a
male stick figure.

 15. Write a graphics program that draws your first and last initials as block letters
in different colors. Write separate functions that draw each letter. The posi-
tion of each letter and its color should be function arguments.

 16. Read in five values that represent the monthly amount spent on budget catego-
ries: food, clothing, transportation, entertainment, and rent. Write a program
that displays a bar graph showing these values. In a bar graph, the height of each
bar is proportional to the value it represents. Use a different color for each bar.
(Hint: Multiply each value by the scale factor get maxy()/maxExpense, where
maxExpense is the largest possible expense.)

 17. Redo Programming Project 16 using a pie chart. For the pie chart, the arc
length of each section should be proportional to the amount it represents. Use
a different fill pattern and color for each section.

 18. Redo Programming Project 16 drawing a line graph. The first line should
begin at the height representing the first budget category value and end at the
height representing the second budget category value; the second line should
begin at the height representing the second budget category value and end at
the height representing the third budget category value; and so on.

This page intentionally left blank

 Selection Structures:
if and switch
Statements

 CHAPTER OBJECTIVES
 • To become familiar with the three kinds of control

 structures: sequence, selection, and repetition

 • To understand compound statements

 • To learn how to compare numbers and characters

 • To learn how to use the relational, equality, and logical
operators to write expressions that are true or false

 • To learn how to write selection statements that choose
between two alternatives in a program using the if
statement

 • To learn how to implement decisions in algorithms using
the if statement

 • To understand how to select among more than two
alternatives by nesting if statements

 • To learn how to use the switch statement as another
technique for selecting among multiple alternatives

 C H A P T E R

4

 T his chapter begins your study of statements that control the flow of program
execution. You will learn to use if and switch statements to select one statement
group to execute from many alternatives. First, the chapter discusses conditions and
logical expressions because the if statement relies on them.

 The case studies in this chapter emphasize reusing solutions to prior problems
to speed up the problem-solving process. You will also learn how to trace an algo-
rithm or program to verify that it does what you expect.

 4.1 Control Structures
 Control structures control the flow of execution in a program or function. The C
control structures enable you to combine individual instructions into a single logical
unit with one entry point and one exit point.

 Instructions are organized into three kinds of control structures to control
execution flow: sequence, selection, and repetition. Until now we have been using
only sequential flow. A compound statement , written as a group of statements
bracketed by { and } , is used to specify sequential flow.

 {
 statement 1 ;
 statement 2 ;
 .
 .
 .
 statement n ;
 }

 Control flows from statement 1 to statement 2 , and so on. You have been using
 compound statements all along—a function body consists of a single compound
statement.

 This chapter describes the C control structures for selection, and Chapter 5
covers the control structures for repetition. Some problem solutions require steps
with two or more alternative courses of action. A selection control structure
chooses which alternative to execute.

 control structure
a combination of
individual instructions
into a single logical unit
with one entry point
and one exit point

 compound statement
a group of statements
bracketed by { and
 } that are executed
sequentially

 selection control
structure a control
structure that chooses
among alternative
program statements

1754.2 • Conditions

 4.2 Conditions
 A program chooses among alternative statements by testing the value of key vari-
ables. For example, one indicator of the health of a person’s heart is the resting
heart rate. Generally a resting rate of 75 beats per minute or less indicates a healthy
heart, but a resting heart rate over 75 indicates a potential problem. A program that
gets a person’s resting heart rate as data should compare that value to 75 and display
a warning message if the rate is over 75.

 If rest_heart_rate is a type int variable, the expression

 rest_heart_rate > 75

 performs the necessary comparison and evaluates to 1 (true) when rest_heart_
rate is over 75; the expression evaluates to 0 (false) if rest_heart_rate is not
greater than 75. Such an expression is called a condition because it establishes a
criterion for either executing or skipping a group of statements.

 Relational and Equality Operators

 Most conditions that we use to perform comparisons will have one of these forms:

 variable relational-operator variable
 variable relational-operator constant
 variable equality-operator variable
 variable equality-operator constant

 Table 4.1 lists the relational and equality operators.

 condition an
expression that is
either false (represented
by 0) or true (usually
represented by 1)

 TABLE 4.1 Relational and Equality Operators

 Operator Meaning Type

 < less than relational

 > greater than relational

 <= less than or equal to relational

 >= greater than or equal to relational

 == equal to equality

 != not equal to equality

176 Chapter 4 • Selection Structures: If and Switch Statements

 EXAMPLE 4.1 Table 4.2 shows some sample conditions in C. Each condition is evaluated assuming
these variable and constant macro values:

-999.0

MIN_ITEM

1.5

item

7

y

1024

MAX_POW

1024

power

-5

x

'M'

mom_or_dad

999

num

999

SENTINEL

 TABLE 4.2 Sample Conditions

 Operator Condition English Meaning Value

 <= x <= 0 x less than or equal to 0 1 (true)

 < power < MAX_POW power less than MAX_POW 0 (false)

 >= x >= y x greater than or equal to y 0 (false)

 > item > MIN_ITEM item greater than MIN_ITEM 1 (true)

 == mom_or_dad == 'M' mom_or_dad equal to 'M' 1 (true)

 != num != SENTINEL num not equal to SENTINEL 0 (false)

 Logical Operators

 With the three logical operators— && (and), || (or), ! (not)—we can form more
complicated conditions or logical expressions. Examples of logical expressions
formed with these operators are

 salary < MIN_SALARY || dependents > 5
 temperature > 90.0 && humidity > 0.90
 n >= 0 && n <= 100
 0 <= n && n <= 100

 The first logical expression determines whether an employee is eligible for special
scholarship funds. It evaluates to 1 (true) if either the condition

 salary < MIN_SALARY

 or the condition

 dependents > 5

 is true. The second logical expression describes an unbearable summer day, with
temperature and humidity both in the nineties. The expression evaluates to true
only when both conditions are true. The last two expressions are equivalent and
evaluate to true if n lies between 0 and 100 inclusive.

 logical expression
an expression that uses
one or more of the
logical operators &&
(and), || (or), ! (not)

1774.2 • Conditions

 The third logical operator, ! (not), has a single operand and yields the logical
complement, or negation , of its operand (that is, if the variable positive is
nonzero (true), !positive is 0 (false) and vice versa). The logical expression

 !(0 <= n && n <= 100)

 is the complement of the last expression in the list above. It evaluates to 1 (true)
when n does not lie between 0 and 100 inclusive.

 Table 4.3 shows that the && operator (and) yields a true result only when
both its operands are true. Table 4.4 shows that the || operator (or) yields a
false result only when both its operands are false. Table 4.5 shows the !
operator (not).

 Tables 4.3 through 4.5 show that the result is always 0 or 1 when C evaluates a
logical expression. However, C accepts any nonzero value as a representation of true.
For now, we will always use the integer 1 when we need the value true, but knowing
how C really views logical expressions will help you understand why some common
mistakes that you may make will not be seen by the C compiler as syntax errors.

 logical complement
(negation) the
complement of a
condition has the value
 1 (true) when the
condition’s value is 0
(false); the complement
of a condition has the
value 0 (false) when
the condition’s value is
nonzero (true)

 TABLE 4.3 The && Operator (and)

 operand1 operand2 operand1 && operand2

 nonzero (true) nonzero (true) 1 (true)

 nonzero (true) 0 (false) 0 (false)

 0 (false) nonzero (true) 0 (false)

 0 (false) 0 (false) 0 (false)

 TABLE 4.4 The || Operator (or)

 operand1 operand2 operand1 || operand2

 nonzero (true) nonzero (true) 1 (true)

 nonzero (true) 0 (false) 1 (true)

 0 (false) nonzero (true) 1 (true)

 0 (false) 0 (false) 0 (false)

 TABLE 4.5 The ! Operator (not)

 operand1 !operand1

 nonzero (true) 0 (false)

 0 (false) 1 (true)

178 Chapter 4 • Selection Structures: If and Switch Statements

 Operator Precedence

 An operator’s precedence determines its order of evaluation. Table 4.6 lists the
precedence of all C operators so far, from highest to lowest.

 The table shows that function calls are evaluated first. The unary operators , !
(not), + (plus sign), − (minus sign), and & (address of), which have a single operand,
are evaluated second. Next come all the binary operators in the sequence: arithme-
tic, relational, equality, and logical (&& and then ||). The assignment operator (=) is
evaluated last. Notice that the precedence of operators + and − depends on whether
they have one operand or two. In the expression

 -x - y * z

 the unary minus is evaluated first (-x), then * , and then the second - .
 You can use parentheses to change the order of operator evaluation. In the

expression

 (x < y || x < z) && x > 0.0
 C evaluates II before &&.

If you remove the parentheses from the expression, C would evaluate && before
 || , thereby changing the meaning of the expression.

 You can also use parentheses to clarify the meaning of expressions. If x , min ,
and max are type double , the C compiler will interpret the expression

 x + y < min + max

 correctly as

 (x + y) < (min + max)

 because + has higher precedence than <, but the second expression is clearer.

 unary operator an
operator that has one
operand

 TABLE 4.6 Operator Precedence

 Operator Precedence

 function calls highest

 ! + − & (unary operators)

 * / %

 + −

 < <= >= >

 == !=

 &&

 ||

 = lowest

1794.2 • Conditions

 EXAMPLE 4.2 Expressions 1 to 4 below contain different operands and operators. Each expres-
sion’s value is given in the corresponding comment, assuming x , y , and z are type
 double , flag is type int and the variables have the values

 3.0

x y z flag

4.0 2.0 0

 1. !flag /* !0 is 1 (true) */
 2. x + y / z <= 3.5 /* 5.0 <= 3.5 is 0 (false) */
 3. !flag || (y + z >= x - z) /* 1 || 1 is 1 (true) */
 4. !(flag || (y + z >= x - z)) /* !(0 || 1) is 0 (false) */

 Figure 4.1 shows the evaluation tree and step-by-step evaluation for expression 3.

 Short-Circuit Evaluation

 Although Fig. 4.1 shows the evaluation of the entire logical expression, C evaluates
only part of the expression. An expression of the form a || b must be true if a is
true. Consequently, C stops evaluating the expression when it determines that the
value of !flag is 1 (true).

 Similarly, an expression of the form a && b must be false if a is false, so C
would stop evaluating such an expression if its first operand evaluates to 0. This

3.0 2.0

! flag || (y + z >= x – z)

–

>=

flag

0

y

4.0

z

2.0

x

3.0

4.0 2.0

1

+

1

!

1

1.06.0

6.0 1.0

||

1

1

! flag || (y + z >= x – z)

1

0

 FIGURE 4.1

 Evaluation Tree
and Step-by-Step
Evaluation for
 !flag ||
(y + z >= x − z)

180 Chapter 4 • Selection Structures: If and Switch Statements

technique of stopping evaluation of a logical expression as soon as its value can be
determined is called short-circuit evaluation .

 We can use short-circuit evaluation to prevent potential run-time errors. The
condition
 (num % div == 0)

 tests whether div is a divisor of num. For example, if num is 6 and div is 2, the
remainder is 0 so the condition is true. If num is 6 and div is 4, the remainder is 2
so the condition is false.

 What if div is 0? In this case, the remainder calculation would cause a division by
zero run-time error. However, we can prevent this error by using the revised condition
 (div != 0 && (num % div == 0))

 The remainder would not be calculated when div is 0 because div != 0 is false.

 Writing English Conditions in C

 To solve programming problems, you must convert conditions expressed in English
to C. Many algorithm steps require testing to see if a variable’s value is within a
specified range of values. For example, if min represents the lower bound of a range
of values and max represents the upper bound (min is less than max), the expression

 min <= x && x <= max

 tests whether x lies within the range min through max , inclusive. In Fig. 4.2 this
range is shaded. The expression is 1 (true) if x lies within this range and 0 (false) if
 x is outside the range.

 EXAMPLE 4.3 Table 4.7 shows some English conditions and the corresponding C expressions.
Each expression is evaluated assuming x is 3.0 , y is 4.0 , and z is 2.0 .

 short-circuit
evaluation stopping
evaluation of a logical
expression as soon
as its value can be
determined

min max x

 FIGURE 4.2

 Range of True
Values for
 min <= x &&
x <= max

 TABLE 4.7 English Conditions as C Expressions

 English Condition Logical Expression Evaluation

 x and y are greater than z x > z && y > z 1 && 1 is 1 (true)

 x is equal to 1.0 or 3.0 x == 1.0 || x == 3.0 0 || 1 is 1 (true)

 x is in the range z to y , inclusive z <= x && x <= y 1 && 1 is 1 (true)

 x is outside the range z to y !(z <= x && x <= y)
 z > x || x > y

 !(1 && 1) is 0 (false)
 0 || 0 is 0 (false)

1814.2 • Conditions

 The first logical expression shows the C code for the English condition “x and y
are greater than z.” You may be tempted to write this as

 x && y > z /* invalid logical expression */

 However, if we apply the precedence rules to this expression, we quickly see that it
does not have the intended meaning. Also, the type double variable x is an invalid
operand for the logical operator && .

 The third logical expression shows the C code for the mathematical relationshi p
 z … x … y. The boundary values, 2.0 and 4.0 , are included in the range of x values
that yield a true result.

 The last table entry shows a pair of logical expressions that are true when x is
outside the range bounded by z and y . We get the first expression in the pair by
complementing the expression just above it. The second expression states that x is
outside the range if z is larger than x or x is larger than y . In Fig. 4.3 the shaded
areas represent the values of x that yield a true result. Both y and z are excluded
from the set of values that yield a true result.

 Comparing Characters

 We can also compare characters in C using the relational and equality operators.
 Table 4.8 shows some examples of these comparisons.

 The first three lines of Table 4.8 show that the digit, characters, and letters are
ordered as expected (that is, '0'<'1'<'2'< ... <'8'<'9' and 'a'<'b'<'c'...
<'y'<'z'). The next two lines show that the lowercase and uppercase form of

 TABLE 4.8 Character Comparisons

 Expression Value

 '9' >= '0' 1 (true)

 'a' < 'e' 1 (true)

 'B' <= 'A' 0 (false)

 'Z' == 'z' 0 (false)

 'a' <= 'A' system dependent

 'a' <= ch && ch <= 'z' 1 (true) if ch is a lowercase letter

z y x

 FIGURE 4.3

 Range of True
Values for
 z > x || x > y

182 Chapter 4 • Selection Structures: If and Switch Statements

the same letter have different values and their order is system dependent. The
 expression 'a' <= 'A' is false for ASCII (See Table 2.7). The last entry shows an
expression that is true if ch is a lowercase letter. (On some systems, this expression
also will be true for some characters that are not lowercase letters.)

 Logical Assignment

 The simplest form of a logical expression in C is a single type int value or variable
intended to represent the value true or false. We can use assignment statements to
set such variables to true (a nonzero value) or false (0).

 EXAMPLE 4.4 Given the declarations

 int age; /* input - a person's age */
 char gender; /* input - a person's gender */
 int senior_citizen; /* logical - indicates senior status */

 Assume that a value of 1 for senior_citizen indicates that the person is a senior citi-
zen (65 years old or over). You can use the assignment statement

 senior_citizen = 1; /* Set senior status */

 to set senior_citizen to true.

 A more likely scenario is to set the value of senior_citizen based on the value
scanned into age :

 scanf("%d", &age); /* Read the person's age */
 senior_citizen = (age >= 65); /* Set senior status */

 In the assignment above, the condition in parentheses evaluates first. Its
value is 1 (true) if the value scanned into age is 65 or greater. Consequently,
the value of senior_citizen is true when age satisfies the condition and false
 otherwise.

 The logical operators && , || , and ! can be applied to senior_citizen . The
expression

 !senior_citizen

 is 1 (true) if the value of age is less than 65 . Finally, the logical expression

 senior_citizen && gender == 'M'

 is 1 (true) if senior_citizen is 1 (true) and the character in gender is M .

1834.2 • Conditions

 EXAMPLE 4.5 The following assignment statements assign values to two type int variables,
in_range and is_letter . Variable in_range gets 1 (true) if the value of n is
between −10 and 10 excluding the endpoints; is_letter gets 1 (true) if ch is an
uppercase or a lowercase letter.

 in_range = (n > -10 && n < 10);
 is_letter = ('A' <= ch && ch <= 'Z') ||
 ('a' <= ch && ch <= 'z');

 The expression in the first assignment statement is true if n satisfies both the condi-
tions listed (n is greater than -10 and n is less than 10); otherwise, the expression
is false.

 The expression in the second assignment statement uses the logical operators && , || .
The subexpression before || is true if ch is an uppercase letter; the subexpression after
 || is true if ch is a lowercase letter. Consequently, is_letter gets 1 (true) if either
subexpression is true (that is, ch is a letter); otherwise, is_letter gets 0 (false). You
can delete the parentheses without affecting the order of operator evaluation.

 EXAMPLE 4.6 The statement below assigns the value 1 (true) to even (type int) if n is an even
number:

 even = (n % 2 == 0);

 Because all even numbers are divisible by 2, the remainder of n divided by 2 (n % 2
in C) is 0 when n is an even number. The expression in parentheses compares the
remainder to 0 , so its value is 1 (true) when the remainder is 0 and its value is 0 (false)
when the remainder is nonzero.

 Complementing a Condition

 You have seen how to complement a logical expression by preceding it with the
symbol ! . You can also complement a simple condition by just changing its operator.

 EXAMPLE 4.7 Two forms of the complement of the condition

 item == SENT

 are

 !(item == SENT) item != SENT

 The form on the right is obtained by changing the equality operator (that is, chang-
ing == to !=).

184 Chapter 4 • Selection Structures: If and Switch Statements

 Usually changing the equality or relational operator to complement a simple
condition is easy to do. The relational operator <= should be changed to > , < should
be changed to >=, and so on. Use the ! operator with more complicated expressions.

 EXAMPLE 4.8 The condition

 status == 'S' && age > 25

 is true for a single person over 25. The complement of this condition is

 !(status == 'S' && age > 25)

 DeMorgan’s Theorem DeMorgan’s theorem gives us a way of simplifying the
logical expression above. DeMorgan’s theorem states

 ■ The complement of expr 1 && expr 2 is written as comp 1 || comp 2 , where comp 1
is the complement of expr 1 , and comp 2 is the complement of expr 2 .

 ■ The complement of expr 1 || expr 2 is written as comp 1 && comp 2 , where comp 1
is the complement of expr 1 , and comp 2 is the complement of expr 2 .

 Using DeMorgan’s theorem, we can write the complement of

 age > 25 && (status == 'S' || status == 'D')

 as

 age <= 25 || (status != 'S' && status != 'D')

 The original condition is true for anyone who is over 25, and is either single or
divorced. The complement would be true for anyone who is 25 or younger, or for
anyone who is currently married.

 EXERCISES FOR SECTION 4.2

 Self-Check

 1. Assuming x is 15.0 and y is 25.0 , what are the values of the following conditions?

 x != y
 x < x
 x >= y - x
 x == y + x - y

 2. Evaluate each of the following expressions if a is 6 , b is 9 , c is 14 , and flag
is 1 . Which parts of these expressions are not evaluated due to short-circuit
evaluation?

1854.3 • The if Statement

 a. c == a + b || !flag
 b. a != 7 && flag || c >= 6
 c. !(b <= 12) && a % 2 == 0
 d. !(a > 5 || c < a + b)

 3. Show step-by-step evaluation of expression 4 in Example 4.2 .
 4. Complement each expression in Exercise 2. Use DeMorgan’s theorem if

 applicable.
 5. What value is assigned to the type int variable ans in this statement if the

value of p is 100 and q is 50 ?

 ans = (p > 95) + (q < 95);

 This statement is not shown as an example of a reasonable assignment state-
ment; rather, it is a sample of a statement that makes little sense to the reader.
The statement is still legal and executable in C, however, because C uses
 integers to represent the logical values true and false.

 Programming

 1. Write an expression to test for each of the following relationships.

 a. age is from 18 to 21 inclusive.
 b. water is less than 1.5 and also greater than 0.1 .
 c. year is divisible by 4 . (Hint: Use % .)
 d. speed is not greater than 55 .
 e. y is greater than x and less than z .
 f. w is either equal to 6 or not greater than 3 .

 2. Write assignment statements for the following:

 a. Assign a value of 0 to between if n is less than −k or greater than +k ; other-
wise, assign 1.

 b. Assign a value of 1 to divisor if digit is a divisor of num ; otherwise,
assign a value of 0.

 c. Assign a value of 1 to lowercase if ch is a lowercase letter; otherwise,
assign a value of 0.

 4.3 The if Statement
 You now know how to write a C expression that is the equivalent of a question such
as “Is resting heart rate more than 56 beats per minute?” Next, we need to investi-
gate a way to use the value of the expression to select a course of action. In C, the
 if statement is the primary selection control structure.

186 Chapter 4 • Selection Structures: If and Switch Statements

 if Statement with Two Alternatives

 The if statement

 if (rest_heart_rate > 56)
 printf("Keep up your exercise program!\n");
 else
 printf("Your heart is in excellent health!\n");

 selects one of the two calls to printf . It selects the statement following the paren-
thesized condition if the condition evaluates to 1 (true) (that is, if rest_heart_rate
is greater than 56), or it selects the statement following else if the condition evalu-
ates to 0 (false) (if rest_heart_rate is not greater than 56).

 Figure 4.4 a is a flowchart of the preceding if statement. A flowchart is a
diagram that uses boxes and arrows to show the step-by-step execution of a control
structure. A diamond-shaped box in a flowchart represents a decision. There is
always one path into a decision and there are two paths out (labeled true and false).
A rectangular box represents an assignment statement or a process.

 Figure 4.4 a shows that the condition (rest_heart_rate > 56) is evaluated
first. If the condition is true, program control follows the arrow labeled true, and
the assignment statement in the right rectangle is executed. If the condition is false,
program control follows the arrow labeled false, and the assignment statement in
the left rectangle is executed.

 Figure 4.5 shows a program that uses this if statement.

 flowchart a diagram
that shows the step-
by-step execution of a
control structure

(a) (b)

rest_heart_
rate > 56

F

Display
"Keep up your
exercise program"

T

Display
"Your heart is in
excellent condition"

x != 0
F T

product =
product * x;

 FIGURE 4.4 Flowcharts of if Statements with (a) Two Alternatives and
(b) One Alternative

1874.3 • The if Statement

 FIGURE 4.5 Program Using an if Statement for Selection

 1. /*
 2. * Displays message about heart rate.
 3. */
 4. #include <stdio.h>
 5.
 6. int main(void)
 7. {
 8. int pulse; /* resting pulse rate for 10 secs */
 9. int rest_heart_rate; /* resting heart rate for 1 minute */
 10.
 11. /* Enter your resting pulse rate */
 12. printf("Take your resting pulse for 10 seconds.\n");
 13. printf("Enter your pulse rate and press return> ");
 14. scanf("%d", &pulse);
 15.
 16. /* Calculate resting heart rate for minute */
 17. rest_heart_rate = pulse * 6;
 18. printf("Your resting heart rate is %d.\n", rest_heart_rate);
 19.
 20. /* Display message based on resting heart rate */
 21. if (rest_heart_rate > 56)
 22. printf("Keep up your exercise program!\n");
 23. else
 24. printf("Your heart is in excellent health!\n");
 25.
 26. return (0);
 27. }

 Sample Run 1
 Take your resting pulse for 10 seconds.
 Enter your pulse rate and press return> 12
 Your resting heart rate is 72.
 Keep up your exercise program!

 Sample Run 2
 Take your resting pulse for 10 seconds.
 Enter your pulse rate and press return> 9
 Your resting heart rate is 54.
 Your heart is in excellent health!

188 Chapter 4 • Selection Structures: If and Switch Statements

 if Statement with One Alternative

 The if statement in the last section has two alternatives but executes only one for
a given value of rest_heart_rate . You also can write if statements with a single
alternative that executes only when the condition is true.

 The if statement diagrammed in Fig. 4.4 b

 /* Multiply Product by a nonzero x */
 if (x != 0.0)
 product = product * x;

 has one alternative, which is executed only when x is not zero . It causes product
to be multiplied by x and the new value to be saved in product , replacing the old
value. If x is zero , the multiplication is not performed.

 A Comparison of One and Two Alternative if Statements

 EXAMPLE 4.9 The if statement below has two alternatives.

 if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
 else
 printf("Frigate\n");

 It displays either Cruiser or Frigate , depending on the character stored in the
type char variable crsr_or_frgt .

 EXAMPLE 4.10 The if statement that follows has one alternative; it displays the message Cruiser
only when crsr_or_frgt has the value 'C' . Regardless of whether Cruiser is
 displayed or not, the message Combat ship is displayed.

 if (crsr_or_frgt == 'C')
 printf("Cruiser\n");
 printf("Combat ship\n");

 EXAMPLE 4.11 The program fragment

 if crsr_or_frgt == 'C' /* error - missing parentheses */
 printf("Cruiser\n");
 printf("Combat ship\n");

 is an incorrect version of the if statement in Example 4.10 . The missing paren-
theses around the condition is a syntax error that will be detected (and possibly
 corrected) by the compiler.

1894.3 • The if Statement

 The extra semicolon in the first line below

 if (crsr_or_frgt == 'C'); /* error - improper placement of ;*/
 printf("Cruiser\n");
 printf("Combat ship\n");

 does not cause a violation of C syntax rules because the compiler translates the first
line as a single-alternative if statement with an empty statement implying no action
if the condition is true. The first printf loses its dependency on the value of the
condition, so both calls to printf are executed unconditionally.

 if Statement (One Alternative)

 FORM: if (condition)
 statement T ;

 EXAMPLE: if (x > 0.0)
 pos_prod = pos_prod * x;

 INTERPRETATION: If condition evaluates to true (a nonzero value), then statement T is

executed; otherwise, statement T is skipped.

 Program Style Format of the if Statement

 All if statement examples in this text indent statement T and statement F . The word
 else is typed without indentation on a separate line. The format of the if statement
makes its meaning apparent and is used solely to improve program readability; the
format makes no difference to the compiler.

 if Statement (Two Alternatives)

 FORM: if (condition)

 statement T ;

 else
 statement F ;

 EXAMPLE: if (x >= 0.0)
 printf("positive\n");
 else
 printf("negative\n");

 INTERPRETATION: If condition evaluates to true (a nonzero value), then statement T is exe-

cuted and statement F is skipped; otherwise, statement T is skipped and statement F is executed.

190 Chapter 4 • Selection Structures: If and Switch Statements

 EXERCISES FOR SECTION 4.3

 Self-Check

 1. What do these statements display?

 a. if (12 < 12)
 printf("less");
 else
 printf("not less");

 b. var1 = 25.12;
 var2 = 15.00;
 if (var1 <= var2)

 printf("less or equal");
 else
 printf("greater than");

 2. What value is assigned to x when y is 10.0 ?
 a. x = 25.0;

 if (y != (x - 10.0))
 x = x - 10.0;
 else
 x = x / 2.0;

 b. if (y < 15.0)
 if (y >= 0.0)

 x = 5 * y;
 else
 x = 2 * y;
 else
 x = 3 * y;

 c. if (y < 15.0 && y >= 0.0)
 x = 5 * y;
 else
 x = 2 * y;

 Programming

 1. Write C statements to carry out the following steps.

 a. If item is nonzero, then multiply product by item and save the result
in product ; otherwise, skip the multiplication. In either case, print the
value of product .

 b. Store the absolute difference of x and y in y , where the absolute differ-
ence is (x − y) or (y − x), whichever is positive. Do not use the abs or
 fabs function in your solution.

1914.4 • if Statements with Compound Statements

 c. If x is 0 , add 1 to zero_count . If x is negative, add x to minus_sum . If x
is greater than 0 , add x to plus_sum .

 4.4 if Statements with Compound Statements
 This section describes if statements having compound statements after the condi-
tion or the keyword else . When the symbol { follows the condition or else , the C
compiler either executes or skips all statements through the matching } .

 EXAMPLE 4.12 Suppose you are a biologist studying the growth rate of fruit flies. The if statement

 if (pop_today > pop_yesterday) {
 growth = pop_today - pop_yesterday;
 growth_pct = 100.0 * growth / pop_yesterday;
 printf("The growth percentage is %.2f\n", growth_pct);
 }

 computes the population growth from yesterday to today as a percentage of
 yesterday’s population. The compound statement after the condition executes only
when today’s population is larger than yesterday’s. The first assignment computes
the increase in the fruit fly population, and the second assignment converts it to a
percentage of the original population, which is displayed.

 EXAMPLE 4.13 As manager of a company’s automobile fleet, you keep records of the safety
ratings of the fleet cars. In the if statement that follows, the true task makes
a record of an automobile (auto_id) whose crash test rating index (ctri) is at
least as low (good) as the cutoff you have established for acceptably safe cars
(MAX_SAFE_CTRI). The false task records an auto whose ctri does not meet your
standard. In either case, an appropriate message is displayed, and one is added
to the count of safe or unsafe cars. Both the true and false tasks are compound
statements.

 if (ctri <= MAX_SAFE_CTRI) {
 printf("Car #%d: safe\n", auto_id);
 safe = safe + 1;
 } else {
 printf("Car #%d: unsafe\n", auto_id);
 unsafe = unsafe + 1;
 }

192 Chapter 4 • Selection Structures: If and Switch Statements

 If you omit the braces enclosing the compound statements, the if statement would
end after the first printf call. The assignment to safe would be translated as an
unconditional statement (always executed), and the compiler would mark the key-
word else as an error because a statement cannot begin with else .

 Program Style Writing if Statements with Compound True

or False Statements

 We enclose a compound statement that is a true task or a false task in braces. The
placement of the braces is a matter of personal preference. We use the form shown
in Example 4.13 . Some programmers prefer to type each brace on its own line and
to align the braces:

 if (condition)
 {
 true task
 }
 else
 {
 false task
 }

 Some programmers prefer to use braces around all true and false tasks whether
compound or not, so that all if statements in a program have a consistent style. We
recommend enclosing both the true and the false tasks in braces if either is a com-
pound statement. Whichever style you choose, make sure you apply it consistently.

 Tracing an if Statement

 A critical step in program design is to verify that an algorithm or C statement is
correct before you spend extensive time coding or debugging it. Often a few extra
minutes spent in verifying the correctness of an algorithm saves hours of coding and
testing time.

 A hand trace, or desk check , is a careful, step-by-step simulation on paper of
how the computer executes the algorithm or statement. The results of this simula-
tion should show the effect of each step’s execution using data that are relatively
easy to process by hand.

 EXAMPLE 4.14 In many programming problems you must order a pair of data values in memory
so that the smaller value is stored in one variable (say, x) and the larger value in
another (say, y). The if statement in Fig. 4.6 rearranges any two values stored in

 hand trace (desk
check) step-by-
step simulation of an
algorithm’s execution

1934.4 • if Statements with Compound Statements

 FIGURE 4.6 if Statement to Order x and y

 1. if (x > y) { /* Switch x and y */
 2. temp = x; /* Store old x in temp */
 3. x = y; /* Store old y in x */
 4. y = temp; /* Store old x in y */
 5. }

 x and y so that the smaller number is in x and the larger number is in y . If the two
numbers are already in the proper order, the compound statement is not executed.

 Variables x , y , and temp should all be the same data type. Although the values of x
and y are being switched, an additional variable, temp , is needed to store a copy of
one of these values.

 Table 4.9 traces the execution of this if statement when x is 12.5 and y is
 5.0 . The table shows that temp is initially undefined (indicated by ?). Each line of
the table shows the part of the if statement that is being executed, followed by its
effect. If any variable gets a new value, its new value is shown on that line. If no new
value is shown, the variable retains its previous value. The last value stored in x is
 5.0 , and the last value stored in y is 12.5 .

 The trace in Table 4.9 shows that 5.0 and 12.5 are correctly stored in x and
 y when the condition is true. To verify that the if statement is correct, you would
need to select other data that cause the condition to evaluate to false. Also, you
should verify that the statement is correct for special situations. For example, what
would happen if x were equal to y ? Would the statement still provide the correct
result? To complete the hand trace, you would need to show that the algorithm
handles this special situation properly.

 In tracing each case, you must be careful to execute the statement step-by-step
exactly as the computer would execute it. Often programmers assume how a par-
ticular step will be executed and don’t explicitly test each condition and trace each
step. A trace performed in this way is of little value.

 TABLE 4.9 Trace of if Statement

 Statement Part x y temp Effect

 12.5 5.0 ?

 if (x > y) { 12.5 > 5.0 is true.

 temp = x; 12.5 Store old x in temp .

 x = y; 5.0 Store old y in x .

 y = temp; 12.5 Store old x in y .

194 Chapter 4 • Selection Structures: If and Switch Statements

 EXERCISES FOR SECTION 4.4

 Self-Check

 1. Insert braces where they are needed so the meaning matches the indentation.

 if (x > y)
 x = x + 10.0;
 printf("x Bigger\n");
 else
 printf("x Smaller\n");
 printf("y is %.2f\n", y);

 2. Correct the following if statement; assume the indentation is correct.

 if (deduct < balance);
 balance = balance - deduct;
 printf("New balance is %.2f\n", balance);
 else;
 printf("Deduction of %.2f refused.\n", deduct);
 printf("Would overdraw account.\n");
 printf("Deduction = %.2f Final balance = %.2f",
 deduct, balance);

 3. Revise the style of the following if statement to improve its readability.

 if (engine_type == 'J') {printf("Jet engine");
 speed_category = 1;}
 else{printf("Propellers"); speed_category
 = 2;}

 Programming

 1. Write an if statement that might be used to compute and display the aver-
age of a set of n numbers whose sum is stored in variable total . This average
should be found only if n is greater than 0; otherwise, an error message should
be displayed.

 2. Write an interactive program that contains an if statement that may be used
to compute the area of a square (area � side 2) or a circle (area � p � radius 2)
after prompting the user to type the first character of the figure name (S or C).

 4.5 Decision Steps in Algorithms
 Algorithm steps that select from a choice of actions are called decision steps . The
algorithm in the next problem contains decision steps to compute and display a cus-
tomer’s water bill based on usage. The decision steps are coded as if statements.

 decision step an
algorithm step that
selects one of several
actions

1954.5 • Decision Steps in Algorithms

 CASE STUDY Water Bill Problem

 PROBLEM

 Write a program that computes a customer’s water bill. The bill includes a $35 water
demand charge plus a consumption (use) charge of $1.10 for every thousand gallons
used. Consumption is figured from meter readings (in thousands of gallons) taken
recently and at the end of the previous quarter. If the customer’s unpaid balance is
greater than zero, a $2 late charge is assessed as well.

 ANALYSIS

 The total water bill is the sum of the demand and use charges, the unpaid balance,
and a possible late charge. The demand charge is a program constant ($35), but the
use charge must be computed. To do this, we must know the previous and current
meter readings (the problem inputs). After obtaining these data, we can compute
the use charge by multiplying the difference between the two meter readings by the
charge for 1000 gallons, the problem constant $1.10. Next, we can determine the
applicable late charge, if any, and finally compute the water bill by adding the four
components. The data requirements and initial algorithm follow.

 DATA REQUIREMENTS

 Problem Constants
 DEMAND_CHG 35.00 /* basic water demand charge */
 PER_1000_CHG 1.10 /* charge per thousand gallons used */
 LATE_CHG 2.00 /* surcharge on an unpaid balance */

 Problem Inputs
 int previous /* meter reading from previous quarter
 in thousands of gallons */
 int current /* meter reading from current quarter */
 double unpaid /* unpaid balance of previous bill */

 Problem Outputs
 double bill /* water bill */
 double use_charge /* charge for actual water use */
 double late_charge /* charge for nonpayment of part
 of previous balance */

 Relevant Formulas
 water bill = demand charge + use charge + unpaid balance

 + applicable late charge

196 Chapter 4 • Selection Structures: If and Switch Statements

 DESIGN

 INITIAL ALGORITHM

 1. Display user instructions.
 2. Get data: unpaid balance, previous and current meter readings.
 3. Compute use charge.
 4. Determine applicable late charge.
 5. Figure bill amount.
 6. Display the bill amount and charges.

 The structure chart in Fig. 4.7 includes data flow information that shows the
inputs and the outputs of each individual algorithm step. The structure chart shows
that step 2, “Get data,” provides values for unpaid , previous , and current as its
outputs (data flow arrow points up). Similarly, step 3, “Compute use charge,” uses
 previous and current as its inputs (data flow arrow points down) and provides
 use_charge as its output. We will discuss the relevance of the data flow information
after we complete the problem solution.

comp_use_charge comp_late_charge display_bill

Display
user in-
structions

Get
data

Compute
use
charge

Determine
late
charge

Figure
bill

Print
bill

Create
water
bill

use_charge
 unpaid
late_charge

bill

bill
late_charge

unpaid
use_
charge

unpaid

late_charge

unpaid
previous
current

previous
current

 FIGURE 4.7 Structure Chart for Water Bill Problem

1974.5 • Decision Steps in Algorithms

 As shown in the structure chart, we use functions to implement all but steps 2
and 5. Each function name appears below the subproblem it solves. Next, we turn
our attention to the function subprograms. We will discuss each function except
 instruct_water , which is straightforward.

 ANALYSIS AND DESIGN OF COMP_USE_CHARGE

 The structure chart shows that function comp_use_charge computes a value for
 use_charge based on data stored in previous and current . The data require-
ments and algorithm follow.

 DATA REQUIREMENTS FOR COMP_USE_CHARGE

 Input Parameters
 int previous /* meter reading from previous quarter
 in thousands of gallons */
 int current /* meter reading from current quarter */

 Return Value
 double use_charge /* charge for actual water use */

 Program Variable
 int used /* thousands of gallons used this quarter */

 Relevant Formulas
 used = current meter reading − previous meter reading
 use charge = used × charge per thousand gallons

 ALGORITHM FOR COMP_USE_CHARGE

 1. used is current − previous
 2. use_charge is used * PER_1000_CHG

 ANALYSIS AND DESIGN OF COMP_LATE_CHARGE

 Function comp_late_charge returns a late charge of $2.00 or $0.00 depending
on the unpaid balance. Consequently, it requires a decision step as shown in the
algorithm that follows.

 DATA REQUIREMENTS FOR COMP_LATE_CHARGE

 Input Parameter
 double unpaid /* unpaid balance of previous bill */

 Return Value
 double late_charge /* charge for nonpayment of part
 of previous balance */

198 Chapter 4 • Selection Structures: If and Switch Statements

 ALGORITHM FOR COMP_LATE_CHARGE

 1. if unpaid > 0
 assess late charge
 else
 assess no late charge

 The decision step above is expressed in pseudocode , which is a mixture of
English and C used to describe algorithm steps. The indentation and reserved words
 if and else show the logical structure of each decision step. Each decision step has
a condition (following if) that can be written in English or C; similarly, the true and
false tasks can be written in English or C.

 ANALYSIS AND DESIGN OF DISPLAY_BILL

 The void function display_bill displays the bill amount and the late charge and
unpaid balance if any. The values of bill , late_charge , and unpaid are passed to
the function as input arguments; display_bill displays these values on the screen.

 DATA REQUIREMENTS FOR DISPLAY_BILL

 Input Parameters
 double late_charge /* charge for nonpayment of
 part of previous balance */
 double bill /* bill amount */
 double unpaid /* unpaid balance */

 ALGORITHM FOR DISPLAY_BILL

 1. if late_charge > 0
 display late charge and unpaid balance
 2. Display the bill amount.

 IMPLEMENTATION

 Follow the approach described in Section 3.1 to write the program (Fig. 4.8). Begin
by writing #define directives for the problem constants. In the main function,
declare all variables from the problem data requirements that appear in the struc-
ture chart. Next, write each step of the initial algorithm as a comment in the main
function body. To complete the main function, code each algorithm step in-line (as
part of the main function code) or as a function call. For each function call, refer to
the structure chart to determine the names of the input arguments and the variable
receiving the function result.

 Follow a similar approach to write each function subprogram (Fig. 4.8). Declare
all identifiers listed in the function data requirements as either formal parameters

 pseudocode
a combination of
English phrases and C
constructs to describe
algorithm steps

1994.5 • Decision Steps in Algorithms

 FIGURE 4.8 Program for Water Bill Problem

 1. /*
 2. * Computes and prints a water bill given an unpaid balance and previous and
 3. * current meter readings. Bill includes a demand charge of $35.00, a use
 4. * charge of $1.10 per thousand gallons, and a surcharge of $2.00 if there is
 5. * an unpaid balance.
 6. */
 7.
 8. #include <stdio.h>
 9.
 10. #define DEMAND_CHG 35.00 /* basic water demand charge */
 11. #define PER_1000_CHG 1.10 /* charge per thousand gallons used */
 12. #define LATE_CHG 2.00 /* surcharge assessed on unpaid balance */
 13.
 14. /* Function prototypes */
 15. void instruct_water(void);
 16.
 17. double comp_use_charge(int previous, int current);
 18.
 19. double comp_late_charge(double unpaid);
 20.
 21. void display_bill(double late_charge, double bill, double unpaid);
 22.
 23. int
 24. main(void)
 25. {
 26. int previous; /* input - meter reading from previous quarter
 27. in thousands of gallons */
 28. int current; /* input - meter reading from current quarter */
 29. double unpaid; /* input - unpaid balance of previous bill */
 30. double bill; /* output - water bill */
 31. int used; /* thousands of gallons used this quarter */
 32. double use_charge; /* charge for actual water use */
 33. double late_charge; /* charge for nonpayment of part of previous
 34. balance */
 35.
 36. /* Display user instructions. */
 37. instruct_water();
 38.
 39. /* Get data: unpaid balance, previous and current meter
 40. readings. */

(continued)

200 Chapter 4 • Selection Structures: If and Switch Statements

FIGURE 4.8 (continued)

 41. printf("Enter unpaid balance> $");
 42. scanf("%lf", &unpaid);
 43. printf("Enter previous meter reading> ");
 44. scanf("%d", &previous);
 45. printf("Enter current meter reading> ");
 46. scanf("%d", ¤t);
 47.
 48. /* Compute use charge. */
 49. use_charge = comp_use_charge(previous, current);
 50.
 51. /* Determine applicable late charge */
 52. late_charge = comp_late_charge(unpaid);
 53.
 54. /* Figure bill. */
 55. bill = DEMAND_CHG + use_charge + unpaid + late_charge;
 56.
 57. /* Print bill. */
 58. display_bill(late_charge, bill, unpaid);
 59.
 60. return (0);
 61. }
 62.
 63. /*
 64. * Displays user instructions
 65. */
 66. void
 67. instruct_water(void)
 68. {
 69. printf("This program figures a water bill ");
 70. printf("based on the demand charge\n");
 71. printf("($%.2f) and a $%.2f per 1000 ", DEMAND_CHG, PER_1000_CHG);
 72. printf("gallons use charge.\n\n");
 73. printf("A $%.2f surcharge is added to ", LATE_CHG);
 74. printf("accounts with an unpaid balance.\n");
 75. printf("\nEnter unpaid balance, previous ");
 76. printf("and current meter readings\n");
 77. printf("on separate lines after the prompts.\n");
 78. printf("Press <return> or <enter> after ");
 79. printf("typing each number.\n\n");
 80. }
 81. (continued)

2014.5 • Decision Steps in Algorithms

FIGURE 4.8 (continued)

(continued)

 82. /*
 83. * Computes use charge
 84. * Pre: previous and current are defined.
 85. */
 86. double
 87. comp_use_charge(int previous, int current)
 88. {
 89. int used; /* gallons of water used (in thousands) */
 90. double use_charge; /* charge for actual water use */
 91.
 92. used = current - previous;
 93. use_charge = used * PER_1000_CHG;
 94.
 95. return (use_charge);
 96. }
 97.
 98. /*
 99. * Computes late charge.
 100. * Pre : unpaid is defined.
 101. */
 102. double
 103. comp_late_charge(double unpaid)
 104. {
 105. double late_charge; /* charge for nonpayment of part of previous balance */
 106.
 107. if (unpaid > 0)
 108. late_charge = LATE_CHG; /* Assess late charge on unpaid balance. */
 109. else
 110. late_charge = 0.0;
 111.
 112. return (late_charge);
 113. }
 114.
 115. /*
 116. * Displays late charge if any and bill.
 117. * Pre : late_charge, bill, and unpaid are defined.
 118. */
 119. void
 120. display_bill(double late_charge, double bill, double unpaid)

202 Chapter 4 • Selection Structures: If and Switch Statements

FIGURE 4.8 (continued)

 121. {
 122. if (late_charge > 0.0) {
 123. printf("\nBill includes $%.2f late charge", late_charge);
 124. printf(" on unpaid balance of $%.2f\n", unpaid);
 125. }
 126. printf("\nTotal due = $%.2f\n", bill);
 127. }

 FIGURE 4.9 Sample Run of Water Bill Program

 This program figures a water bill based on the demand charge
 ($35.00) and a $1.10 per 1000 gallons use charge.

 A $2.00 surcharge is added to accounts with an unpaid balance.

 Enter unpaid balance, previous and current meter readings
 on separate lines after the prompts.
 Press <return> or <enter> after typing each number.

 Enter unpaid balance> $71.50
 Enter previous meter reading> 4198
 Enter current meter reading> 4238

 Bill includes $2.00 late charge on unpaid balance of $71.50

 Total due = $152.50

or local variables, depending on how the identifier is used by the function. Make
sure that the order of parameters in the function heading corresponds to the order
of arguments in the function call. After you write each function heading, copy it into
the function prototype area preceding function main .

 TESTING

 To test this program, run it with data sets that cause each branch of the two deci-
sion steps to execute. For example, one data set should have a positive unpaid
balance, and another should have an unpaid balance of zero. Figure 4.9 shows a
sample run.

2034.5 • Decision Steps in Algorithms

 Program Style Consistent Use of Names in Functions

 Notice that we use the same identifier, late_charge , to refer to the customer’s late
charge in the main function and in two function subprograms. We declare late_
charge as a local variable in functions main and comp_late_charge and as a formal
parameter in function display_bill . Although C does not require that we use the
same name for the customer’s late charge in all three functions, it is perfectly per-
missible to do so. Using the same name avoids the confusion that would result from
using different names to reference the same information.

 Program Style Cohesive Functions

 Function comp_late_charge only computes the late charge—it does not display
it. That task is left to function display_bill . Functions that perform a single
operation are called cohesive functions . Writing cohesive functions is good pro-
gramming style, because cohesive functions are easier to read, write, debug, and
maintain, and are more likely to be reusable.

 Program Style Using Constant Macros to Enhance Readability

and Ease Maintenance

 The function subprograms in Fig. 4.8 reference the constant macros DEMAND_CHG ,
 PER_1000_CHG , and LATE_CHG . It is perfectly permissible to reference such names
in any function body that appears in the same source file as the constant macro
definitions.

 We could just as easily have placed the values that these names represent
(35.00 , 1.10 , and 2.00) directly in the statements where they are needed. The
resulting statements would be

 printf("This program figures a water bill ");
 printf("based on the demand charge\n");
 printf("($%.2f) and a $%.2f per 1000 ",
 35.00, 1.10);
 printf("gallons use charge.\n\n");
 printf("A $%.2f surcharge is added to ", 2.00);
 printf("accounts with an unpaid balance.\n");
 use_charge = used * 1.10;
 late_charge = 2.00; /* Assess late charge on unpaid
 balance. */
 bill = 35.00 + use_charge + unpaid + late_charge;

 However, use of constant macro names rather than actual values has two advan-
tages. First, the original statements are easier to understand because they use the
descriptive names DEMAND_CHG , PER_1000_CHG , and LATE_CHG rather than num-
bers, which have no intrinsic meaning. Second, a program written using constant

 cohesive function
a function that
performs a single
operation

204 Chapter 4 • Selection Structures: If and Switch Statements

macros is much easier to maintain than one written with constant values. For exam-
ple, if we want to use different constant values in the water bill program in Fig. 4.8 ,
we need to change only the constant macro definitions. However, if we inserted
constant values directly in the statements, we would need to change any statements
that manipulate the constant values.

 EXERCISES FOR SECTION 4.5

 Self-Check

 1. Change the algorithm for function comp_use_charge assuming the fee is
 doubled for any gallons used in excess of 100,000. The basic fee is assessed for
the first 100,000 gallons used.

 2. Revise the flat-washer problem from Section 3.1 so that the user can com-
pute the weight of a batch of circular or square washers. Give the algorithm
with refinements. Draw a structure chart with data flow information for the
new problem showing the relationship between the main program and its
 subproblems. Assume that the user can specify whether the washer type is
 circular or square.

 Programming

 1. Write function comp_use_charge described in Self-Check Exercise 1.

 4.6 More Problem Solving

 Data Flow Information in Structure Charts

 In Fig. 4.7 the data flow information in the structure chart shows the inputs and
outputs of each individual algorithm step. Data flow information is an important
part of system documentation because it shows what program variables are proc-
essed by each step and the manner in which those variables are processed. If a
step gives a new value to a variable, then the variable is considered an output of the
step. If a step displays a variable’s value or uses a variable in a computation without
changing its value, the variable is considered an input to the step.

 Figure 4.8 shows that a variable may have different roles for different subprob-
lems in the algorithm. In the context of the original problem statement, previous
and current are problem inputs (data supplied by the program user). However, in
the context of the subproblem “Get data,” the subproblem’s task is to deliver values
for previous and current to the main program; thus, previous and current
are considered outputs from this step. In the context of the subproblem “Compute

2054.6 • More Problem Solving

use charge,” the subproblem’s task is to use previous and current to compute
 use_charge , so they are inputs to this step. In the same way, the role of the other
variables changes as we go from step to step in the problem.

 Modifying a Program with Function Subprograms

 Often what appears to be a new problem will turn out to be a variation of one that
you have already solved. Consequently, an important skill in problem solving is the
ability to recognize that one problem is similar to another solved earlier. As you
progress through this course, you will start to build up your own personal library of
programs and functions. Whenever possible, you should try to adapt or reuse parts
of successful programs.

 Writing programs that can be easily changed or modified to fit other situ-
ations is advisable; programmers and program users will often want to make
slight improvements to a program after they use it. If the original program is well
designed and modular, the programmer will be able to accommodate changing
specifications with a minimum of effort. As you will find by working through the
next problem, when changes are needed it may be possible to modify one or two
functions rather than rewriting the entire program.

 CASE STUDY Water Bill with Conservation Requirements

 PROBLEM

 We need to modify the water bill program so that customers who fail to meet
conservation requirements are charged for all their water use at twice the rate of
customers who meet the guidelines. Residents of this water district are required
to use no more than 95 percent of the amount of water they used in the same
quarter last year in order to qualify for the lower use rate of $1.10 per thousand
gallons.

 ANALYSIS

 This problem is a modification of the water bill problem solved in the last sec-
tion. Customers who meet the conservation guidelines should be charged the
basic use rate of $1.10 per thousand gallons; those who do not should be charged
at twice this rate. We can solve this problem by adding the use figure from last
year to our problem inputs and modifying function comp_use_charge . The addi-
tions to the data requirements and revised algorithm for function comp_use_
charge follow.

206 Chapter 4 • Selection Structures: If and Switch Statements

 ADDITIONS TO DATA REQUIREMENTS

 Problem Constants
 OVERUSE_CHG_RATE 2.0 /* double use charge as non-conservation
 penalty */
 CONSERV_RATE 95 /* percent of last year's use
 allowed this year */

 Problem Inputs
 int use_last_year /* use for same quarter
 last year */

 ALGORITHM FOR COMP_USE_CHARGE

 1. used is current − previous
 2. if guidelines are met
 use_charge is used * PER_1000_CHARGE
 else
 notify customer of overuse
 use_charge is used * overuse_chg_rate *

 PER_1000_CHG

 Figure 4.10 shows the revised function. If the condition

 (used <= CONSERV_RATE / 100.0 * use_last_year)

 is true, the conservation guidelines are met and the use charge is computed as
before; otherwise, the customer is notified of the overuse, and the overuse charge
rate is factored into the computation of the use charge.

(continued)

 FIGURE 4.10 Function comp_use_charge Revised

 1. /*
 2. * Computes use charge with conservation requirements
 3. * Pre: previous, current, and use_last_year are defined.
 4. */
 5. double
 6. comp_use_charge(int previous, int current, int use_last_year)
 7. {
 8. int used; /* gallons of water used (in thousands) */
 9. double use_charge; /* charge for actual water use */
 10. used = current - previous;
 11. if (used <= CONSERV_RATE / 100.0 * use_last_year) {
 12. /* conservation guidelines met */

2074.7 • Nested if Statements and Multiple-Alternative Decisions

 We must change the prototype for function comp_use_charge to match its
heading and replace the call to function comp_use_charge in Fig. 4.8 with

 use_charge = comp_use_charge(previous, current,
 use_last_year);

 To complete the program revision, change function instruct_water to display
the new user instructions. Also, modify the main function to prompt for and get the
value of use_last_year .

 13. use_charge = used * PER_1000_CHG;
 14. } else {
 15. printf("Use charge is at %.2f times ", OVERUSE_CHG_RATE);
 16. printf("normal rate since use of\n");
 17. printf("%d units exceeds %d percent ", used, CONSERV_RATE);
 18. printf("of last year's %d-unit use.\n", use_last_year);
 19. use_charge = used * OVERUSE_CHG_RATE * PER_1000_CHG;
 20. }
 21.
 22. return (use_charge);
 23. }

FIGURE 4.10 (continued)

 EXERCISES FOR SECTION 4.6

 Programming

 1. Provide the complete program for the water bill problem with conservation
requirements.

 4.7 Nested if Statements and Multiple-Alternative Decisions
 Until now we have used if statements to code decisions with one or two alter-
natives. In this section we use nested if statements (one if statement inside
another) to code decisions with multiple alternatives.

 EXAMPLE 4.15 The following nested if statement has three alternatives. It increases one of three
variables (num_pos , num_neg , or num_zero) by 1, depending on whether x is greater
than zero, less than zero, or equal to zero, respectively. The boxes show the logical
structure of the nested if statement: The second if statement is the false task (fol-
lowing else) of the first if statement.

 nested if statement
an if statement with
another if statement
as its true task or its
false task

208 Chapter 4 • Selection Structures: If and Switch Statements

 /* increment num_pos, num_neg, or num_zero depending on x */

 if (x > 0)
 num_pos = num_pos + 1;
 else

 if (x < 0)
 num_neg = num_neg + 1;
 else /* x equals 0 */
 num_zero = num_zero + 1;

 The execution of the nested if statement proceeds as follows: the first condition
(x > 0) is tested; if it is true, num_pos is incremented and the rest of the if state-
ment is skipped. If the first condition is false, the second condition (x < 0) is tested;
if it is true, num_neg is incremented; otherwise, num_zero is incremented. It is
important to realize that the second condition is tested only when the first condi-
tion is false. Table 4.10 traces the execution of this statement when x is −7 . Because
 x > 0 is false, the second condition (x < 0) is tested.

 Comparison of Nested if and Sequence of ifs

 Beginning programmers sometimes prefer to use a sequence of if statements
rather than a single nested if statement. For example, the nested if statement in
 Example 4.15 is rewritten as a sequence of if statements.

 if (x > 0)
 num_pos = num_pos + 1;
 if (x < 0)
 num_neg = num_neg + 1;
 if (x == 0)
 num_zero = num_zero + 1;

 Although this sequence is logically equivalent to the original, it is neither as
readable nor as efficient. Unlike the nested if statement, the sequence does not
clearly show that exactly one of the three assignment statements is executed for a

 TABLE 4.10 Trace of if Statement in Example 4.15 for x = −7

 Statement Part Effect

 if (x > 0) −7 > 0 is false.

 if (x < 0) −7 < 0 is true.

 num_neg = num_neg + 1 Add 1 to num_neg .

2094.7 • Nested if Statements and Multiple-Alternative Decisions

particular x . It is less efficient because all three of the conditions are always tested.
In the nested if statement, only the first condition is tested when x is positive.

 Multiple-Alternative Decision Form of Nested if

 Nested if statements can become quite complex. If there are more than three alter-
natives and indentation is not consistent, it may be difficult for you to determine the
logical structure of the if statement. In situations like Example 4.15 in which each
false task (except possibly the last) is followed by an if-then-else statement, you
can code the nested if as the multiple-alternative decision described next.

 Multiple-Alternative Decision

 SYNTAX: if (condition 1)

 statement 1

 else if (condition 2)

 statement 2

 .

 .

 .

 else if (condition n)

 statement n

 else

 statement e

 EXAMPLE: /* increment num_pos, num_neg, or num_zero depending

 on x */

 if (x > 0)

 num_pos = num_pos + 1;

 else if (x < 0)

 num_neg = num_neg + 1;

 else /* x equals 0 */

 num_zero = num_zero + 1;

 INTERPRETATION: The conditions in a multiple-alternative decision are evaluated in sequence

until a true condition is reached. If a condition is true, the statement following it is executed,

and the rest of the multiple-alternative decision is skipped. If a condition is false, the state-

ment following it is skipped, and the next condition is tested. If all conditions are false, then

 statement e following the final else is executed.

 Notes: In a multiple-alternative decision, the words else and if the next condition appear

on the same line. All the words else align, and each dependent statement is indented under

the condition that controls its execution.

210 Chapter 4 • Selection Structures: If and Switch Statements

 EXAMPLE 4.16 Suppose you want to associate noise loudness measured in decibels with the effect
of the noise. The following table shows the relationship between noise levels and
human perceptions of noises.

 Loudness in Decibels (db) Perception

 50 or lower quiet

 51 – 70 intrusive

 71 – 90 annoying

 91 – 110 very annoying

 above 110 uncomfortable

 The multiple-alternative decision in the following displays the perception of
noise according to this table. If the noise were measured at 62 decibels, the last
three conditions would be true if evaluated; however, the perception 62- decibel
noise is intrusive. would be displayed because the first true condition is
 noise_db <= 70 .

 /* Display perception of noise loudness */

 if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n", noise_db);
 else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n", noise_db);
 else if (noise_db <= 90)
 printf("%d-decibel noise is annoying.\n", noise_db);
 else if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
 else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

 Order of Conditions in a Multiple-Alternative Decision

 When more than one condition in a multiple-alternative decision is true, only the
task following the first true condition executes. Therefore, the order of the condi-
tions can affect the outcome.

 Writing the decision as follows would be incorrect. All but the loudest sounds
(above 110 db) would be categorized as “very annoying” because the first condition
would be true and the rest would be skipped.

 /* incorrect perception of noise loudness */

 if (noise_db <= 110)
 printf("%d-decibel noise is very annoying.\n", noise_db);
 else if (noise_db <= 90)

2114.7 • Nested if Statements and Multiple-Alternative Decisions

 printf("%d-decibel noise is annoying.\n",
 noise_db);
 else if (noise_db <= 70)
 printf("%d-decibel noise is intrusive.\n",
 noise_db);
 else if (noise_db <= 50)
 printf("%d-decibel noise is quiet.\n",
 noise_db);
 else
 printf("%d-decibel noise is uncomfortable.\n", noise_db);

 The order of conditions can also have an effect on program efficiency. If we know
that loud noises are much more likely than soft ones, it would be more efficient to test
first for noise levels above 110 db, next for levels between 91 and 110 db, and so on.

 EXAMPLE 4.17 You could use a multiple-alternative if statement to implement a decision table that
describes several alternatives. For instance, let’s say you are an accountant setting
up a payroll system based on Table 4.11 , which shows five different ranges for sala-
ries up to $150,000.00. Each table line shows the base tax amount (column 2) and
tax percentage (column 3) for a particular salary range (column 1). Given a person’s
salary, you can calculate the tax due by adding the base tax to the product of the
percentage times the excess salary over the minimum salary for that range.

 For example, the second line of the table specifies that the tax due on a salary of
$20,000.00 is $2,250.00 plus 18 percent of the excess salary over $15,000.00 (that is,
18 percent of $5000.00, or $900.00). Therefore, the total tax due is $2,250.00 plus
$900.00, or $3,150.00.

 The if statement in function comp_tax (Fig. 4.11) implements the tax table. If the
value of salary is within the table range (0.00 to 150,000.00), exactly one of the
statements assigning a value to tax will execute. Table 4.12 shows a trace of the if
statement when salary is $25,000.00. You can see that the value assigned to tax ,
$4,050.00, is correct.

 TABLE 4.11 Decision Table for Example 4.17

 Salary Range ($) Base Tax ($) Percentage of Excess

 0.00–14,999.99 0.00 15

 15,000.00–29,999.99 2,250.00 18

 30,000.00–49,999.99 5,400.00 22

 50,000.00–79,999.99 11,000.00 27

 80,000.00–150,000.00 21,600.00 33

212 Chapter 4 • Selection Structures: If and Switch Statements

 TABLE 4.12 Trace of if Statement in Fig. 4.11 for salary = $25000.00

 Statement Part salary tax Effect

 25000.00 ?

 if (salary < 0.0) 25000.0 < 0.0 is false.

 else if (salary < 15000.00) 25000.0 < 15000.0 is false.

 else if (salary < 30000.00) 25000.0 < 30000.0 is true.

 tax = (salary − 15000.00) Evaluates to 10000.00 .

 * 0.18 Evaluates to 1800.00 .

 + 2250.00; 4050.00 Evaluates to 4050.00 .

 FIGURE 4.11 Function comp_tax

 1. /*
 2. * Computes the tax due based on a tax table.
 3. * Pre : salary is defined.
 4. * Post: Returns the tax due for 0.0 <= salary <= 150,000.00;
 5. * returns -1.0 if salary is outside the table range.
 6. */
 7. double
 8. comp_tax(double salary)
 9. {
 10. double tax;
 11.
 12. if (salary < 0.0)
 13. tax = -1.0;
 14. else if (salary < 15000.00) /* first range */
 15. tax = 0.15 * salary;
 16. else if (salary < 30000.00) /* second range */
 17. tax = (salary - 15000.00) * 0.18 + 2250.00;
 18. else if (salary < 50000.00) /* third range */
 19. tax = (salary - 30000.00) * 0.22 + 5400.00;
 20. else if (salary < 80000.00) /* fourth range */
 21. tax = (salary - 50000.00) * 0.27 + 11000.00;
 22. else if (salary <= 150000.00) /* fifth range */
 23. tax = (salary - 80000.00) * 0.33 + 21600.00;
 24. else
 25. tax = -1.0;
 26.
 27. return (tax);
 28. }

2134.7 • Nested if Statements and Multiple-Alternative Decisions

 Program Style Validating the Value of Variables

 If you validate the value of a variable before using it in a computation, you can avoid
processing invalid or meaningless data. Instead of computing an incorrect tax amount,
function comp_tax returns −1.0 (an impossible tax amount) if the value of salary is
outside the range covered by the table (0.0 to 150,000.00). The first condition sets tax
to −1.0 if salary is negative. All conditions evaluate to false if salary is greater than
$150,000.00, so the task following else also sets tax to −1.0 . The function calling
 comp_tax should display an error message if the value returned to it is −1.0 .

 Nested if Statements with More Than One Variable

 In most of our examples, we have used nested if statements to test the value of a
single variable; consequently, we have been able to write each nested if statement
as a multiple-alternative decision. If several variables are involved in the decision,
we cannot always use a multiple-alternative decision. Example 4.18 contains a situa-
tion in which we can use a nested if statement as a “filter” to select data that satisfy
several different criteria.

 EXAMPLE 4.18 The Department of Defense would like a program that identifies single males
between the ages of 18 and 26, inclusive. One way to do this is to use a nested if
statement whose conditions test the next criterion only if all previous criteria tested
were satisfied. In the following nested if statement, assume that all variables have
values. The call to printf executes only when all conditions are true.

 /* Print a message if all criteria are met. */
 if (marital_status == 'S')
 if (gender == 'M')
 if (age >= 18 && age <= 26)
 printf("All criteria are met.\n");

 An equivalent statement that uses a single if with a compound condition follows.

 if (marital_status == 'S' && gender == 'M'
 && age >= 18 && age <= 26)
 printf("All criteria are met.\n");

 EXAMPLE 4.19 You are developing a program to control the warning signs at the exits of major tun-
nels. If roads are slick (road_status is 'S'), you want to advise drivers that stopping
times are doubled or quadrupled, depending on whether the roads are wet or icy. Your
program will also have access to the current temperature in degrees Celsius (temp), so
a check as to whether the temperature is above or below freezing would allow you to

214 Chapter 4 • Selection Structures: If and Switch Statements

choose the correct message. The nested if statement below summarizes the decision
process you should follow; the flowchart in Fig. 4.12 diagrams the process.

 if (road_status == 'S')

 if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
 } else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
 }
 else
 printf("Drive carefully!\n");

 To verify that the nested if statement in Example 4.19 is correct, we trace its
execution for all possible combinations of road status values and temperatures. The
flowchart’s rightmost output is executed only when both conditions are true. The
leftmost output is always executed when the condition involving road_status is
false. The output in the middle occurs when the condition involving road_status
is true but the condition involving temp is false.

 When you are writing a nested if statement, you should know that C associates
an else with the most recent incomplete if . For example, if the first else of the
road sign decision were omitted, the following would be left:

 /* incorrect interpretation of nested if */
 if (road_status == 'S')
 if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
 }
 else
 printf("Drive carefully!\n");

road_status
is 'S'

true
false

true

Drive
carefully
message

Icy roads
message

temp > 0

Wet
roads
message

false

 FIGURE 4.12

 Flowchart of Road
Sign Decision
Process

2154.7 • Nested if Statements and Multiple-Alternative Decisions

 Although the indentation would lead you to believe that the else remains
the false branch of the first if , the C compiler actually sees it as the false branch
of the second if . Indentation like this would match the actual meaning of the
statement.

 /* correct interpretation of nested if */

 if (road_status == 'S')

 if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
 } else
 printf("Drive carefully!\n");

 To force the else to be the false branch of the first if , we place braces around
the true task of this first decision.

 /* interpretation with braces around first true task */

 if (road_status == 'S') {

 if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
 }

 } else
 printf("Drive carefully!\n");

 Note that we could not use a multiple-alternative decision statement to imple-
ment the flowchart in Fig. 4.12 because the second decision (temp > 0) falls on the
true branch of the first decision. However, if we were to change the initial condition
so the branches were switched, a multiple-alternative structure would work. We
could do this simply by checking if the road is dry.

 if (road_status == 'D') {
 printf("Drive carefully!\n");
 } else if (temp > 0) {
 printf("Wet roads ahead\n");
 printf("Stopping time doubled\n");
 } else {
 printf("Icy roads ahead\n");
 printf("Stopping time quadrupled\n");
 }

 The first condition is true only if the road is dry. The second condition is tested
only when the first condition fails, so its dependent statement executes only when
the road is not dry and the temperature is above freezing. Finally, the else clause
executes only when the two conditions fail; then we know that the roads are not dry
and the temperature is not above freezing.

216 Chapter 4 • Selection Structures: If and Switch Statements

 EXERCISES FOR SECTION 4.7

 Self-Check

 1. Trace the execution of the nested if statement in Fig. 4.11 for a salary of
$23,500.00.

 2. What would be the effect of reversing the order of the first two conditions in
the if statement in Fig. 4.11 ?

 3. Write a nested if statement for the decision diagrammed in the accompany-
ing flowchart. Use a multiple-alternative if for intermediate decisions where
possible.

truefalse

true

false

true

true
pH is 7

pH > 2

"Very
acidic"

"Neutral"

"Acidic"

pH < 12

"Very
alkaline"

"Alkaline"

false

false

pH > 7

 Programming

 1. Rewrite the if statement for Example 4.16 using only the relational operator
 > in all conditions.

 2. Implement the following decision table using a nested if statement. Assume
that the grade point average is within the range 0.0 through 4.0.

 Grade Point Average Transcript Message

 0.0–0.99 Failed semester—registration suspended

 1.0–1.99 On probation for next semester

 2.0–2.99 (no message)

 3.0–3.49 Dean’s list for semester

 3.5–4.00 Highest honors for semester

2174.8 • The switch Statement

 3. Implement the following decision table using a multiple-alternative if state-
ment. Assume that the wind speed is given as an integer.

 Wind Speed (mph) Category

 below 25 not a strong wind

 25–38 strong wind

 39–54 gale

 55–72 whole gale

 above 72 hurricane

 4. Write a multiple-alternative if statement to implement the following decision
table that categorizes a systolic blood pressure reading (pressure as ventricles
contract) as “normal,” “pre-hypertension,” or “hypertension.” Assume that the
systolic blood pressure has been input as an integer.

 Systolic Blood Pressure Category

 140 and higher Hypertension

 120–139 Pre-hypertension

 Under 120 Normal

 4.8 The switch Statement
 The switch statement may also be used in C to select one of several alternatives.
The switch statement is especially useful when the selection is based on the value
of a single variable or of a simple expression (called the controlling expression). The
value of this expression may be of type int or char , but not of type double .

 EXAMPLE 4.20 Figure 4.13 shows a program that reads a ship’s serial number and displays the class
of the ship. Each ship serial number begins with a letter indicating the class of the
ship. The program first reads the first letter of a ship’s serial number into the char
variable class and then displays that character.

 The switch statement displays a message indicating the class of the ship. It imple-
ments the following decision table.

 Class ID Ship Class

 B or b Battleship

 C or c Cruiser

 D or d Destroyer

 F or f Frigate

218 Chapter 4 • Selection Structures: If and Switch Statements

 FIGURE 4.13 Program Using a switch Statement for Selection

 1. /*
 2. * Reads serial number and displays class of ship
 3. */
 4.
 5. #include <stdio.h>
 6.
 7. int
 8. main(void)
 9. {
 10. char class; /* input - character indicating class of ship */
 11.
 12. /* Read first character of serial number */
 13. printf("Enter ship serial number> ");
 14. scanf("%c", &class); /* scan first letter */
 15.
 16. /* Display first character followed by ship class */
 17. printf("Ship class is %c: ", class);
 18. switch (class) {
 19. case 'B':
 20. case 'b':
 21. printf("Battleship\n");
 22. break;
 23. case 'C':
 24. case 'c':
 25. printf("Cruiser\n");
 26. break;
 27. case 'D':
 28. case 'd':
 29. printf("Destroyer\n");
 30. break;
 31. case 'F':
 32. case 'f':
 33. printf("Frigate\n");
 34. break;
 35. default:
 36. printf("Unknown\n");
 37. }
 38.
 39. return (0);
 40. }

(continued)

2194.8 • The switch Statement

 The switch statement displays a message that depends on the value of the control-
ling expression, that is, the value of the variable class (type char). First, this expres-
sion is evaluated; then, the list of case labels (case 'B': , case 'b': , case 'C': ,
etc.) is searched until one label that matches the value of the controlling expression
is found. Statements following the matching case label are executed until a break
statement is encountered. The break causes an exit from the switch statement, and
execution continues with the statement that follows the closing brace of the switch
statement body. If no case label matches the value of the switch statement’s con-
trolling expression, the statements following the default label are executed, if there
is a default label. If not, the entire switch statement body is skipped.

 Using a string such as "Cruiser" or "Frigate" as a case label is a common
error. It is important to remember that type int and char values may be used as case
labels, but strings and type double values cannot be used. Another common error is
the omission of the break statement at the end of one alternative. In such a situation,
execution “falls through” into the next alternative. We recommend using a blank line
after each break statement to emphasize the fact that there is no “fall-through.”

 Forgetting the closing brace of the switch statement body is also easy to do. If
the brace is missing and the switch has a default label, the statements following
the switch statement become part of the default case.

 The following syntax display shows the form of the switch statement as a
multiple-alternative decision structure.

 Sample Run 1
 Enter ship serial number> f3456
 Ship class is f: Frigate

 Sample Run 2
 Enter ship serial number> P210
 Ship class is P: Unknown

 FIGURE 4.13 (continued)

 switch Statement

 SYNTAX: switch (controlling expression) {

 label set 1

 statements 1

 break;
(continued)

220 Chapter 4 • Selection Structures: If and Switch Statements

 label set 2

 statements 2

 break;
 .
 .
 .
 label set n

 statements n

 break;

 default:
 statements d

 }
 EXAMPLE: /* Determine life expectancy of a standard light
 bulb */
 switch (watts) {
 case 25:
 life = 2500;
 break;

 case 40:
 case 60:
 life = 1000;
 break;

 case 75:
 case 100:
 life = 750;
 break;

 default:
 life = 0;
 }

 INTERPRETATION: The controlling expression , an expression with a value of type int or type

 char , is evaluated and compared to each of the case labels in the label sets until a match is

found. A label set is made of one or more labels of the form case followed by a constant

value and a colon. When a match between the value of the controlling expression and a

 case label value is found, the statements following the case label are executed until a

 break statement is encountered. Then the rest of the switch statement is skipped.

 Notes: The statements following a case label may be one or more C statements, so you do

not need to make multiple statements into a single compound statement using braces. If no

 case label value matches the controlling expression, the entire switch statement body is

skipped unless it contains a default label. If so, the statements following the default

label are executed when no other case label value matches the controlling expression .

2214.8 • The switch Statement

 Comparison of Nested if Statements and the

switch Statement

 You can use a nested if statement, which is more general than the switch state-
ment, to implement any multiple-alternative decision. The switch as described in
the syntax display is more readable in many contexts and should be used whenever
practical. Case labels that contain type double values or strings are not permitted.

 You should use the switch statement when each label set contains a reason-
able number of case labels (a maximum of ten). However, if the number of values
is large, use a nested if statement. You should include a default label in switch
statements wherever possible. The discipline of trying to define a default will help
you to consider what will happen if the value of your switch statement’s controlling
expression falls outside your set of case label values.

 The UNIX Connection
 The language in which the fundamental components
of UNIX systems are written and the base language
for most other operating systems, C, is an outgrowth
of the development of the first UNIX operating system
created by Ken Thompson and Dennis Ritchie.

 At the time of its development, UNIX was crucial
to making computers more accessible. Until the late
1960s, only a few organizations had the luxury of
owning computers, and even then, these computers
were sprawling, monolithic systems like IBM’s OS/360.
It was not until the next generation of computers,
mini-computers, that time-sharing made it possible
for users to connect to and use a computer interac-
tively via terminals. This interactive computer usage,
pioneered by operating systems such as UNIX, made
computers far more accessible.

 When Thompson and Ritchie built the first UNIX
system in 1969, they were inspired by the interactive
feel of the Multics system, then being developed at
MIT (as a joint project of MIT, General Electric, and
Bell Laboratories). When the developers rewrote the
UNIX kernel, the heart of the operating system, in
1973, they used the C language to do it. Ever since
then, the UNIX system calls that programs use to
request services from the kernel have been defined

as C functions. The use of these system calls made it
very natural to write application programs in C, and
later in C++. Many UNIX user programs also follow C’s
syntactic conventions.

 The connection between C and UNIX runs in both
directions. Any C program you may write is going to
call upon functions in the C library either implicitly
or explicitly. Even the simplest do-nothing program
implicitly calls the exit function, which in turn calls
upon the operating environment to terminate the
program. Many of the other functions in the stand-
ard C library such as getc and time also require
support from the operating system, and that support
is modeled on UNIX. The code for those functions
involves a request to the operating system for system
services. Although there are many flavors of UNIX,
they all include a “Programmer’s Library” contain-
ing functions closely resembling the C library. Those
functions are themselves defined in terms of a C
interface.

 In the other direction, many UNIX utilities that
include programming facilities have borrowed C syntax
and semantics. The best example is the “shell script”
facility, usually just called the “shell.” A simple shell
script is a text file containing operating system com-
mands to execute along with some logic to control the
order of execution. A good example of C syntax in the

 C IN FOCUS

222 Chapter 4 • Selection Structures: If and Switch Statements

 EXERCISES FOR SECTION 4.8

 Self-Check

 1. What will be printed by this carelessly constructed switch statement if the
value of color is 'R' ?

 switch (color) { /* break statements missing */
 case 'R':
 printf("red\n");
 case 'B':
 printf("blue\n");
 case 'Y':
 printf("yellow\n");
 }

 2. Why can’t we rewrite our multiple-alternative if statement code from
Examples 4.16 and 4.17 using switch statements?

 Programming

 1. Write a switch statement that assigns to the variable lumens the expected
brightness of a standard light bulb whose wattage has been stored in watts .
Use this table:

shell is the use of the && and || operators. In C, they
perform short-circuit evaluation of a logical expres-
sion. In the shell, they behave similarly and can provide
conditional execution of a program. Evaluating the
shell expression a && b , where a and b are programs,
executes the program a . If the execution succeeds,
then b is executed; if it fails, b is not executed. Similarly,
 a || b executes a and then executes b only if the execu-
tion of a failed.

 The connection between C and UNIX was more
obvious to the average user in the days when most
computer interfaces were text-based. The rise of
graphical user interfaces has hidden the connection
from most users, except systems programmers. With
a graphical interface, user-level programs have very
little syntax in the usual sense: most input is provided
by moving and clicking a mouse rather than by typing
text. The C syntax that manifests itself in many UNIX
utilities is irrelevant to these programs.

 Many of the user-level programs available under
UNIX systems are now written in languages such as Perl,

Python, and TCL/TK. These languages generally view the
machine at a higher, more abstract level than C. They
are not appropriate for lower-level programming such
as the code required for the UNIX kernel, but they work
very well for graphical programs.

 Moreover, with the almost universal use of C and
its derivative C++ for writing other operating systems
and with the C and C++ compilers available for those
systems, one can no longer assume that C code is
being written for a UNIX environment. The universal-
ity of C and C++ as systems programming languages,
paradoxically, has severed that half of the connection
between C and UNIX. The result of all these develop-
ments is that the UNIX connection to C, while of great
historical importance and still vital to systems program-
mers, is no longer as visible as it once was.

 Many thanks to Paul Abrahams, author of “UNIX
for the Impatient” and a past president of the
Association for Computing Machinery, for contribut-
ing his UNIX insights to this article.

2234.9 • Common Programming Errors

 Watts Brightness (in Lumens)

 15 125

 25 215

 40 500

 60 880

 75 1000

 100 1675

 Assign −1 to lumens if the value of watts is not in the table.
 2. Write a nested if statement equivalent to the switch statement described in

the first programming exercise.

 4.9 Common Programming Errors
 The fact that C relational and equality operators give a result of 1 for true and 0 for
false means that C interprets some common mathematical expressions in a way that
seems surprising at first. You would probably not anticipate the fact that the follow-
ing if statement displays Condition is true for all values of x .

 if (0 <= x <= 4)
 printf("Condition is true\n");

 For example, let’s consider the case when x is 5 . The value of 0 <= 5 is 1 , and 1 is
certainly less than or equal to 4! In order to check if x is in the range 0 to 4 , you
should use the condition

 (0 <= x && x <= 4)

 Remember that the C equality operator is == . If you slip up and use = , the
mathematical equal sign, the compiler can detect this error only if the first operand
is not a variable. Otherwise, your code will simply produce incorrect results. For
example, the code fragment that follows always prints x is 10 , regardless of the
value of x .

 if (x = 10)
 printf("x is 10");

 The assignment operator stores the value 10 in x . The value of an assignment
expression is the value assigned, so in this case the value of the if condition of the
statement is 10 . Since 10 is nonzero, C views it as meaning true and executes the
true task.

 Don’t forget to parenthesize the condition of an if statement and to enclose
in braces a single-alternative if used as a true task within a double-alternative if .

224 Chapter 4 • Selection Structures: If and Switch Statements

The braces will force the else to be associated with the correct if . Also enclose
in braces a compound statement used as a true task or false task. If the braces are
missing, only the first statement will be considered part of the task. This can lead
to a syntax error if the braces are omitted from the true task of a double-alternative
 if . Leaving out the braces on the false task of a double-alternative if or on the true
task of a single-alternative if will not usually generate a syntax error; the omission
will simply lead to incorrect results. In the example that follows, the braces around
the true task are missing. The compiler assumes that the semicolon at the end of the
assignment statement terminates the if statement.

 if (x > 0)
 sum = sum + x;
 printf("Greater than zero\n");
 else
 printf("Less than or equal to zero\n");

 The compiler may generate an unexpected symbol syntax error when it reaches
the reserved word else .

 When writing a nested if statement, try to select the conditions so that you can
use the multiple-alternative format shown in Section 4.7 . When possible, the logic
should be constructed so each intermediate condition falls on the false branch of the
previous decision. If more than one condition can be true at the same time, place
the most restrictive condition first.

 Remember that the C compiler matches each else with the closest unmatched
 if . If you are not careful, you may get a pairing that is different from what you
expect. This may not cause a syntax error, but it will affect the outcome.

 In switch statements, make sure the controlling expression and case labels are
of the same permitted type (int or char but not double). Remember to include a
 default case; otherwise the entire body of the switch statement will be skipped if
the controlling expression value is not listed in any of the case labels.

 Don’t forget that the body of the switch statement is a single compound state-
ment, enclosed in one set of braces. However, the statements of each alternative
within the switch are not enclosed in braces; instead, each alternative is ended by a
 break statement. If you omit a break statement, your program “falls through” and
executes the statements for the next case.

 ■ Chapter Review

 1. Use control structures to control the flow of statement execution in a program.
The compound statement is a control structure for sequential execution.

 2. Use selection control structures to represent decisions in an algorithm and
use pseudocode to write them in algorithms. Use the if statement or switch
statement to code decision steps in C.

225Chapter Review

 3. Expressions whose values indicate whether certain conditions are true can be
written

 ■ using the relational operators (< , <= , > , >=) and equality operators (== ,
 !=) to compare variables and constants

 ■ using the logical operators (&& (and), || (or), ! (not)) to form more com-
plex conditions

 4. Data flow information in a structure chart indicates whether a variable proc-
essed by a subproblem is used as an input or an output, or as both. An input
provides data that are manipulated by the subproblem, and an output returns
a value copied from an input device or computed by the subproblem. The
same variable may be an input to one subproblem and an output from another.

 5. Extending a solution is a problem-solving technique in which you solve a new
problem by modifying the solution to an existing problem. Writing modular
programs (with function subprograms) makes it easier to apply this technique.

 6. A hand trace of an algorithm verifies whether it is correct. You can discover
errors in logic by carefully hand tracing an algorithm. Hand tracing an algo-
rithm before coding it as a program will save you time in the long run.

 7. Nested if statements are common in C and are used to represent decisions
with multiple-alternatives. Programmers use indentation and the multiple-
alternative decision form when applicable to enhance readability of nested
 if statements.

 8. The switch statement implements decisions with several alternatives,
where the alternative selected depends on the value of a variable or
expression (the controlling expression). The controlling expression can be
type int or char , but not type double .

 NEW C CONSTRUCTS

 Construct Effect

 if Statement

 One Alternative

 if (x != 0.0)
 product = product * x;

 Multiplies product by x
only if x is nonzero.

 Double-Alternative

 if (temp > 32.0)
 printf("%.1f: above freezing",
 temp);
 else
 printf("%.1f: freezing", temp);

 If temp is greater than
 32.0 , it is labeled as
 above freezing ;
otherwise, it is labeled as
 freezing .

(continued)

226 Chapter 4 • Selection Structures: If and Switch Statements

 Construct Effect

 Multiple-Alternative

 if (x < 0.0) {
 printf("negative");
 absx = -x;
 } else if (x == 0.0) {
 printf("zero");
 absx = 0.0;
 } else {
 printf("positive");
 absx = x;
 }

 Displays one of three
messages depending on
whether x is negative,
positive, or zero. Sets
 absx to represent the
absolute value or magni-
tude of x .

 switch Statement

 switch (next_ch) {
 case 'A':
 case 'a':
 printf("Excellent");
 break;

 case 'B':
 case 'b':
 printf("Good");
 break;

 case 'C':
 case 'c':
 printf("O.K.");
 break;

 case 'D':
 case 'd':
 case 'F':
 case 'f':
 printf("Poor, student is ");
 printf("on probation");
 break;

 default:
 printf("Invalid letter grade");
 }

 Displays one of five
messages based on the
value of next_ch (type
 char). If next_ch is
 'D' , 'd' , or 'F' , 'f' ,
the student is put on pro-
bation. If next_ch is not
listed in the case labels,
displays an error message.

NEW C CONSTRUCTS (continued)

227Quick-Check Exercises

 ■ Quick-Check Exercises
 1. An if statement implements __________ execution.
 2. What is a compound statement?
 3. A switch statement is often used instead of __________.
 4. What can be the values of an expression with a relational operator?
 5. The relational operator <= means __________.
 6. A hand trace is used to verify that a(n) __________ is correct.
 7. List the three types of control structures.
 8. Correct the syntax errors.

 if x > 25.0 {
 y = x
 else
 y = z;
 }

 9. What value is assigned to fee by the if statement when speed is 75 ?

 if (speed > 35)
 fee = 20.0;
 else if (speed > 50)
 fee = 40.00;
 else if (speed > 75)
 fee = 60.00;

 10. Answer Exercise 9 for the if statement that follows. Which if statement
seems reasonable?

 if (speed > 75)
 fee = 60.0;
 else if (speed > 50)
 fee = 40.00;
 else if (speed > 35)
 fee = 20.00;

 11. What output line(s) are displayed by the statements that follow when grade is
 'I' ? When grade is 'B' ? When grade is 'b' ?

 switch (grade) {
 case 'A':
 points = 4;
 break;

 case 'B':
 points = 3;
 break;

228 Chapter 4 • Selection Structures: If and Switch Statements

 case 'C':
 points = 2;
 break;

 case 'D':
 points = 1;
 break;

 case 'E':
 case 'I':
 case 'W':
 points = 0;
 }
 if (points > 0)
 printf("Passed, points earned = %d\n", points);
 else
 printf("Failed, no points earned\n");

 12. Explain the difference between the statements on the left and the statements
on the right. For each group of statements, give the final value of x if the ini-
tial value of x is 1 .

 if (x >= 0) if (x >= 0)
 x = x + 1; x = x + 1;
 else if (x >= 1) if (x >= 1)
 x = x + 2; x = x + 2;

 13. a. Evaluate the expression
 1 && (30 % 10 >= 0) && (30 % 10 <= 3)

 b. Is either set of parentheses required?
 c. Write the complement of the expression two ways. First, add one opera-

tor and one set of parentheses. For the second version, use DeMorgan’s
theorem.

 ■ Answers to Quick-Check Exercises
 1. conditional
 2. one or more statements surrounded by braces
 3. nested if statements or a multiple-alternative if statement
 4. 0 and 1
 5. less than or equal to
 6. algorithm
 7. sequence, selection, repetition
 8. Parenthesize condition, remove braces (or add them around else: } else {),

and add a semicolon to the first assignment statement.

229Review Questions

 9. 20.00 (first condition is met)
 10. 40.00, the one in 10
 11. when grade is 'I' :

 Failed, no points earned
 when grade is 'B' :

 Passed, points earned = 3
 when grade is 'b' :

 The switch statement is skipped so the output printed depends on the previ-
ous value of points (which may be garbage).

 12. A nested if statement is on the left; a sequence of if statements is on the
right. On the left x becomes 2 ; on the right x becomes 4 .

 13. a. 1
 b. no
 c. !(1 && (30 % 10 >= 0) && (30 % 10 <= 3))
 0 || (30 % 10 < 0) || (30 % 10 > 3)

 ■ Review Questions
 1. Making a decision between two alternative courses of action is usually imple-

mented with a(n) ________ statement in C.
 2. Trace the following program fragment; indicate which function will be called

if a data value of 27.34 is entered.

 printf("Enter a temperature> ");
 scanf("%lf", &temp);
 if (temp > 32.0)
 not_freezing();
 else
 ice_forming();

 3. Write a multiple-alternative if statement to display a message indicating
the educational level of a student based on the student’s number of years of
schooling (0, none; 1–5, elementary school; 6–8, middle school; 9–12, high
school; more than 12, college). Print a message to indicate bad data as well.

 4. Write a switch statement to select an operation based on the value of inven-
tory . Increment total_paper by paper_order if inventory is 'B' or 'C' ;
increment total_ribbon by ribbon_order if inventory is 'E' , 'F' , or 'D' ;
increment total_label by label_order if inventory is 'A' or 'X' . Do noth-
ing if inventory is 'M' . Display an error message if the value of inventory is
not one of these eight letters.

 5. Write an if statement that displays an acceptance message for an astronaut
candidate if the person’s weight is between the values of opt_min and opt_max

230 Chapter 4 • Selection Structures: If and Switch Statements

inclusive, the person’s age is between age_min and age_max inclusive, and the
person is a nonsmoker (smoker is false).

 6. Implement the flow diagram in Fig. 4.14 using a nested if structure.

 ■ Programming Projects
 1. Keith’s Sheet Music needs a program to implement its music teacher’s dis-

count policy. The program is to prompt the user to enter the purchase total
and to indicate whether the purchaser is a teacher. The store plans to give
each customer a printed receipt, so your program is to create a nicely format-
ted file called receipt.txt. Music teachers receive a 10% discount on their
sheet music purchases unless the purchase total is $100 or higher. In that
case, the discount is 12%. The discount calculation occurs before addition of
the 5% sales tax. Here are two sample output files—one for a teacher and one
for a nonteacher.

age > 20

age > 12

"Child"

"Adult"

"Teen"

sts is 'W'

"Retired
 senior"

"Working
 senior"

age > 59
truefalse

true

false

true

true

false

false

 FIGURE 4.14 Flow Diagram for Review Question 6

231Programming Projects

 Total purchases $122.00
 Teacher's discount (12%) 14.64
 Discounted total 107.36
 Sales tax (5%) 5.37
 Total $112.73

 Total purchases $ 24.90
 Sales tax (5%) 1.25
 Total $ 26.15

 Note: to display a % sign, place two % signs in the format string:

 printf("%d%%", SALES_TAX);

 2. Write a program that calculates the user’s body mass index (BMI) and catego-
rizes it as underweight, normal, overweight, or obese, based on the following
table from the United States Centers for Disease Control:

 BMI Weight Status

 Below 18.5 Underweight

 18.5–24.9 Normal

 25.0–29.9 Overweight

 30.0 and above Obese

 To calculate BMI based on weight in pounds (wt_lb) and height in inches
(ht_in), use this formula (rounded to tenths):

703 * wt_lb

ht_in2

 Prompt the user to enter weight in pounds and height in inches.
 3. While spending the summer as a surveyor’s assistant, you decide to write a pro-

gram that transforms compass headings in degrees (0 to 360) to compass bear-
ings. A compass bearing consists of three items: the direction you face (north or
south), an angle between 0 and 90 degrees, and the direction you turn before
walking (east or west). For example, to get the bearing for a compass heading
of 110.0 degrees, you would first face due south (180 degrees) and then turn
70.0 degrees east (180.0 − 70.0 = 110.0). Therefore, the bearing is South 70.0
degrees East. Be sure to check the input for invalid compass headings.

 4. Write a program that reports the contents of a compressed-gas cylinder based
on the first letter of the cylinder’s color. The program input is a character rep-
resenting the observed color of the cylinder: ‘Y’ or ‘y’ for yellow, ‘O’ or ‘o’ for
orange, and so on. Cylinder colors and associated contents are as follows:

 orange ammonia
 brown carbon monoxide
 yellow hydrogen
 green oxygen

232 Chapter 4 • Selection Structures: If and Switch Statements

 Your program should respond to input of a letter other than the first letters of
the given colors with the message, Contents unknown .

 5. The National Earthquake Information Center has asked you to write a pro-
gram implementing the following decision table to characterize an earthquake
based on its Richter scale number.

 Richter Scale Number (n) Characterization

 n < 5.0 Little or no damage

 5.0 … n 6 5.5 Some damage

 5.5 … n 6 6.5 Serious damage: walls may crack or fall

 6.5 … n 6 7.5 Disaster: houses and buildings may collapse

 higher Catastrophe: most buildings destroyed

 Could you handle this problem with a switch statement? If so, use a switch
statement; if not, explain why.

 6. Write a program that takes the x – y coordinates of a point in the Cartesian
plane and prints a message telling either an axis on which the point lies or the
quadrant in which it is found.

QI I

x

y

QIII

QI

QI V

 Sample lines of output:

 (-1.0, -2.5) is in quadrant III
 (0.0, 4.8) is on the y-axis

 7. Write a program that determines the day number (1 to 366) in a year for a
date that is provided as input data. As an example, January 1, 1994, is day 1.
December 31, 1993, is day 365. December 31, 1996, is day 366, since 1996 is
a leap year. A year is a leap year if it is divisible by four, except that any year
divisible by 100 is a leap year only if it is divisible by 400. Your program should
accept the month, day, and year as integers. Include a function leap that
returns 1 if called with a leap year, 0 otherwise.

233Programming Projects

 8. Write a program that interacts with the user like this:

 (1) Carbon monoxide
 (2) Hydrocarbons
 (3) Nitrogen oxides
 (4) Nonmethane hydrocarbons
 Enter pollutant number>> 2
 Enter number of grams emitted per mile>> 0.35
 Enter odometer reading>> 40112
 Emissions exceed permitted level of 0.31 grams/mile.

 Use the table of emissions limits below to determine the appropriate message. 1

 First 50,000 Miles Second 50,000 Miles

 carbon monoxide 3.4 grams/mile 4.2 grams/mile

 hydrocarbons 0.31 grams/mile 0.39 grams/mile

 nitrogen oxides 0.4 grams/mile 0.5 grams/mile

 nonmethane hydrocarbons 0.25 grams/mile 0.31 grams/mile

 9. Chatflow Wireless offers customers 600 weekday minutes for a flat rate of
39.99. Night (8 P.M. to 7 A.M.) and weekend minutes are free, but additional
weekday minutes cost 0.40 each. There are taxes of 5.25% on all charges.
Write a program that prompts the user to enter the number of weekday min-
utes, night minutes, and weekend minutes used, and calculates the monthly
bill and average cost of a minute before taxes. The program should display
with labels all the input data, the pretax bill and average minute cost, the
taxes, and the total bill. Store all monetary values as whole cents (rounding
the taxes and average minute cost), and divide by 100 for display of results.

 10. Write a program to control a bread machine. Allow the user to input the type
of bread as W for White and S for Sweet. Ask the user if the loaf size is double
and if the baking is manual. The following table details the time chart for the
machine for each bread type. Display a statement for each step. If the loaf
size is double, increase the baking time by 50 percent. If baking is manual,
stop after the loaf-shaping cycle and instruct the user to remove the dough for
manual baking. Use functions to display instructions to the user and to com-
pute the baking time.

 1 Adapted from ENERGY: PRINCIPLES, PROBLEMS, ALTERNATIVES, 4th edition by Joseph Priest.
Copyright © 1991 by Pearson Education, Inc. Printed and electronically reproduced by permission of
Pearson Education, Inc., Upper Saddle River, New Jersey .

234 Chapter 4 • Selection Structures: If and Switch Statements

 BREAD TIME CHART

 Operation White Bread Sweet Bread

 Primary kneading 15 mins 20 mins

 Primary rising 60 mins 60 mins

 Secondary kneading 18 mins 33 mins

 Secondary rising 20 mins 30 mins

 Loaf shaping 2 seconds 2 seconds

 Final rising 75 mins 75 mins

 Baking 45 mins 35 mins

 Cooling 30 mins 30 mins

 11. The table below shows the normal boiling points of several substances. Write
a program that prompts the user for the observed boiling point of a substance
in °C and identifies the substance if the observed boiling point is within 5% of
the expected boiling point. If the data input is more than 5% higher or lower
than any of the boiling points in the table, the program should output the
 message Substance unknown .

 Substance Normal boiling point (°C)

 Water 100

 Mercury 357

 Copper 1187

 Silver 2193

 Gold 2660

 Your program should define and call a function within_x_percent that takes
as parameters a reference value ref , a data value data , and a percentage value
 x and returns 1 meaning true if data is within x % of ref —that is, (ref – x%
* ref) ≤ data ≤ (ref + x % * ref) . Otherwise within_x_percent would
return zero, meaning false. For example, the call within_x_percent(357,
323, 10) would return true, since 10% of 357 is 35.7, and 323 falls between
321.3 and 392.7.

 Repetition and
Loop Statements

 CHAPTER OBJECTIVES
 • To understand why repetition is an important control

structure in programming

 • To learn about loop control variables and the three steps
needed to control loop repetition

 • To learn how to use the C for , while , and do-while
statements for writing loops and when to use each
 statement type

 • To learn how to accumulate a sum or a product within a
loop body

 • To learn common loop patterns such as counting loops,
sentinel-controlled loops, and flag-controlled loops

 • To understand nested loops and how the outer loop con-
trol variable and inner loop control variable are changed
in a nested loop

 • To learn how to debug programs using a debugger

 • To learn how to debug programs by adding diagnostic
output statements

 C H A P T E R

5

 I n your programs so far, the statements in the program body execute only once.
However, in most commercial software that you use, you can repeat a process many
times. For example, when using an editor program or a word processor, you can move
the cursor to a program line and perform as many edit operations as you need to.

 Repetition, you’ll recall, is the third type of program control structure
(sequence , selection , repetition), and the repetition of steps in a program is called a
 loop . In this chapter we describe three C loop control statements: while , for , and
 do - while . In addition to describing how to write loops using each statement, we
describe the advantages of each and explain when it is best to use each one. Like if
statements, loops can be nested, and the chapter demonstrates how to write and use
nested loops in your programs.

 5.1 Repetition in Programs
 Just as the ability to make decisions is an important programming tool, so is the abil-
ity to specify repetition of a group of operations. For example, a company that has
seven employees will want to repeat the gross pay and net pay computations in its
payroll program seven times, once for each employee. The loop body contains the
statements to be repeated.

 Writing out a solution to a specific case of a problem can be helpful in prepar-
ing you to define an algorithm to solve the same problem in general. After you solve
the sample case, ask yourself some of the following questions to determine whether
loops will be required in the general algorithm:

 1. Were there any steps I repeated as I solved the problem? If so, which ones?
 2. If the answer to question 1 is yes, did I know in advance how many times to

repeat the steps?
 3. If the answer to question 2 is no, how did I know how long to keep repeating

the steps?

 Your answer to the first question indicates whether your algorithm needs a loop
and what steps to include in the loop body if it does need one. Your answers to the
other questions will help you determine which loop structure to choose for your
solution. Figure 5.1 diagrams the relationship between these questions and the type
of loop you should choose. Table 5.1 defines each of the kinds of loops you may
need and refers you to the sections(s) of this chapter where you will find implemen-
tations of these loops.

 loop a control
structure that repeats
a group of steps in a
program

 loop body the
statements that are
repeated in the loop

5.1 • Repetition in Programs 237

 TABLE 5.1 Comparison of Loop Kinds

 Kind When Used

 C
Implementation
Structures

 Section
Containing
an Example

 Counting loop We can determine before loop execution
exactly how many loop repetitions will be
needed to solve the problem.

 while
for

 5.2
 5.4

 Sentinel-controlled loop Input of a list of data of any length ended
by a special value

 while, for 5.6

 Endfile-controlled loop Input of a single list of data of any length
from a data file

 while, for 5.6

 Input validation loop Repeated interactive input of a data value
until a value within the valid range is entered

 do-while 5.8

 General conditional loop Repeated processing of data until a desired
condition is met

 while, for 5.5

Any steps
repeated?

Know in advance
how many times

to repeat?

Use a counting
loop

Use one of the conditional loops:
 sentinel-controlled
 endfile-controlled
 input validation
 general conditional

No loop
required

No

No

Yes

Yes

 FIGURE 5.1

 Flow Diagram
of Loop Choice
Process

238 Chapter 5 • Repetition and Loop Statements

 EXERCISES FOR SECTION 5.1

 Self-Check

 1. Choose an appropriate kind of loop from Table 5.1 for solving each of the fol-
lowing problems.

 a. Calculate the sum of the test scores of a class of 35 students. (Hint:
Initialize sum to zero before entering loop.)

 b. Print weekly paychecks for a list of employees. The following data are to
be entered interactively for each employee: ID, hours worked, and hourly
pay rate. An ID of zero marks the end of the data.

 c. Process a data file of Celsius temperatures. Count how many are above
100°C.

 5.2 Counting Loops and the while Statement
 The loop shown in pseudocode below is called a counter-controlled loop (or
 counting loop) because its repetition is managed by a loop control variable whose
value represents a count. A counter-controlled loop follows this general format:

 Set loop control variable to an initial value of 0 .
 while loop control variable < final value

 . . .
 Increase loop control variable by 1 .

 We use a counter-controlled loop when we can determine prior to loop execu-
tion exactly how many loop repetitions will be needed to solve the problem. This
number should appear as the final value in the while condition.

 The while Statement

 Figure 5.2 shows a program fragment that computes and displays the gross pay for
seven employees. The loop body is the compound statement that starts on the third
line. The loop body gets an employee’s payroll data and computes and displays that
employee’s pay. After seven weekly pay amounts are displayed, the statement fol-
lowing the loop body executes and displays the message All employees processed .

 The three color lines in Fig. 5.2 control the looping process. The first statement

 count_emp = 0; /* no employees processed yet */

 stores an initial value of 0 in the variable count_emp , which represents the count of
employees processed so far. The next line evaluates the condition count_emp < 7 . If
the condition is true, the compound statement representing the loop body is executed,

 counter-controlled
loop (counting
loop) a loop whose
required number
of iterations can be
determined before loop
execution begins

2395.2 • Counting Loops and the while Statement

causing a new pair of data values to be scanned and a new pay amount to be computed
and displayed. The last statement in the loop body

 count_emp = count_emp + 1; /* increment count_emp */

 adds 1 to the current value of count_emp . After executing the last step in the loop
body, control returns to the line beginning with while and the condition is reevalu-
ated for the next value of count_emp . The loop body is executed once for each value
of count_emp from 0 to 6 . Eventually, count_emp becomes 7 , and the condition
evaluates to false (0). When this happens, the loop body is not executed and control
passes to the display statement that follows the loop body. The expression follow-
ing the reserved word while is called the loop repetition condition . The loop is
repeated when this condition is true—that is, when its value is not 0 . The loop is
exited when this condition is false.

 The flowchart in Fig. 5.3 summarizes what we have explained so far about
 while loops. In the flowchart, the expression in the diamond-shaped box is evalu-
ated first. If that expression is true, the loop body is executed, and the process is
repeated. The while loop is exited when the expression becomes false. If the loop
repetition condition is false when it is first tested, then the loop body is not executed
at all.

 Make sure you understand the difference between the while statement in
 Fig. 5.3 and the following if statement:

 if (count_emp < 7) {
 . . .
 }

 In an if statement, the compound statement after the parenthesized condition
executes at most only once. In a while statement, the compound statement can
execute more than once.

 FIGURE 5.2 Program Fragment With a Loop

 1. count_emp = 0; /* no employees processed yet */
 2. while (count_emp < 7) { /* test value of count_emp */
 3. printf("Hours> ");
 4. scanf("%d", &hours);
 5. printf("Rate> ");
 6. scanf("%lf", &rate);
 7. pay = hours * rate;
 8. printf("Pay is $%6.2f\n", pay);
 9. count_emp = count_emp + 1; /* increment count_emp */
 10. }
 11. printf("\nAll employees processed\n");

 loop repetition
condition the
condition that controls
loop repetition

240 Chapter 5 • Repetition and Loop Statements

 Syntax of the while Statement In Fig. 5.2 the variable count_emp is called
the loop control variable because its value determines whether the loop body is
repeated. The loop control variable count_emp must be (1) initialized, (2) tested,
and (3) updated for the loop to execute properly. Each step is summarized next.

 ■ Initialization. count_emp is set to an initial value of 0 (initialized to 0) before
the while statement is reached.

 ■ Testing. count_emp is tested before the start of each loop repetition (called an
 iteration or a pass).

 ■ Updating. count_emp is updated (its value increased by 1) during each iteration.

 Similar steps must be performed for every while loop. Without the initializa-
tion, the initial test of count_emp is meaningless. The updating step ensures that the
program progresses toward the final goal (count_emp >= 7) during each repetition
of the loop. If the loop control variable is not updated, the loop will execute “for-
ever.” Such a loop is called an infinite loop .

count_emp
< 7

true

false Get data
Compute pay
Display pay
Increase count_emp
 by 1

Exit loop

 FIGURE 5.3

 Flowchart for
a while Loop

 loop control
variable the variable
whose value controls
loop repetition

 infinite loop a loop
that executes forever

 while Statement

 SYNTAX: while (loop repetition condition)
 statement;

 EXAMPLE: /* Display N asterisks. */

 count_star = 0;

 while (count_star < N) {

 printf("*");

 count_star = count_star + 1;

 } (continued)

2415.2 • Counting Loops and the while Statement

 EXERCISES FOR SECTION 5.2

 Self-Check

 1. Predict the output of this program fragment:

 i = 0;
 while (i <= 5) {
 printf("%3d %3d\n", i, 10 - i);
 i = i + 1;
 }

 2. What is displayed by this program fragment for an input of 8?

 scanf("%d", &n);
 ev = 0;
 while (ev < n) {
 printf("%3d", ev);
 ev = ev + 2;
 }
 printf("\n");

 Programming

 1. Write a program fragment that produces this output:

 0 1
 1 2
 2 4
 3 8
 4 16
 5 32
 6 64

 INTERPRETATION: The loop repetition condition (a condition to control the loop process) is

tested; if it is true, the statement (loop body) is executed, and the loop repetition condition is

retested. The statement is repeated as long as (while) the loop repetition condition is true.

When this condition is tested and found to be false, the while loop is exited and the next

program statement after the while statement is executed.

 Note: If loop repetition condition evaluates to false the first time it is tested, statement is not

executed.

242 Chapter 5 • Repetition and Loop Statements

 5.3 Computing a Sum or a Product in a Loop
 Loops often accumulate a sum or a product by repeating an addition or multiplica-
tion operation as demonstrated in Examples 5.1 and 5.2 .

 EXAMPLE 5.1 The program in Fig. 5.4 has a while loop similar to the loop in Fig. 5.2 . Besides dis-
playing each employee’s pay, it computes and displays the company’s total payroll.
Prior to loop execution, the statements

 total_pay = 0.0;
 count_emp = 0;

 initialize both total_pay and count_emp to 0 , where count_emp is the counter
variable. Here total_pay is an accumulator variable, and it accumulates the total
payroll value. Initializing total_pay to 0 is critical; if you omit this step, your final
total will be off by whatever value happens to be stored in total_pay when the
program begins execution.

 In the loop body, the assignment statement

 total_pay = total_pay + pay; /* Add next pay. */

 adds the current value of pay to the sum being accumulated in total_pay .
Consequently, the value of total_pay increases with each loop iteration. Table 5.2
traces the effect of repeating this statement for the three values of pay shown in the
sample run. Recall that iteration means a pass through the loop.

 accumulator a
variable used to store a
value being computed
in increments during
the execution of a loop

(continued)

 FIGURE 5.4 Program to Compute Company Payroll

 1. /* Compute the payroll for a company */
 2.
 3. #include <stdio.h>
 4.
 5. int
 6. main(void)
 7. {
 8. double total_pay; /* company payroll */
 9. int count_emp; /* current employee */
 10. int number_emp; /* number of employees */
 11. double hours; /* hours worked */
 12. double rate; /* hourly rate */
 13. double pay; /* pay for this period */

2435.3 • Computing a Sum or a Product in a Loop

 14.
 15. /* Get number of employees. */
 16. printf("Enter number of employees> ");
 17. scanf("%d", &number_emp);
 18.
 19. /* Compute each employee's pay and add it to the payroll. */
 20. total_pay = 0.0;
 21. count_emp = 0;
 22. while (count_emp < number_emp) {
 23. printf("Hours> ");
 24. scanf("%lf", &hours);
 25. printf("Rate > $");
 26. scanf("%lf", &rate);
 27. pay = hours * rate;
 28. printf("Pay is $%6.2f\n\n", pay);
 29. total_pay = total_pay + pay; /* Add next pay. */
 30. count_emp = count_emp + 1;
 31. }
 32. printf("All employees processed\n");
 33. printf("Total payroll is $%8.2f\n", total_pay);
 34.
 35. return (0);
 36. }

 Enter number of employees> 3
 Hours> 50
 Rate > $5.25
 Pay is $262.50

 Hours> 6
 Rate > $5.00
 Pay is $ 30.00

 Hours> 15
 Rate > $7.00
 Pay is $105.00

 All employees processed
 Total payroll is $ 397.50

FIGURE 5.4 (continued)

244 Chapter 5 • Repetition and Loop Statements

 TABLE 5.2 Trace of Three Repetitions of Loop in Fig. 5.4

 Statement hours rate pay total_pay count_emp Effect

 ? ? ? 0.0 0

 count_emp < number_emp true

 scanf("%lf", &hours); 50.0 get hours

 scanf("%lf", &rate); 5.25 get rate

 pay = hours * rate; 262.5 find pay

 total_pay = total_pay
+ pay;

 262.5 add to
 total_pay

 count_emp = count_emp
+ 1;

 1 increment
 count_emp

 count_emp < number_emp true

 scanf("%lf", &hours); 6.0 get hours

 scanf("%lf", &rate); 5.0 get rate

 pay = hours * rate; 30.0 find pay

 total_pay = total_pay
+ pay;

 292.5 add to
 total_pay

 count_emp = count_emp
+ 1;

 2 increment
 count_emp

 count_emp < number_emp true

 scanf("%lf", &hours); 15.0 get hours

 scanf("%lf", &rate); 7.0 get rate

 pay = hours * rate; 105.0 find pay

 total_pay = total_pay
+ pay;

 397.5 add pay to
 total_pay

 count_emp = count_emp
+ 1;

 3 increment
 count_emp

 Program Style Writing General Loops

 Because the loop in Fig. 5.2 uses the loop repetition condition count_emp < 7 , it
processes exactly 7 employees. The loop in Fig. 5.4 is more general. It uses the loop
repetition condition count_emp < number_emp so it can process any number of
employees. The number of employees to be processed must be scanned into vari-
able number_emp before the while statement executes. The loop repetition condi-
tion compares the number of employees processed so far (count_emp) to the total
number of employees (number_emp).

2455.3 • Computing a Sum or a Product in a Loop

 Multiplying a List of Numbers

 In a similar way, we can use a loop to compute the product of a list of numbers as
shown in the next example.

 EXAMPLE 5.2 The loop that follows multiplies data items together as long as the product remains
less than 10,000. It displays the product calculated so far before asking for the next
data value. The product so far is updated on each iteration by executing the statement

 product = product * item; /* Update product */

 Loop exit occurs when the value of product is greater than or equal to 10,000.
Consequently, the loop body does not display the last value assigned to product .

 /* Multiply data while product remains less than 10000 */
 product = 1;
 while (product < 10000) {
 printf("%d\n", product); /* Display product so far */
 printf("Enter next item> ");
 scanf("%d", &item);
 product = product * item; /* Update product */
 }

 This loop is an example of the general conditional loop presented in Table 5.1 ,
whose pseudocode is shown below.

 1. Initialize loop control variable.
 2. As long as exit condition hasn’t been met
 3. Continue processing.

 The product-computation loop’s loop control variable is product, which is
 initialized to 1. Its exit condition is that product is greater than or equal to 10,000,
and the steps of the loop body make up the processing mentioned in pseudocode
step 3.

 Compound Assignment Operators

 We have seen several instances of assignment statements of the form

 variable = variable op expression;

 where op is a C arithmetic operator. These include increments and decrements of
loop counters

 count_emp = count_emp + 1;
 time = time - 1;

246 Chapter 5 • Repetition and Loop Statements

 as well as statements accumulating a sum or computing a product in a loop, such as

 total_pay = total_pay + pay;
 product = product * item;

 C provides special assignment operators that enable a more concise notation for
statements of this type. For the operations + , - , * , / , and % , C defines the compound
 op = assignment operators += , -= , *= , /= , and %= . A statement of the form

 variable op = expression;

 is an alternative way of writing the statement

 variable = variable op (expression);

 Table 5.3 shows some examples using compound assignment operators. The last
example demonstrates the relevance of the parentheses around expression in the
definition of an assignment statement with a compound operator.

 EXERCISES FOR SECTION 5.3

 Self-Check

 1. What output values are displayed by the following while loop for a data
value of 5? Of 6? Of 7?

 printf("Enter an integer> ");
 scanf("%d", &x);
 product = x;
 count = 0;

 TABLE 5.3 Compound Assignment Operators

 Statement with Simple
Assignment Operator

 Equivalent Statement
with Compound
Assignment Operator

 count_emp = count_emp + 1; count_emp += 1;

 time = time - 1; time -= 1;

 total_time = total_time +
 times;

 total time += time;

 product = product * item; product *= item;

 n = n * (x + 1); n *= x + 1;

2475.4 • The for Statement

 while (count < 4) {
 printf("%d\n", product);
 product *= x;
 count += 1;
 }

 In general, for a data value of any number n, what does this loop display?
 2. What values are displayed if the call to printf comes at the end of the loop

instead of at the beginning?
 3. The following segment needs some revision. Insert braces where they are

needed and correct the errors. The corrected code should take five integers
and display their sum.

 count = 0;
 while (count <= 5)
 count += 1;
 printf("Next number> ");
 scanf("%d", &next_num);
 next_num += sum;
 printf("%d numbers were added; \n", count);
 printf("their sum is %d.\n", sum);

 4. Where possible, write equivalents for the following statements using com-
pound assignment operators:

 s = s / 5;
 q = q * n + 4;
 z = z - x * y;
 t = t + (u % v);

 Programming

 1. Write a program segment that computes 1 + 2 + 3 + ... + (n - 1) + n ,
where n is a data value. Follow the loop body with an if statement that com-
pares this value to (n * (n + 1)) / 2 and displays a message that indicates
whether the values are the same or different. What message do you think
will be displayed?

 5.4 The for Statement
 C provides the for statement as another form for implementing loops. The loops we
have seen so far are typical of most repetition structures in that they have three loop
control components in addition to the loop body:

 ■ initialization of the loop control variable,
 ■ test of the loop repetition condition, and
 ■ change (update) of the loop control variable.

248 Chapter 5 • Repetition and Loop Statements

 An important feature of the for statement in C is that it supplies a designated place
for each of these three components. A for statement implementation of the loop
from Fig. 5.4 is shown in Fig. 5.5 .

 The effect of this for statement is exactly equivalent to the execution of the
comparable while loop section of the program in Fig. 5.4 . Because the for state-
ment’s heading

 for (count_emp = 0; /* initialization */
 count_emp < number_emp; /* loop repetition condition */
 count_emp += 1) { /* update */

 combines the three loop control steps of initialization, testing, and update in one
place, separate steps to initialize and update count_emp must not appear elsewhere.
The for statement can be used to count up or down by any interval.

 Program Style Formatting the for Statement

 For clarity, we usually place each expression of the for heading on a separate line.
If all three expressions are very short, we may place them together on one line.
Here is an example:

 /* Display nonnegative numbers < max */
 for (i = 0; i < max; i += 1)
 printf("%d\n", i);

 FIGURE 5.5 Using a for Statement in a Counting Loop

 1. /* Process payroll for all employees */
 2. total_pay = 0.0;
 3. for (count_emp = 0; /* initialization */
 4. count_emp < number_emp; /* loop repetition condition */
 5. count_emp += 1) { /* update */
 6. printf("Hours> ");
 7. scanf("%lf", &hours);
 8. printf("Rate > $");
 9. scanf("%lf", &rate);
 10. pay = hours * rate;
 11. printf("Pay is $%6.2f\n\n", pay);
 12. total_pay = total_pay + pay;
 13. }
 14. printf("All employees processed\n");
 15. printf("Total payroll is $%8.2f\n", total_pay);

2495.4 • The for Statement

 The body of the for loop is indented. If the loop body is a compound statement
or if we are using a style in which we bracket all loop bodies, we place the opening
brace at the end of the for heading and terminate the statement by placing the clos-
ing brace on a separate line. This closing brace should be aligned with the “f” of the
 for that it is ending.

 Increment and Decrement Operators

 The counting loops that you have seen have all included assignment expressions of
the form

 counter = counter + 1

 or

 counter += 1

 The increment operator ++ takes a single variable as its operand. The side effect
of applying the ++ operator is that the value of its operand is incremented by one.
Frequently, ++ is used just for this side effect, as in the following loop in which the
variable counter is to run from 0 up to limit :

 for (counter = 0; counter < limit; ++counter)
 . . .

 for Statement

 SYNTAX: for (initialization expression ;
 loop repetition condition ;
 update expression)
 statement;

 EXAMPLE: /* Display N asterisks. */

 for (count_star = 0;

 count_star < N;

 count_star += 1)

 printf("*");

 INTERPRETATION: First, the initialization expression is executed. Then, the loop repetition con-

dition is tested. If it is true, the statement is executed, and the update expression is evaluated.

Then the loop repetition condition is retested. The statement is repeated as long as the loop

repetition condition is true. When this condition is tested and found to be false, the for loop

is exited, and the next program statement after the for statement is executed.

 Caution: Although C permits the use of fractional values for counting loop control variables

of type double , we strongly discourage this practice. Counting loops with type double

control variables will not always execute the same number of times on different computers.

 side effect a change
in the value of a
variable as a result
of carrying out an
operation

250 Chapter 5 • Repetition and Loop Statements

 The value of the expression in which the ++ operator is used depends on the
position of the operator. When the ++ is placed immediately in front of its operand
(prefix increment), the value of the expression is the variable’s value after incre-
menting. When the ++ comes immediately after the operand (postfix increment), the
expression’s value is the value of the variable before it is incremented. Compare the
action of the two code segments in Fig. 5.6 , given an initial value of 2 in i .

 C also provides a decrement operator that can be used in either the prefix or
postfix position. For example, if the initial value of n is 4 , the code fragment on the
left prints

 3 3

 and the one on the right prints

 4 3

 printf("%3d", --n); printf("%3d", n--);
 printf("%3d", n); printf("%3d", n);

 You should avoid using the increment and decrement operators in complex
expressions in which the variables to which they are applied appear more than once.
C compilers are expected to exploit the commutativity and associativity of various
operators in order to produce efficient code. For example, this code fragment may
assign y the value 13 (2 * 5 + 3) in one implementation and the value 18 (3 * 5 +
3) in another.

 x = 5;
 i = 2;
 y = i * x + ++i;

 A programmer must not depend on side effects that will vary from one compiler
to another.

i

2

j

?Before...

i

3

j

3After...

Increments... j = ++i;

prefix:
Increment i and
then use it.

j = i++;

postfix:
Use i and then
increment it.

i

3

j

2

 FIGURE 5.6

 Comparison of
Prefix and Postfix
Increments

2515.4 • The for Statement

 EXAMPLE 5.3 Function factorial (Fig. 5.7) computes the factorial of an integer represented by
the formal parameter n. The loop body executes for decreasing values of i from n
through 2, and each value of i is incorporated in the accumulating product. Loop
exit occurs when i is 1.

 Increments and Decrements Other Than 1

 We have seen for statement counting loops that count up by one and down by one.
Now we will use a loop that counts down by five to display a Celsius-to-Fahrenheit
conversion table.

 EXAMPLE 5.4 The table displayed by the program in Fig. 5.8 shows temperature conversions
from 10 degrees Celsius to −5 degrees Celsius because of the values of the constant
macros named CBEGIN and CLIMIT . Since the loop update step subtracts CSTEP (5)
from celsius , the value of the counter celsius decreases by five after each rep-
etition. Loop exit occurs when celsius becomes less than CLIMIT —that is, when
 celsius is -10 . Table 5.4 uses the small circled numbers to trace the execution of
this counting for loop.

 FIGURE 5.7 Function to Compute Factorial

 1. /*
 2. * Computes n!
 3. * Pre: n is greater than or equal to zero
 4. */
 5. int
 6. factorial(int n)
 7. {
 8. int i, /* local variables */
 9. product; /* accumulator for product computation */
 10.
 11. product = 1;
 12. /* Computes the product n x (n-1) x (n-2) x . . . x 2 x 1 */
 13. for (i = n; i > 1; --i) {
 14. product = product * i;
 15. }
 16.
 17. /* Returns function result */
 18. return (product);
 19. }

252 Chapter 5 • Repetition and Loop Statements

 FIGURE 5.8 Displaying a Celsius-to-Fahrenheit Conversion Table

 1. /* Conversion of Celsius to Fahrenheit temperatures */
 2.
 3. #include <stdio.h>
 4.
 5. /* Constant macros */
 6. #define CBEGIN 10
 7. #define CLIMIT -5
 8. #define CSTEP 5
 9.
 10. int
 11. main(void)
 12. {
 13. /* Variable declarations */
 14. int celsius;
 15. double fahrenheit;
 16.
 17. /* Display the table heading */
 18. printf(" Celsius Fahrenheit\n");
 19.
 20. /* Display the table */
 21. 1 for (celsius = CBEGIN;
 22. 2 celsius >= CLIMIT;
 23. 3 celsius -= CSTEP) {
 24. 4 fahrenheit = 1.8 * celsius + 32.0;
 25. 5 printf("%6c%3d%8c%7.2f\n", ' ', celsius, ' ', fahrenheit);
 26. }
 27.
 28. return (0);
 29. }
 Celsius Fahrenheit
 10 50.00
 5 41.00
 0 32.00
 -5 23.00

2535.4 • The for Statement

 The trace in Table 5.4 shows that the loop control variable celsius is initialized
to CBEGIN (10) when the for loop is reached. Since 10 is greater than or equal to
 CLIMIT (-5), the loop body is executed. After each loop repetition, CSTEP (5) is
subtracted from celsius , and celsius is tested in the loop repetition condition to
see whether its value is still greater than or equal to CLIMIT . If the condition is true,
the loop body is executed again and the next value of fahrenheit is computed and
displayed. If the condition is false, the loop is exited.

 TABLE 5.4 Trace of Loop in Fig. 5.8

 Statement celsius fahrenheit Effect

 1 for (celsius = CBEGIN; 10 ? Initialize celsius to 10

 2 celsius >= CLIMIT; 10 >= -5 is true

 4 fahrenheit = 1.8 *
 celsius + 32.0;

 50.0 Assign 50.0 to fahrenheit

 5 printf . . . Display 10 and 50.0

 Update and test celsius
 3 . . . celsius -= CSTEP 5 Subtract 5 from celsius , giving 5

 2 celsius >= CLIMIT; 5 >= -5 is true

 4 fahrenheit = 1.8 *
 celsius + 32.0;

 41.0 Assign 41.0 to fahrenheit

 5 printf . . . Display 5 and 41.0

 Update and test celsius
 3 . . . celsius -= CSTEP 0 Subtract 5 from celsius , giving 0

 2 celsius >= CLIMIT; 0 >= -5 is true

 4 fahrenheit = 1.8 *
 celsius + 32.0;

 32.0 Assign 32.0 to fahrenheit

 5 printf . . . Display 0 and 32.0

 Update and test celsius

 3 . . . celsius -= CSTEP -5 Subtract 5 from celsius , giving -5

 2 celsius >= CLIMIT; -5 >= -5 is true

 4 fahrenheit = 1.8 *
 celsius + 32.0;

 23.0 Assign 23.0 to fahrenheit

 5 printf . . . Display -5 and 23.0

 Update and test celsius
 3 . . . celsius -= CSTEP -10 Subtract 5 from celsius , giving − 10

 2 celsius >= CLIMIT; -10 >= -5 is false, so exit loop

254 Chapter 5 • Repetition and Loop Statements

 Because the structure of the for statement makes it easy for the reader of a
program to identify the major loop control elements, we will use it often in the
remainder of our study of repetition when a loop requires simple initialization, test-
ing, and updating of a loop control variable.

 Displaying a Table of Values

 The program in Fig. 5.8 displays a table of output values. The printf call before
the loop displays a string that forms the table heading. Within the loop body, the
 printf statement
 printf("%6c%3d%8c%7.2f\n", ' ', celsius, ' ', fahrenheit);

 displays a pair of output values each time it executes. Function printf substitutes the
space character ' ' for the placeholders %6c and %8c in its format string, causing 6
blanks to precede the value of celsius and 8 blanks to separate the values of celsius
and fahrenheit . The \n in the printf format string ends the line on which each pair
of numbers appears, so the loop creates a table consisting of two columns of numbers.

 EXERCISES FOR SECTION 5.4

 Self-Check

 1. Trace the execution of the loop that follows for n = 8 . Show values of odd and
 sum after the update of the loop counter for each iteration.
 sum = 0;
 for (odd = 1;
 odd < n;
 odd += 2)
 sum = sum + odd;

 printf("Sum of positive odd numbers less than %d is %d.\n", n,
 sum);

 2. Given the constant macro definitions of Fig. 5.8 (repeated here)
 #define CBEGIN 10
 #define CLIMIT -5
 #define CSTEP 5

 indicate what values of celsius would appear in the conversion table displayed
if the for loop header of Fig. 5.8 were rewritten as shown:

 a. for (celsius = CLIMIT;
 celsius <= CBEGIN;
 celsius += CSTEP)

 b. for (celsius = CLIMIT;
 celsius >= CBEGIN;
 celsius += CSTEP)

2555.4 • The for Statement

 c. for (celsius = CSTEP;
 celsius >= CBEGIN;
 celsius += CLIMIT)

 d. for (celsius = CLIMIT;
 celsius <= CSTEP;
 celsius += CBEGIN)

 3. What is the least number of times that the body of a while loop can be exe-
cuted? Answer the question for the body of a for loop.

 4. What values are assigned to n , m , and p , given these initial values?

i

4

j

8
n = ++i * --j;
m = i + j--;
p = i + j;

 5. Rewrite the code shown in Exercise 4 so the effect is equivalent but no incre-
ment/decrement operator appears in an expression with another arithmetic
operator.

 6. What errors do you see in the following fragment? Correct the code so it dis-
plays all multiples of 4 from 0 through 100 .

 for mult4 = 0;
 mult4 < 100;
 mult4 += 4;
 printf("%d\n", mult4);

 7. a. Trace the following program fragment:

 j = 10;
 for (i = 1; i <= 5; ++i) {
 printf("%d %d\n", i, j);
 j -= 2;
 }

 b. Rewrite the previous program fragment so that it produces the same output
but uses 0 as the initial value of i.

 Programming

 1. Write a loop that displays a table of angle measures along with their sine and
cosine values. Assume that the initial and final angle measures (in degrees) are
available in init_degree and final_degree (type int variables), and that
the change in angle measure between table entries is given by step_degree
(also a type int variable). Remember that the math library’s sin and cos
functions take arguments that are in radians.

 2. Write a program to display a centimeters-to-inches conversion table. The smallest
and largest number of centimeters in the table are input values. Your table should
give conversions in 10-centimeter intervals. One centimeter equals 0.3937 inch.

256 Chapter 5 • Repetition and Loop Statements

 5.5 Conditional Loops
 In many programming situations, you will not be able to determine the exact
number of loop repetitions before loop execution begins. When we multiplied a
list of numbers in Example 5.2 , the number of repetitions depended on the data
entered. Although we did not know in advance how many times the loop would
execute, we were still able to write a condition to control the loop. Here is another
case of this type of repetition. You want to continue prompting the user for a data
value as long as the response is unreasonable.

 Print an initial prompting message.
 Get the number of observed values.
 while the number of values is negative
 Print a warning and another prompting message.
 Get the number of observed values.

 Like the counting loops we considered earlier, such a conditional loop typically
has three parts that control repetition: initialization, testing of a loop repetition con-
dition, and an update. Let’s analyze the algorithm for ensuring valid input. Clearly,
the loop repetition condition is

 number of values 6 0

 Because it makes no sense to test this condition unless number of values has a
meaning, getting this value must be the initialization step. The update action—the
statement that, if left out, would cause the loop to repeat infinitely—remains to be
identified. Getting a new number of observed values within the loop body is just
such a step. Since we have found these three essential loop parts, we can write this
validating input loop in C by using a while statement:
 printf("Enter number of observed values> ");
 scanf("%d", &num_obs); /* initialization */
 while (num_obs < 0) {
 printf("Negative number invalid; try again> ");
 scanf("%d", &num_obs); /* update */
 }

 At first, it may seem odd that the initialization and update steps are identical. In
fact, this is very often the case for loops performing input operations in situations
where the number of input values is not known in advance.

 EXAMPLE 5.5 The program in Fig. 5.9 is designed to assist in monitoring the gasoline supply in a
storage tank at the Super Oil Company refinery. The program is to alert the supervi-
sor when the supply of gasoline in the tank falls below 10% of the tank’s 80,000-barrel
storage capacity. Although the supervisor always deals with the contents of the tank in
terms of a number of barrels, the pump that is used to fill tanker trucks gives its meas-
urements in gallons. The barrel used in the petroleum industry equals 42 U.S. gallons.

2575.5 • Conditional Loops

 FIGURE 5.9 Program to Monitor Gasoline Storage Tank

 1. /*
 2. * Monitor gasoline supply in storage tank. Issue warning when supply
 3. * falls below MIN_PCT % of tank capacity.
 4. */
 5.
 6. #include <stdio.h>
 7.
 8. /* constant macros */
 9. #define CAPACITY 80000.0 /* number of barrels tank can hold */
 10. #define MIN_PCT 10 /* warn when supply falls below this
 11. percent of capacity */
 12. #define GALS_PER_BRL 42.0 /* number of U.S. gallons in one barrel */
 13.
 14. /* Function prototype */
 15. double monitor_gas(double min_supply, double start_supply);
 16.
 17. int
 18. main(void)
 19. {
 20. double start_supply, /* input - initial supply in barrels */
 21. min_supply, /* minimum number of barrels left without
 22. warning */
 23. current; /* output - current supply in barrels */
 24.
 25. /* Compute minimum supply without warning */
 26. min_supply = MIN_PCT / 100.0 * CAPACITY;
 27.
 28. /* Get initial supply */
 29. printf("Number of barrels currently in tank> ");
 30. scanf("%lf", &start_supply);
 31.
 32. /* Subtract amounts removed and display amount remaining
 33. as long as minimum supply remains. */
 34. current = monitor_gas(min_supply, start_supply);
 35.
 36. /* Issue warning */
 37. printf("only %.2f barrels are left.\n\n", current);
 38. printf("*** WARNING ***\n");

(continued)

258 Chapter 5 • Repetition and Loop Statements

 39. printf("Available supply is less than %d percent of tank's\n",
 40. MIN_PCT);
 41. printf("%.2f-barrel capacity.\n", CAPACITY);
 42.
 43. return (0);
 44. }
 45.
 46. /*
 47. * Computes and displays amount of gas remaining after each delivery
 48. * Pre : min_supply and start_supply are defined.
 49. * Post: Returns the supply available (in barrels) after all permitted
 50. * removals. The value returned is the first supply amount that is
 51. * less than min_supply.
 52. */
 53. double
 54. monitor_gas(double min_supply, double start_supply)
 55. {
 56. double remov_gals, /* input - amount of current delivery */
 57. remov_brls, /* in barrels and gallons */
 58. current; /* output - current supply in barrels */
 59.
 60. for (current = start_supply;
 61. current >= min_supply;
 62. current -= remov_brls) {
 63. printf("%.2f barrels are available.\n\n", current);
 64. printf("Enter number of gallons removed> ");
 65. scanf("%lf", &remov_gals);
 66. remov_brls = remov_gals / GALS_PER_BRL;
 67.
 68. printf("After removal of %.2f gallons (%.2f barrels),\n",
 69. remov_gals, remov_brls);
 70. }
 71.
 72. return (current);
 73. }

 Number of barrels currently in tank> 8500.5
 8500.50 barrels are available.

(continued)

 FIGURE 5.9 (continued)

2595.5 • Conditional Loops

 The main function first prompts the operator for the amount of gasoline
currently stored in the tank. Next, it calls function monitor_gas to monitor the
removal of gasoline and to stop removals as soon as the current supply falls below
the minimum supply level. After gasoline is pumped into each tanker, the opera-
tor enters the number of gallons removed and function monitor_gas updates the
number of barrels still available (current). When the supply drops below the 10%
limit, loop exit occurs and monitor_gas returns the value of current to the main
function, which issues a warning.

 A counting loop would not be appropriate in this program because we do not
know in advance how many tanker deliveries will need to be processed before the
warning is issued. However, the for statement is still a good choice because we do
have initialization, testing, and update steps.

 Let’s take a close look at the loop in function monitor_gas . Logically, we want
to continue to record amounts of gasoline removed as long as the supply in the tank
does not fall below the minimum. The loop repetition condition, the second expres-
sion in the for loop heading, states that we stay in the loop as long as

 current >= min_supply

 Since min_supply does not change, current is the variable that controls the loop.
Therefore, the first and third expressions of the for statement’s heading handle the
initialization and update of this variable’s value.

 Tracing this program with the data shown, we come first to the assignment
statement that computes a value for min_supply of 8000.0, based on the tank
capacity and minimum percentage. The call to printf just before the call to scanf

 Enter number of gallons removed> 5859.0
 After removal of 5859.00 gallons (139.50 barrels),
 8361.00 barrels are available.

 Enter number of gallons removed> 7568.4
 After removal of 7568.40 gallons (180.20 barrels),
 8180.80 barrels are available.

 Enter number of gallons removed> 8400.0
 After removal of 8400.00 gallons (200.00 barrels),
 only 7980.80 barrels are left.

 *** WARNING ***
 Available supply is less than 10 percent of tank's
 80000.00-barrel capacity.

 FIGURE 5.9 (continued)

260 Chapter 5 • Repetition and Loop Statements

generates the prompting message for entering the tank’s initial supply. Next, the
starting supply entered by the program operator is scanned into variable start_
supply and the main function calls monitor_gas .

 In monitor_gas , the initialization expression of the for statement copies the
starting supply into current , the loop control variable, giving current the value
 8500.5 . When the loop repetition condition

 current >= min_supply

 is first tested, it evaluates to true, causing the loop body (the compound statement
in braces) to execute. The current supply is displayed followed by a prompting mes-
sage. A value is obtained for gallons removed (5859.0), the value is converted to
barrels, and this amount is displayed. When execution of the loop body is complete,
the update expression of the for statement

 current -= remov_brls

 is executed, subtracting from the current supply the amount removed. The loop rep-
etition condition is retested with the new value of current (8361.00). Since 8361.00
> 8000.0 is true, the loop body once again displays the current supply and processes
a delivery of 7568.4 gallons, or 180.20 barrels. The value of current is then updated
to 8180.80 barrels, which is still not below the minimum, so the loop body executes
a third time, processing removal of 200.00 barrels. This time execution of the for
statement update expression brings the value of current to 7980.80 . The loop rep-
etition condition is tested again: Since 7980.8 >= 8000.0 is false, loop exit occurs,
and the statements following the closing brace of the loop body are executed.

 Just as in the counting loop shown in Fig. 5.5 , there are three critical steps in
 Fig. 5.9 that involve the loop control variable current .

 ■ current is initialized to the starting supply in the for statement initialization
expression.

 ■ current is tested before each execution of the loop body.
 ■ current is updated (by subtraction of the amount removed) during each iteration.

 Remember that steps similar to these appear in virtually every loop you write.
The C for statement heading provides you with a designated place for each of the
three steps.

 Program Style Performing Loop Processing in a Function

Subprogram

 In Fig. 5.9 , function monitor_gas contains a for loop that performs the major
program task—monitoring gasoline deliveries. The function result is the final value
of the loop control variable, current . This program structure is fairly common and
quite effective. Placing all loop processing in a function subprogram simplifies the
main function.

2615.6 • Loop Design

 EXERCISES FOR SECTION 5.5

 Self-Check

 1. Give an example of data the user could enter for the storage tank monitoring
program that would cause function monitor_gas to return without executing
the body of the for loop.

 2. Correct the syntax and logic of the code that follows so that it prints all multi-
ples of 4 from 0 through 100:

 for sum = 0;
 sum < 100;
 sum += 4;
 printf("%d\n", sum);

 3. What output is displayed if this list of data is used for the program in Fig. 5.9 ?

 8350.8
 7581.0
 7984.2

 4. How would you modify the program in Fig. 5.9 so that it also determines
the number of deliveries (count_deliv) made before the gasoline supply
drops below the minimum? Which is the loop control variable, current
or count_deliv ?

 Programming

 1. There are 9,870 people in a town whose population increases by 10% each
year. Write a loop that displays the annual population and determines how
many years (count_years) it will take for the population to surpass 30,000.

 2. Rewrite the payroll program (Fig. 5.5), moving the loop processing into a
function subprogram. Return the total payroll amount as the function result.

 5.6 Loop Design
 Being able to analyze the operation of a loop is one thing; designing your own loops
is another. In this section, we will consider the latter. The comment that precedes
the call to function monitor_gas in Fig. 5.9 is a good summary of the purpose of
the loop in this function.

 /* Subtract amounts removed and display amount remaining
 as long as minimum supply remains. */

 Let’s see how the problem-solving questions suggested in Sections 1.5 and 5.1 can
help us formulate a valid loop structure. As always, the columns labeled “Answer”

262 Chapter 5 • Repetition and Loop Statements

and “Implications . . .” in Table 5.5 represent an individual problem solver’s thought
processes and are not offered as the “one and only true path” to a solution.

 Sentinel-Controlled Loops

 Many programs with loops input one or more additional data items each time the
loop body is repeated. Often we don’t know how many data items the loop should
process when it begins execution. Therefore, we must find some way to signal the
program to stop reading and processing new data.

 One way to do this is to instruct the user to enter a unique data value, called
a sentinel value , after the last data item. The loop repetition condition tests each
data item and causes loop exit when the sentinel value is read. Choose the sentinel
value carefully; it must be a value that could not normally occur as data.

 TABLE 5.5 Problem-Solving Questions for Loop Design

Question

Answer

 Implications for
the Algorithm

 What are the
inputs?

 Initial supply of gasoline
(barrels).
 Amounts removed
(gallons).

 Input variables needed:
 start_supply
 remov_gals
 Value of start_supply must
be input once, but amounts
removed are entered many times.

 What are the
outputs?

 Amounts removed in gallons
and barrels, and the current
supply of gasoline.

 Values of current and remov_gals
are echoed in the output.
 Output variable needed:
 remov_brls

 Is there any
repetition?

 Yes. One repeatedly
 1. gets amount removed
 2. converts the amount

to barrels
 3. subtracts the amount

removed from the
current supply

 4. checks to see whether the
supply has fallen below
the minimum.

 Program variable needed:
 min_supply

 Do I know in
advance how many
times steps will
be repeated?

 No. Loop will not be controlled
by a counter.

 How do I know
how long to keep
repeating the steps?

 As long as the current supply
is not below the minimum.

 The loop repetition
condition is
 current >= min_supply

 sentinel value an end
marker that follows the
last item in a list of data

2635.6 • Loop Design

 A loop that processes data until the sentinel value is entered has the form

 1. Get a line of data.
 2. while the sentinel value has not been encountered
 3. Process the data line.
 4. Get another line of data.

 Note that this loop, like other loops we have studied, has an initialization (step 1),
a loop repetition condition (step 2), and an update (step 4). Step 1 gets the first line
of data; step 4 gets all the other data lines and then tries to obtain one more line. This
attempted extra input permits entry (but not processing) of the sentinel value. For
program readability, we usually name the sentinel by defining a constant macro.

 EXAMPLE 5.6 A program that calculates the sum of a collection of exam scores is a candidate for
using a sentinel value. If the class is large, the instructor may not know the exact
number of students who took the exam being graded. The program should work
regardless of class size. The loop below uses sum as an accumulator variable and
 score as an input variable.

 Sentinel Loop
 1. Initialize sum to zero.
 2. Get fi rst score.
 3. while score is not the sentinel
 4. Add score to sum.
 5. Get next score.

 One is tempted to try the following algorithm that reverses the order of steps 4 and
5 so as to be able to omit the duplication of step 5 in step 2.

 Incorrect Sentinel Loop
 1. Initialize sum to zero .
 2. while score is not the sentinel
 3. Get score .
 4. Add score to sum.

 There are two problems associated with this strategy. First, with no initializing input
statement, you will have no value for score on which to judge the loop repetition
condition when it is first tested. Second, consider the last two iterations of the loop.
On the next-to-last iteration, the last data value is copied into score and added
to the accumulating sum ; on the last iteration, the attempt to get another score
obtains the sentinel value. However, this fact will not cause the loop to exit until the
loop repetition condition is tested again. Before exit occurs, the sentinel is added to
 sum . For these reasons, it is important to set up sentinel-controlled loops using the
recommended structure: one input to get the loop going (the initialization input),
and a second to keep it going (the updating input). The following program uses a

264 Chapter 5 • Repetition and Loop Statements

 while loop to implement the sentinel-controlled loop (Fig. 5.10). It also shows that
the declaration of a variable may include an initialization.

 The following sample dialogue would be used to enter the scores 55 , 33 , and 77 :

 Enter first score (or -99 to quit)> 55
 Enter next score (-99 to quit)> 33
 Enter next score (-99 to quit)> 77
 Enter next score (-99 to quit)> -99

 Sum of exam scores is 165

 It is usually instructive (and often necessary) to question what happens when there
are no data items to process. In this case, the sentinel value would be entered at
the first prompt. Loop exit would occur right after the first and only test of the loop
repetition condition, so the loop body would not be executed—that is, it is a loop
with zero iterations. The variable sum would correctly retain its initial value of zero.

 FIGURE 5.10 Sentinel-Controlled while Loop

 1. /* Compute the sum of a list of exam scores. */
 2.
 3. #include <stdio.h>
 4.
 5. #define SENTINEL -99
 6.
 7. int
 8. main(void)
 9. {
 10. int sum = 0, /* output - sum of scores input so far */
 11. score; /* input - current score */
 12.
 13. /* Accumulate sum of all scores. */
 14. printf("Enter first score (or %d to quit)> ", SENTINEL);
 15. scanf("%d", &score); /* Get first score. */
 16. while (score != SENTINEL) {
 17. sum += score;
 18. printf("Enter next score (%d to quit)> ", SENTINEL);
 19. scanf("%d", &score); /* Get next score. */
 20. }
 21. printf("\nSum of exam scores is %d\n", sum);
 22.
 23. return (0);
 24. }

2655.6 • Loop Design

 Using a for Statement to Implement a Sentinel Loop

 Because the for statement combines the initialization, test, and update in one
place, some programmers prefer to use it to implement sentinel-controlled loops.
The for statement form of the while loop in Fig. 5.10 follows.

 /* Accumulate sum of all scores. */
 printf("Enter first score (or %d to quit)> ", SENTINEL);
 for (scanf("%d", &score);
 score != SENTINEL;
 scanf("%d", &score)) {
 sum += score;
 printf("Enter next score (%d to quit)> ", SENTINEL);
 }

 Endfile-Controlled Loops

 In Section 2.7 , we discussed writing programs to run in batch mode using data
files. A data file is always terminated by an endfile character that can be detected
by the scanf function. Therefore, you can write a batch program that processes
a list of data of any length without requiring a special sentinel value at the end of
the data.

 To write such a program, you must set up your input loop so it notices when
 scanf encounters the endfile character. So far we have discussed only the effect
 scanf has on the variables passed to it as arguments. However, scanf also returns a
result value just like the functions we studied in Section 3.2 . When scanf is success-
fully able to fill its argument variables with values from the standard input device,
the result value that it returns is the number of data items it actually obtained. For
example, successful execution of the scanf in the following statement gets values
for the variables in its input list, part_id , num_avail , and cost, and returns a
result of 3, which is assigned to input_status :

 input_status = scanf("%d%d%lf", &part_id, &num_avail, &cost);

 However, if scanf runs into difficulty with invalid or insufficient data (for
instance, if it comes across the letter 'o' instead of a zero when trying to get a
decimal integer), the function returns as its value the number of data items scanned
before encountering the error or running out of data. This means that for the example
shown, a nonnegative value less than 3 returned by scanf indicates an error. The
third situation scanf can encounter is detecting the endfile character before getting
input data for any of its arguments. In this case, scanf returns as its result the value
of the standard constant EOF (a negative integer).

 It is possible to design a repetition statement very similar to the sentinel-
controlled loop that uses the status value returned by the scanning function to

266 Chapter 5 • Repetition and Loop Statements

control repetition rather than using the values scanned. Here is the pseudocode
for an endfile-controlled loop:

 1. Get the first data value and save input status
 2. while input status does not indicate that end of file has been reached
 3. Process data value
 4. Get next data value and save input status

 An example of such a loop is shown in Fig. 5.11 , which is a batch version of the
exam scores program in Fig. 5.10 . The loop repetition condition

 input_status != EOF

 causes loop exit after the endfile character is reached. The data file scores.dat
contains the 3 numbers shown in the sample run.

 Infinite Loops on Faulty Data

 The behavior of the scanf function when it encounters faulty data can quickly make
infinite loops of the while statements in Figs. 5.10 and 5.11 . For example, let’s
assume the user responds to the prompt

 Enter next score (-99 to quit)>

 in Fig. 5.10 with the faulty data 7o (the second character is the letter 'o' rather
than a zero). The function scanf would stop at the letter 'o' , storing just the
value 7 in score and leaving the letter 'o' unprocessed. On the next loop itera-
tion, there would be no wait for the user to respond to the prompt, for scanf would
find the letter 'o' awaiting processing. However, since this letter is not part of a
valid integer, the scanf function would then leave the variable score unchanged
and the letter 'o' unprocessed, returning a status value of zero as the result of the
function call. Because the sentinel-controlled loop of Fig. 5.10 does not use the
value returned by scanf , the printing of the prompt and the unsuccessful attempt
to process the letter 'o' would repeat over and over.

 Even though the loop of the batch program in Fig. 5.11 does use the status
value returned by scanf , it too would go into an infinite loop on faulty data. The
only status value that causes this loop to exit is the negative integer meaning
 EOF . However, the endfile-controlled loop could be easily modified to exit when
encountering the end of file or faulty data. Changing the loop repetition condi-
tion to

 input_status == 1

 would cause the loop to exit on either the end of file (input_status negative) or
faulty data (input_status zero). We would also need to add an if statement after
the loop to decide whether to simply print the results or to warn of bad input. The

2675.6 • Loop Design

false task in the following if statement gets and displays the bad character when
 input_status is not EOF .

 if (input_status == EOF) {
 printf("Sum of exam scores is %d\n", sum);
 } else {
 scanf("%c", &bad_char);
 printf("*** Error in input: %c ***\n", bad_char);
 }

 FIGURE 5.11 Batch Version of Sum of Exam Scores Program

 1. /*
 2. * Compute the sum of the list of exam scores stored in the
 3. * file scores.dat
 4. */
 5. #include <stdio.h>
 6.
 7. int
 8. main(void)
 9. {
 10. int sum = 0, /* sum of scores input so far */
 11. score, /* current score */
 12. input_status; /* status value returned by scanf */
 13.
 14. printf("Scores\n");
 15.
 16. input_status = scanf("%d", &score);
 17. while (input_status != EOF) {
 18. printf("%5d\n", score);
 19. sum += score;
 20. input_status = scanf("%d", &score);
 21. }
 22.
 23. printf("\nSum of exam scores is %d\n", sum);
 24.
 25. return (0);
 26. }

 Scores
 55
 33
 77
 Sum of exam scores is 165

268 Chapter 5 • Repetition and Loop Statements

 EXERCISES FOR SECTION 5.6

 Self-Check

 1. Identify these three steps in the pseudocode that follows: the initialization of
the loop control variable, the loop repetition condition, and the update of the
loop control variable.

 a. Get a value for n .
 b. Give p the value 1 .
 c. while n is positive
 d. Multiply p by n .
 e. Subtract 1 from n .
 f. Print p with a label.

 2. What would be the behavior of the loop in Fig. 5.11 if the braces around the
loop body were omitted?

 Programming

 1. Translate the pseudocode from Exercise 1 using a while loop. Which of
these three labels would it make sense to print along with the value of p?

 n*i = n! = n to the ith power =

 2. Modify the loop in Fig. 5.4 so that it is a sentinel-controlled loop. Get an input
value for pay as both the initialization and update steps of the loop. Use the
value -99 as the sentinel.

 3. Rewrite the program in Fig. 5.4 to run in batch mode with an endfile-
controlled loop.

 4. Write a program segment that allows the user to enter values and prints out
the number of whole numbers and the number of values with fractional parts
entered. Design this segment as a sentinel-controlled loop using zero as the
sentinel value.

 5.7 Nested Loops
 Loops may be nested just like other control structures. Nested loops consist of an
outer loop with one or more inner loops. Each time the outer loop is repeated, the
inner loops are reentered, their loop control expressions are reevaluated, and all
required iterations are performed.

 EXAMPLE 5.7 The program in Fig. 5.12 contains a sentinel loop nested within a counting loop.
This structure is being used to tally by month the local Audubon Club members’

2695.7 • Nested Loops

 FIGURE 5.12 Program to Process Bald Eagle Sightings for a Year

 1. /*
 2. * Tally by month the bald eagle sightings for the year. Each month's
 3. * sightings are terminated by the sentinel zero.
 4. */
 5.
 6. #include <stdio.h>
 7.
 8. #define SENTINEL 0
 9. #define NUM_MONTHS 12
 10.
 11. int
 12. main(void)
 13. {
 14.
 15. int month, /* number of month being processed */
 16. mem_sight, /* one member's sightings for this month */
 17. sightings; /* total sightings so far for this month */
 18.
 19. printf("BALD EAGLE SIGHTINGS\n");
 20. for (month = 1;
 21. month <= NUM_MONTHS;
 22. ++month) {
 23. sightings = 0;
 24. scanf("%d", &mem_sight);
 25. while (mem_sight != SENTINEL) {
 26. if (mem_sight >= 0)
 27. sightings += mem_sight;
 28. else
 29. printf("Warning, negative count %d ignored\n",
 30. mem_sight);
 31. scanf("%d", &mem_sight);
 32. } /* inner while */
 33.
 34. printf(" month %2d: %2d\n", month, sightings);
 35. } /* outer for */
 36.
 37. return (0);
 38. }

 Input data
 2 1 4 3 0
 1 2 0 (continued)

270 Chapter 5 • Repetition and Loop Statements

sightings of bald eagles for the past year. The data for this program consist of a
group of integers followed by a zero, then a second group of integers followed by a
zero, then a third group, and so on, for twelve groups of numbers. The first group
of numbers represents sightings in January, the second represents sightings in
February, and so on, for all 12 months.

 The outer for loop repeats twelve times (value of NUM_MONTHS). The first statement
in the outer loop sets the accumulator variable sightings to zero. The number of
repetitions of the inner while loop depends on the data and may be zero (e.g., month
3 of the sample). The if statement nested in the inner loop adds a positive count of
eagles to sightings and displays a warning message for negative counts. After exit
from the inner loop, the outer loop displays the total sightings for the current month.

 EXAMPLE 5.8 Figure 5.13 shows a sample run of a program with two nested counting loops. The
outer loop is repeated three times (for i = 1, 2, 3). Each time the outer loop is
repeated, the statement

 printf("Outer %6d\n", i);

 displays the string "Outer" and the value of i (the outer loop control variable).
Next, the inner loop is entered, and its loop control variable j is reset to 0 . The
number of times the inner loop is repeated depends on the current value of i . Each
time the inner loop is repeated, the statement

 printf(" Inner %9d\n", j);

 displays the string " Inner " and the value of j .

 0
 5 4 -1 1 0
 . . .

 Results
 BALD EAGLE SIGHTINGS
 month 1: 10
 month 2: 3
 month 3: 0
 Warning, negative count -1 ignored
 month 4: 10
 . . .

 FIGURE 5.12 (continued)

2715.7 • Nested Loops

 The outer loop control variable, i , appears in the condition that determines the
number of repetitions of the inner loop. Although this is perfectly valid, you cannot
use the same variable as the loop control variable of both an outer and an inner for
loop in the same nest.

 FIGURE 5.13 Nested Counting Loop Program

 1. /*
 2. * Illustrates a pair of nested counting loops
 3. */
 4.
 5. #include <stdio.h>
 6.
 7. int
 8. main(void)
 9. {
 10. int i, j; /* loop control variables */
 11.
 12. printf(" i j\n"); /* prints column labels */
 13.
 14. for (i = 1; i < 4; ++i) { /* heading of outer for loop */
 15. printf("Outer %6d\n", i);
 16. for (j = 0; j < i; ++j) { /* heading of inner loop */
 17. printf("Inner %9d\n", j);
 18. } /* end of inner loop */
 19. } /* end of outer loop */
 20.
 21. return (0);
 22. }

 i j
 Outer 1
 Inner 0
 Outer 2
 Inner 0
 Inner 1
 Outer 3
 Inner 0
 Inner 1
 Inner 2

272 Chapter 5 • Repetition and Loop Statements

 EXERCISES FOR SECTION 5.7

 Self-Check

 1. What is displayed by the following program segments, assuming m is 3 and n
is 5?

 a. for (i = 1; i <= n; ++i) {
 for (j = 0; j < i; ++j) {
 printf("*");
 }
 printf("\n");
 }

 b. for (i = n; i > 0; --i) {
 for (j = m; j > 0; --j) {
 printf("*");
 }
 printf("\n");
 }

 2. Show the output displayed by these nested loops:

 for (i = 0; i < 3; ++i) {
 printf("Outer %4d\n", i);
 for (j = 0; j < 2; ++j) {
 printf(" Inner%3d%3d\n", i, j);
 }
 for (k = 2; k > 0; --k) {
 printf(" Inner%3d%3d\n", i, k);
 }
 }

 Programming

 1. Write a program that displays the multiplication table for numbers 0 to 9.
 2. Write nests of loops that cause the following output to be displayed:

 0
 0 1
 0 1 2
 0 1 2 3
 0 1 2 3 4
 0 1 2 3 4 5
 0 1 2 3 4
 0 1 2 3
 0 1 2
 0 1
 0

2735.8 • The do-while Statement and Flag-Controlled Loops

 5.8 The do-while Statement and Flag-Controlled Loops
 Both the for statement and the while statement evaluate a loop repetition condi-
tion before the first execution of the loop body. In most cases, this pretest is desir-
able and prevents the loop from executing when there may be no data items to
process or when the initial value of the loop control variable is outside its expected
range. There are some situations, generally involving interactive input, when we
know that a loop must execute at least one time. We write the pseudocode for an
input validation loop as follows:

 1. Get a data value.
 2. If data value isn’t in the acceptable range, go back to step 1.

 C provides the do-while statement to implement such loops as shown next.

 EXAMPLE 5.9 The loop

 do {
 printf("Enter a letter from A through E> ");
 scanf("%c", &letter_choice);
 } while (letter_choice < 'A' || letter_choice > 'E');

 prompts the user to enter one of the letters A through E . After scanf gets a data
character, the loop repetition condition tests to see whether letter_choice con-
tains one of the letters requested. If so, the repetition condition is false, and the next
statement after the loop executes. If letter_choice contains some other letter, the
condition is true and the loop body is repeated. Since we know the program user
must enter at least one data character, the do-while is an ideal statement to use to
implement this loop.

 do-while Statement

 SYNTAX: do

 statement;
 while (loop repetition condition);

 EXAMPLE: /* Find first even number input */
 do
 status = scanf("%d", &num);
 while (status > 0 && (num % 2) != 0);

(continued)

274 Chapter 5 • Repetition and Loop Statements

 Flag-Controlled Loops for Input Validation

 Sometimes a loop repetition condition becomes so complex that placing the full
expression in its usual spot is awkward. In many cases, the condition may be simpli-
fied by using a flag. A flag is a type int variable used to represent whether or not a
certain event has occurred. A flag has one of two values: 1 (true) and 0 (false).

 EXAMPLE 5.10 Function get_int (Fig. 5.14) returns an integer value that is in the range speci-
fied by its two arguments (n_min through n_max , inclusive). The loop repeatedly
prompts the user for a value in the desired range. The outer do-while structure
implements the stated purpose of the function. The type int variable error acts
as a program flag to signal whether an error has been detected. It is initialized to 0
(false) at the beginning of the outer loop and is changed to 1 (true) when an error is
detected by the if statement that validates the data scanned into in_val . Execution
of the outer loop continues as long as error is true. The inner do-while skips any
characters remaining on a data line by repeatedly scanning a character and checking
to see whether it is the newline character '\n' .

 Execution of the function call

 next_int = get_int(10, 20);

 proceeds as follows, assuming that the user responds to the first prompt by mistyp-
ing the number 20 as @20 . Because the first character is @ , scanf returns 0 to
 status , error is set to 1 , the first error message is displayed, and the inner do-
while skips the rest of the data line. When the outer loop repeats, the user enters
 2o . When scanf encounters the o , it stops scanning, stores the 2 in in_val , and
returns the result 1 to status . Because the number 2 is less than n_min (10), error
is set to 1 , the second error message is displayed, and the inner do-while skips the
rest of the data line. Because error is 1 , the outer loop is repeated. After the user
responds to the last prompt below by entering 20 , the outer loop is exited and 20 is
returned as the result and stored in next_int .

 INTERPRETATION: First, the statement is executed. Then, the loop repetition condition is

tested, and if it is true, the statement is repeated and the condition retested. When this

condition is tested and found to be false, the loop is exited and the next statement after the

do-while is executed.

 Note: If the loop body contains more than one statement, the group of statements must be

surrounded by braces.

 flag a type int
variable used to
represent whether or
not a certain event has
occurred

2755.8 • The do-while Statement and Flag-Controlled Loops

 FIGURE 5.14 Validating Input Using do-while Statement

 1. /*
 2. * Returns the first integer between n_min and n_max entered as data.
 3. * Pre : n_min <= n_max
 4. * Post: Result is in the range n_min through n_max.
 5. */
 6. int
 7. get_int (int n_min, int n_max)
 8. {
 9. int in_val, /* input - number entered by user */
 10. status; /* status value returned by scanf */
 11. char skip_ch; /* character to skip */
 12. int error; /* error flag for bad input */
 13. /* Get data from user until in_val is in the range. */
 14. do {
 15. /* No errors detected yet. */
 16. error = 0;
 17. /* Get a number from the user. */
 18. printf("Enter an integer in the range from %d ", n_min);
 19. printf("to %d inclusive> ", n_max);
 20. status = scanf("%d", &in_val);
 21.
 22. /* Validate the number. */
 23. if (status != 1) { /* in_val didn't get a number */
 24. error = 1;
 25. scanf("%c", &skip_ch);
 26. printf("Invalid character >>%c>>. ", skip_ch);
 27. printf("Skipping rest of line.\n");
 28. } else if (in_val < n_min || in_val > n_max) {
 29. error = 1;
 30. printf("Number %d is not in range.\n", in_val);
 31. }
 32.
 33. /* Skip rest of data line. */
 34. do
 35. scanf("%c", &skip_ch);
 36. while (skip_ch != '\n');
 37. } while (error);
 38.
 39. return (in_val);
 40. }

276 Chapter 5 • Repetition and Loop Statements

 Enter an integer in the range from 10 to 20 inclusive> @20
 Invalid character >>@>>. Skipping rest of line.
 Enter an integer in the range from 10 to 20 inclusive> 2o
 Number 2 is not in range.
 Enter an integer in the range from 10 to 20 inclusive> 20

 The do-while is often the structure to choose when checking for valid input. As
soon as the input loop of Fig. 5.14 receives a status code from scanf indicating an
error, the loop body explicitly scans and echoes the bad character, skips the rest of
the input line, and sets the error flag so the loop will execute again, permitting fresh
(and hopefully valid) input. The do-while used in Fig. 5.14 also prevents an infinite
input loop in the event the user types an invalid character.

 EXERCISES FOR SECTION 5.8

 Self-Check

 1. Which of the following code segments is a better way to implement a sentinel-
controlled loop? Why?

 scanf("%d", &num); do {
 while (num != SENT) { scanf("%d", &num);
 /* process num */ if (num != SENT) {
 scanf("%d", &num); /* process num */}
 } } while (num != SENT);

 2. Rewrite the following code using a do-while statement with no decisions in
the loop body:

 sum = 0;
 for (odd = 1; odd < n; odd = odd + 2)
 sum = sum + odd;
 printf("Sum of the positive odd numbers less than %d is %d\n",
 n, sum);

 In what situations will the rewritten code print an incorrect sum?

 Programming

 1. Design an interactive input loop that scans pairs of integers until it reaches a
pair in which the first integer evenly divides the second.

 5.9 Iterative Approximations
 Numerical analysis is the branch of mathematics and computer science that devel-
ops algorithms for solving computational problems. Problems from numerical analy-
sis include finding solutions to sets of equations, performing operations on matrices,

2775.9 • Iterative Approximations

finding roots of equations, and performing mathematical integration. The next case
study illustrates a method for iteratively approximating a root of an equation.

 Many real-world problems can be solved by finding roots of equations. A value
 k is a root of an equation, f (x) = 0, if f (k) equals zero. If we graph the function f (x),
as shown in Fig. 5.15 , the roots of the equation are those points where the x -axis and
the graph of the function intersect. The roots of the equation f (x) = 0 are also called
the zeros of the function f (x).

 The bisection method is one way of approximating a root of the equation
 f (x) = 0. This method repeatedly generates approximate roots until a true root is
discovered or until an approximation is found that differs from a true root by less
than epsilon, where epsilon is a very small constant (for example, 0.0001). The
approximation can be found if we can isolate the true root and the approximate root
within the same interval whose length is less than epsilon. In our next case study, we
develop a function to implement this method of iterative approximation.

 Function Parameters

 Although we could develop a bisection function to find roots of one specified func-
tion, our bisection routine would be far more useful if we could call it to find a root
of any function, just by specifying the name of the function in the call. To do this
we must be able to include a function in the parameter list of another function.
Declaring a function parameter is accomplished by simply including a prototype
of the function in the parameter list. For example, if you want to write a function
 evaluate that evaluates another function at three different points and displays the
results, write evaluate as shown in Fig. 5.16 . Then you can call evaluate either
with library functions that take a type double argument and return a type double
result or with your own function that meets these criteria. Table 5.6 shows two calls
to evaluate along with the output generated.

 root (zero of a
function) a function
argument value that
causes the function
result to be zero

y = f (x)

y

x

 FIGURE 5.15

 Six Roots for the
Equation f (x) = 0

278 Chapter 5 • Repetition and Loop Statements

 TABLE 5.6 Calls to Function evaluate and the Output Produced

 Call to evaluate Output Produced

 evaluate(sqrt, 0.25, 25.0, 100.0); f(0.25000) = 0.50000
 f(25.00000) = 5.00000
 f(100.00000) = 10.00000

 evaluate(sin, 0.0, 3.14159,
 0.5 * 3.14159);

 f(0.00000) = 0.00000
 f(3.14159) = 0.00000

 f(1.57079) = 1.00000

 FIGURE 5.16 Using a Function Parameter

 1. /*
 2. * Evaluate a function at three points, displaying results.
 3. */
 4. void
 5. evaluate(double f(double f_arg), double pt1, double pt2, double pt3)
 6. {
 7. printf("f(%.5f) = %.5f\n", pt1, f(pt1));
 8. printf("f(%.5f) = %.5f\n", pt2, f(pt2));
 9. printf("f(%.5f) = %.5f\n", pt3, f(pt3));
 10. }

 CASE STUDY Bisection Method for Finding Roots

 PROBLEM

 Develop a function bisect that approximates a root of a function f on an interval
that contains an odd number of roots.

 ANALYSIS

 A program that is to call function bisect should first tabulate function values to
find an appropriate interval in which to search for a root. If a change of sign occurs
on an interval, that interval must contain an odd number of roots. Figure 5.17 shows
two such intervals. If there is no change of sign, the interval may contain no roots.

 Let us assume that [x left , x right] (x_left to x_right) is an interval on which a
change of sign does occur and in which there is exactly one root. Furthermore,

2795.9 • Iterative Approximations

assume that the function f (x) is continuous on this interval. If we bisect this interval
by computing its midpoint x mid , using the formula

 xmid =
xleft + xright

2.0

 there are three possible outcomes: the root is in the lower half of the interval,
[x left , x mid]; the root is in the upper half of the interval, [x mid , x right]; or f (x mid) is zero.
 Figure 5.18 shows these three possibilities graphically.

 A fourth possibility is that the length of the interval is less than epsilon . In this
case, any point in the interval is an acceptable root approximation.

 DATA REQUIREMENTS

 Problem Inputs
 double x_left /* left endpoint of interval */
 double x_right /* right endpoint of interval */
 double epsilon /* error tolerance */
 double f(double farg) /* function whose root is sought */

 Problem Outputs
 double root /* approximate root of f */

 DESIGN

 The initial interval on which to search for a root is defined by the input parameters
 x_left and x_right . Before searching this interval, we must verify that it contains
an odd number of roots. If it does, we need to repeatedly bisect the interval, search-
ing the half containing an odd number of roots until we find a true root or until the
length of the interval to search is less than epsilon .

(b)
Three roots

f ()

(a)
One root

x
xleft

f ()

x
xleft

xright xright

rightx f (xright)

f (xleft)leftx

 FIGURE 5.17

 Change of Sign
Implies an Odd
Number of Roots

280 Chapter 5 • Repetition and Loop Statements

x
rt

y = f (x)

(a)
The root rt is in the half interval [xleft, xmid].

x
rt

y = f (x)

(b)

x

y = f (x)

(c)

xleft
f (xright)

xleft

xright

xmi d xright

f (xmi d)

The root rt is in the half interval [xmid, xright].

xleft xmi d

f (xmid) = 0.0

f (xmid)
xright

xmi d

f (xright)

f (xleft)

f (xleft)

f (xright)

f ()xleft

 FIGURE 5.18

 Three Possibilities
That Arise When
the Interval [x left ,
 x right] Is Bisected

2815.9 • Iterative Approximations

 INITIAL ALGORITHM

 1. if the interval contains an even number of roots
 2. Display “no root” message.
 3. Return NO_ROOT and exit the function.
 4. repeat as long as interval is greater than tolerance and a root is not found
 5. Compute the function value at the midpoint of the interval.
 6. if the function value at midpoint is zero
 7. Set root to the midpoint.
 else
 8. Choose the left or right half of the interval and

continue the search.
 9. Return the midpoint of the final interval as the root.

 PROGRAM VARIABLES

 int root_found /* whether or not root is found */
 double x_mid /* interval midpoint */
 double f_left, /* values of function at left and */
 f_mid, /* right endpoints and at midpoint */
 f_right /* of interval */

 Refinement of Step 1
 1.1 f_left = f(x_left)
 1.2 f_right = f(x_right)
 1.3 if signs of f_left and f_right are the same (i.e., if their product is

 nonnegative)

 Refinement of Step 4
 4.1 while x_right - x_left > epsilon and !root_found

 Refinement of Step 8
 8.1 if root is in left half of interval (f_left * f_mid < 0.0)
 8.2 Change right end to midpoint
 else
 8.3 Change left end to midpoint

 IMPLEMENTATION

 Figure 5.19 shows an implementation of this algorithm. We have added some calls
to printf to make function bisect self-tracing. Two functions (g and h) whose
roots will be found are shown at the end of the program listing.

282 Chapter 5 • Repetition and Loop Statements

 FIGURE 5.19 Finding a Function Root Using the Bisection Method

 1. /*
 2. * Finds roots of the equations
 3. * g(x) = 0 and h(x) = 0
 4. * on a specified interval [x_left, x_right] using the bisection method.
 5. */
 6.
 7. #include <stdio.h>
 8. #include <math.h>
 9.
 10. #define FALSE 0
 11. #define TRUE 1
 12. #define NO_ROOT -99999.0
 13.
 14. double bisect(double x_left, double x_right, double epsilon,
 15. double f(double farg));
 16. double g(double x);
 17. double h(double x);
 18.
 19.
 20. int
 21. main(void)
 22. {
 23. double x_left, x_right, /* left, right endpoints of interval */
 24. epsilon, /* error tolerance */
 25. root;
 26.
 27. /* Get endpoints and error tolerance from user */
 28. printf("\nEnter interval endpoints> ");
 29. scanf("%lf%lf", &x_left, &x_right);
 30. printf("\nEnter tolerance> ");
 31. scanf("%lf", &epsilon);
 32.
 33. /* Use bisect function to look for roots of g and h */
 34. printf("\n\nFunction g");
 35. root = bisect(x_left, x_right, epsilon, g);
 36. if (root != NO_ROOT)
 37. printf("\n g(%.7f) = %e\n", root, g(root));
 38.

(continued)

2835.9 • Iterative Approximations

 39. printf("\n\nFunction h");
 40. root = bisect(x_left, x_right, epsilon, h);
 41. if (root != NO_ROOT)
 42. printf("\n h(%.7f) = %e\n", root, h(root));
 43.
 44. return (0);
 45. }
 46.
 47. /*
 48. * Implements the bisection method for finding a root of a function f.
 49. * Returns a root if signs of fp(x_left) and fp(x_right) are different.
 50. * Otherwise returns NO_ROOT.
 51. */
 52. double
 53. bisect(double x_left, /* input - endpoints of interval in */
 54. double x_right, /* which to look for a root */
 55. double epsilon, /* input - error tolerance */
 56. double f(double farg)) /* input - the function */
 57. {
 58. double x_mid, /* midpoint of interval */
 59. f_left, /* f(x_left) */
 60. f_mid, /* f(x_mid) */
 61. f_right; /* f(x_right) */
 62.
 63. int root_found; /* flag to indicate whether root is found */
 64.
 65. /* Computes function values at initial endpoints of interval */
 66. f_left = f(x_left); f_right = f(x_right);
 67.
 68. /* If no change of sign occurs on the interval there is not a
 69. unique root. Exit function and return NO_ROOT */
 70. if (f_left * f_right > 0) { /* same sign */
 71. printf("\nMay be no root in [%.7f, %.7f]", x_left, x_right);
 72. return NO_ROOT;
 73. }
 74.
 75. /* Searches as long as interval size is large enough
 76. and no root has been found */

 FIGURE 5.19 (continued)

(continued)

284 Chapter 5 • Repetition and Loop Statements

 77. root_found = FALSE; /* no root found yet */
 78. while (fabs(x_right - x_left) > epsilon && !root_found)
 79. {
 80. /* Computes midpoint and function value at midpoint */
 81. x_mid = (x_left + x_right) / 2.0;
 82. f_mid = f(x_mid);
 83.
 84. if (f_mid == 0.0) { /* Here's the root */
 85. root_found = TRUE;
 86. } else if (f_left * f_mid < 0.0) {/* Root in [x_left,x_mid]*/
 87. x_right = x_mid;
 88. } else { /* Root in [x_mid,x_right]*/
 89. x_left = x_mid;
 90. }
 91.
 92.
 93. /* Trace loop execution - print root location or new interval */
 94. if (root_found)
 95. printf("\nRoot found at x = %.7f, midpoint of [%.7f, %.7f]",
 96. x_mid, x_left, x_right);
 97. else
 98. printf("\nNew interval is [%.7f, %.7f]",
 99. x_left, x_right);
 100. }
 101.
 102. /* If there is a root, it is the midpoint of [x_left, x_right] */
 103. return ((x_left + x_right) / 2.0);
 104. }
 105.
 106. /* Functions for which roots are sought */
 107.
 108. /* 3 2
 109. * 5x - 2x + 3
 110. */
 111. double
 112. g(double x)
 113. {
 114. return (5 * pow(x, 3.0) - 2 * pow(x, 2.0) + 3);
 115. }

 FIGURE 5.19 (continued)

(continued)

2855.9 • Iterative Approximations

 TESTING

 The C program shown in Figure 5.19 looks for approximate roots for the equations
 g(x) = 0 and h(x) = 0 on the interval [x_left , x_right]. The left and right end-
points, x_left and x_right , and the tolerance, epsilon , are inputs from the user.
The main function gets these three inputs, calls function bisect , and displays the
results. Each call to bisect passes a function name as the fourth argument. Because
the bisection method as implemented in Fig. 5.19 can be applied to any function
that both returns a type double value and takes a single type double argument,
we can test bisect on multiple functions in a single program run. When bisect is
executing as a result of function main ’s statement

 root = bisect(x_left, x_right, epsilon, g);

 the statement

 f_left = f(x_left);

 is equivalent to

 f_left = g(x_left);

 However, when bisect executes as a result of the call statement

 root = bisect(x_left, x_right, epsilon, h);

 the same statement means

 f_left = h(x_left);

 Figure 5.20 shows the results of one run of the program in Fig. 5.19 .

 FIGURE 5.19 (continued)

 116.
 117. /* 4 2
 118. * x - 3x - 8
 119. */
 120. double
 121. h(double x)
 122. {
 123. return (pow(x, 4.0) - 3 * pow(x, 2.0) - 8);
 124. }

286 Chapter 5 • Repetition and Loop Statements

 EXERCISES FOR SECTION 5.9

 Self-Check

 1. Find endpoints of an interval one unit long in which a root of h (x) = 0 is found
for function h from Fig. 5.19 .

 2. It is unusual for a program to use equality comparison of two type double
 values as in

 if (f_mid == 0.0)

 Find a function and an interval that would cause this test to evaluate to 1 (true).

 Programming

 1. Revise the program in Fig. 5.19 so that if the user enters an interval longer
than one unit, the program checks one-unit segments of the interval until a
subinterval is found with different signs for the values of function f . The pro-
gram should then call bisect with this subinterval and function f .

 FIGURE 5.20 Sample Run of Bisection Program with Trace Code Included

 Enter interval endpoints> -1.0 1.0
 Enter tolerance> 0.001

 Function g
 New interval is [-1.0000000, 0.0000000]
 New interval is [-1.0000000, -0.5000000]
 New interval is [-0.7500000, -0.5000000]
 New interval is [-0.7500000, -0.6250000]
 New interval is [-0.7500000, -0.6875000]
 New interval is [-0.7500000, -0.7187500]
 New interval is [-0.7343750, -0.7187500]
 New interval is [-0.7343750, -0.7265625]
 New interval is [-0.7304688, -0.7265625]
 New interval is [-0.7304688, -0.7285156]
 New interval is [-0.7294922, -0.7285156]
 g(-0.7290039) = -2.697494e-05

 Function h
 May be no root in [-1.0000000, 1.0000000]

2875.10 • How to Debug and Test Programs

 5.10 How to Debug and Test Programs
 In Section 2.8 we described the three general categories of errors: syntax errors,
run-time errors, and logic errors. Sometimes the cause of a run-time error or the
source of a logic error is apparent and the error can be fixed easily. Often, however,
the error is not obvious and you may spend considerable time and energy locating it.

 The first step in locating a hidden error is to examine the program output to
determine which part of the program is generating incorrect results. Then you can
focus on the statements in that section of the program to determine which are at
fault. We describe two ways to do this next.

 Using Debugger Programs

 A debugger program can help you debug a C program. The debugger program lets
you execute your program one statement at a time (single-step execution). Through
single-step execution, you can trace your program’s execution and observe the effect
of each C statement on variables you select. With single-step execution you can vali-
date that loop control variables and other important variables (e.g., accumulators)
are incremented as expected during each iteration of a loop. You can also check that
input variables contain the correct data after each scan operation.

 If your program is very long, you can separate your program into segments by
setting breakpoints at selected statements. A breakpoint is like a fence between
two segments of a program. You should set a breakpoint at the end of each major
algorithm step. Then instruct the debugger to execute all statements from the last
breakpoint up to the next breakpoint. When the program stops at a breakpoint, you
can examine the values of selected variables to determine whether the program seg-
ment has executed correctly. If it has, you will want to execute through to the next
breakpoint. If it has not, you may want to set more breakpoints in that segment or
perhaps perform single-step execution through that segment.

 Debugging without a Debugger

 If you cannot use a debugger, insert extra diagnostic calls to printf that display
intermediate results at critical points in your program. For example, you should dis-
play the values of variables affected by each major algorithm step before and after
the step executes. By comparing these results at the end of a run, you may be able
to determine which segment of your program contains bugs.

 Once you have determined the likely source of an error, you should insert addi-
tional diagnostic calls to printf to trace the values of critical variables in the “buggy”
segment. For example, if the loop in Fig. 5.10 is not computing the correct sum, the
conditional call to printf , shown in color below, will display each value of score and
 sum when the value of DEBUG is nonzero. The asterisks highlight the diagnostic output
in the debugging runs and the diagnostic calls to printf in the source program.

288 Chapter 5 • Repetition and Loop Statements

 while (score != SENTINEL) {
 sum += score;
 if (DEBUG)
 printf("***** score is %d, sum is %d\n", score, sum);
 printf("Enter next score (%d to quit)> ", SENTINEL);
 scanf("%d", &score); /* Get next score. */
 }

 By making all diagnostic calls to printf dependent on a constant such as
 DEBUG , you can turn your diagnostics on by inserting

 #define DEBUG 1

 in a region of your program that you expect may contain bugs. Insertion of

 #define DEBUG 0

 will turn your diagnostics off.
 We usually include a \n at the end of every printf format string. It is espe-

cially critical that you do this in diagnostic calls to printf so that your output will be
displayed immediately; otherwise, if a run-time error occurs before a \n is encoun-
tered in another format string, you may never see the diagnostic message.

 Be careful when you insert diagnostic calls to printf . Sometimes you must add
braces if a single statement inside an if or a while statement becomes a compound
statement when you add a diagnostic printf .

 Off-by-One Loop Errors

 A fairly common logic error in programs with loops is a loop that executes one more
time or one less time than required. If a sentinel-controlled loop performs an extra
repetition, it may erroneously process the sentinel value along with the regular data.

 If a loop performs a counting operation, make sure that the initial and final val-
ues of the loop control variable are correct and that the loop repetition condition is
right. For example, the following loop body executes n + 1 times instead of n times.
If you want the loop body to execute exactly n times, change the loop repetition
condition to count < n .

 for (count = 0; count <= n; ++count)
 sum += count;

 Often you can determine whether a loop is correct by checking the loop
boundaries —that is, the initial and final values of the loop control variable. For
a counting for loop, carefully evaluate the expression in the initialization step,
substitute this value everywhere the counter variable appears in the loop body, and
verify that it makes sense as a beginning value. Then choose a value for the counter
that still causes the loop repetition condition to be true, but that will make this

 loop boundaries
initial and final values
of the loop control
variable

2895.11 • Loops in Graphics Programs (Optional)

 condition false after one more evaluation of the update expression. Check the
validity of this boundary value wherever the counter variable appears. As an exam-
ple, in the for loop,

 sum = 0;
 k = 1;
 for (i = -n; i < n - k; ++i)
 sum += i * i;

 check that the first value of the counter variable i is supposed to be -n and that the
last value should be n - 2 . Next, check that the assignment statement

 sum += i * i;

 is correct at these boundaries. When i is -n , sum gets the value of n 2 . When i is n - 2 ,
the value of (n - 2) 2 is added to the previous value of sum. As a final check, pick some
small value of n (for example, 2) and trace the loop execution to see that it computes
 sum correctly for this case.

 Testing

 After all errors have been corrected and the program appears to execute as
expected, the program should be tested thoroughly to make sure that it works. For
a simple program, make enough test runs to verify that the program works properly
for representative samples of all possible data combinations.

 EXERCISES FOR SECTION 5.10

 Self-Check

 1. For the first counting loop in the subsection “Off-by-One Loop Errors,” add
debugging statements to show the value of the loop control variable at the
start of each repetition. Also, add debugging statements to show the value of
 sum at the end of each loop repetition.

 2. Repeat Exercise 1 for the second loop in the same subsection.

 5.11 Loops in Graphics Programs (Optional)
 You can form many interesting geometric patterns on your screen by using a loop in
a graphics program to repeatedly draw similar shapes. Each shape can have a differ-
ent size, color, fill pattern, and position. Using a loop, you can also draw a sequence
of frames to move an object across the screen.

290 Chapter 5 • Repetition and Loop Statements

 EXAMPLE 5.11 The program in Fig. 5.22 draws a “quilt” consisting of nested filled rectangles (see
 Figure 5.21). It first draws a large black bar which fills the output window. Each
subsequent bar is centered inside the previous one, overwriting its pixels in a new
color, so only a border from the previous rectangle remains on the screen.
 Before switching to graphics mode, the program prompts the user to specify the
number of bars. The statements

 stepX = width / (2 * numBars); /* x increment */
 stepY = height / (2 * numBars); /* y increment */

 define the change in x and y values for the corners of each bar and are computed so
that there will be room to display all the bars.

 In the for loop, the statements

 foreColor = i % 16; /* 0 <= foreColor <= 15 */
 setcolor(foreColor);
 setfillstyle(i % 12, foreColor); /* set fill style. */
 bar(x1, y1, x2, y2); /* draw a bar. */

 FIGURE 5.21

 Nested Rectangles
for a Quilt Pattern

2915.11 • Loops in Graphics Programs (Optional)

 FIGURE 5.22 Program to draw a quilt

 1. /*
 2. * Display a pattern for a quilt -- a set of nested rectangles
 3. */
 4. #include <graphics.h>
 5. #include <stdio.h>
 6.
 7. int
 8. main(void)
 9. {
 10. int x1, y1, x2, y2; /* coordinates of corner points */
 11. int stepX, stepY; /* change in coordinate values */
 12. int foreColor; /* foreground color */
 13. int numBars; /* number of bars */
 14. int width, height; /* screen width and height */
 15.
 16. printf(“Enter number of bars> “);
 17. scanf(“%d”, &numBars);
 18.
 19. width = getmaxwidth();
 20. height = getmaxheight();
 21.
 22. initwindow(width, height, “Quilt”);
 23.
 24. /* set corner points of outermost bar
 25. and increments for inner bars */
 26. x1 = 0; y1 = 0; /* top left corner */
 27. x2 = width; y2 = height; /* bottom right corner */
 28. stepX = width / (2 * numBars); /* x increment */
 29. stepY = height / (2 * numBars); /* y increment */
 30.
 31. for (int i = 1; i <= numBars; ++i)
 32. {
 33. foreColor = i % 16; /* 0 <= foreColor <= 15 */
 34. setcolor(foreColor);
 35. setfillstyle(i % 12, foreColor); /* Set fill style */
 36. bar(x1, y1, x2, y2); /* Draw a bar */
 37. x1 = x1 + stepX; y1 = y1 + stepY; /* Change top left corner */
 38. x2 = x2 - stepX; y2 = y2 - stepY; /* Change bottom right */
 39. }
 40.
 41. getch(); /* pause for user */
 42. closegraph();
 43. return (0);
 44. }

292 Chapter 5 • Repetition and Loop Statements

 set the foreground color to one of 16 colors, based on the value of loop control vari-
able i . Similarly, function setfillstyle sets the fill pattern to one of 12 possible
patterns. After each bar is drawn, the statements

 x1 = x1 + stepX; y1 = y1 + stepY; /* change top left */
 x2 = x2 - stepX; y2 = y2 - stepY; /* change bottom right */

 change the top-left corner (point x1 , y1) and the bottom-right corner (point x2 , y2)
for the next bar, moving them closer together. For interesting effects, try running
this program with different values assigned to stepX and stepY .

 Animation

 Loops are used in graphics programs to create animation. In graphics animation,
motion is achieved by displaying a series of frames in which the object is in a slightly
different position from one frame to another, so it appears that the object is moving.
Each frame is displayed for a few milli-seconds. This is analogous to the flip-books
you may have seen in which objects are drawn in slightly different positions on each
page of the book. As you flip the pages, the object moves.

 The program in Fig. 5.23 draws a ball that moves around the screen like the ball
in a pong game. It starts moving down the screen and to the right until it reaches a

 FIGURE 5.23 Program to draw a moving ball

 1. /*
 2. * Draw a ball that moves around the screen
 3. */
 4. #include <graphics.h>
 5. #define TRUE 1
 6.
 7. int
 8. main(void)
 9. {
 10. const int PAUSE = 20; /* delay between frames */
 11. const int DELTA = 5; /* change in x or y value */
 12. const int RADIUS = 30; /* ball radius */
 13. const int COLOR = RED;
 14.
 15. int width; /* width of screen */
 16. int height; /* height of screen */
 17. int x; int y; /* center of ball */
 18. int stepX; /* increment for x */
 19. int stepY; /* increment for y */

(continued)

2935.11 • Loops in Graphics Programs (Optional)

 20.
 21. /* Open a full-screen window with double buffering */
 22. width = getmaxwidth();
 23. height = getmaxheight();
 24. initwindow(width, height,
 25. “Pong - close window to quit”, 0, 0, TRUE);
 26. x = RADIUS; y = RADIUS; /* Start ball at top-left corner */
 27. stepX = DELTA; stepY = DELTA; /* Move down and to the right */
 28.
 29. /* Draw the moving ball */
 30. while (TRUE) /* Repeat forever */
 31. {
 32. /* Clear the old frame and draw the new one. */
 33. clearviewport();
 34. setfillstyle(SOLID_FILL, COLOR);
 35. fillellipse(x, y, RADIUS, RADIUS); /* Draw the ball */
 36.
 37. /* After drawing the frame, swap the buffers */
 38. swapbuffers();
 39. delay(PAUSE);
 40.
 41. /* If ball is too close to window edge, change direction */
 42. if (x <= RADIUS) /* Is ball to close to left edge? */
 43. stepX = DELTA; /* Move right */
 44. else if (x >= width - RADIUS) /* Is ball to close to right edge? */
 45. stepX = -DELTA; /* Move left */
 46.
 47. if (y <= RADIUS) /* Is ball to close to top? */
 48. stepY = DELTA; /* Move down */
 49. else if (y >= height - RADIUS) /* Is ball to close to bottom? */
 50. stepY = -DELTA; /* Move up */
 51.
 52.
 53. /* Move the ball */
 54. x = x + stepX;
 55. y = y + stepY;
 56. }
 57.
 58. closegraph();
 59. return (0);
 60. }

 FIGURE 5.23 (continued)

294 Chapter 5 • Repetition and Loop Statements

“wall” (a window edge) and then reverses its x- or y-direction depending on which
wall it hit.

 Animation programs use a technique called double buffering to reduce the
screen flicker and make the motion seem smoother. In single buffering (the
default situation), a single memory area (or buffer) is used to hold the frame that
will be shown next on the screen. After the buffer is filled, its bytes are sent to the
graphics hardware for display. When done, the bytes for the next frame are loaded
into the buffer. In double buffering , while the bytes in the first buffer are being
sent to the graphics display, the second buffer is being filled with the bytes for
the next frame. Then, the contents of the second buffer are sent to the graphics
hardware, while the first buffer is being filled. The extra buffer enables the screen
display to be refreshed more frequently, resulting in less flicker between transitions.
In graphics.h , double buffering is turned on by setting the sixth argument for
 initwindow to TRUE .

 initwindow(width, height,
 "Pong - close window to quit", 0, 0, TRUE);

 Because the while loop condition is TRUE, the loop executes “forever,” or until the
user closes the window. The loop begins by clearing the window for the new frame
(function clearviewport). Next, it draws the ball in the new frame (stored in the
second buffer). Then the buffers are swapped (function swapbuffers) and there is
a delay of 10 milliseconds while the ball is displayed in its new position.

 swapbuffers();
 delay(PAUSE);

 The if statements change the direction of motion when the ball reaches an edge.
For example, in the statement below, the first condition is true if the current x posi-
tion is closer to the left edge than the radius of the ball. In that case, the ball should
move to the right (stepX is positive).

 if (x <= RADIUS) /* Is ball too close to left edge? */
 stepX = DELTA; /* Move right */
 else if (x >= width - RADIUS) /* Is ball too close to right edge? */
 stepX = -DELTA; /* Move left */

 The second condition is true if the x position of the ball is to too close to the right
edge, so the ball should move to the left (stepX is negative). The assignment
statements at the end of the loop compute the position of the ball for the next
frame.

 Figure 5.24 shows a trace of the ball as it bounces around the screen. This was
obtained by removing the call to clearviewport . In the actual display, only one
ball would be drawn at a time. Table 5.7 shows the new graphics functions intro-
duced in this section.

 single buffering The
default case in which
only one buffer is
allocated

 buffer An area of
memory where data to
be displayed or printed
is temporarily stored

 double buffering a
technique used in
graphics programming
to reduce display flicker
by allocating two
buffers: the second
buffer is filled while
the contents of the first
buffer is displayed and
then the roles of each
buffer are reversed

2955.11 • Loops in Graphics Programs (Optional)

 FIGURE 5.24

 Trace of the
moving ball

 TABLE 5.7 Functions in Graphics Library

 Function Prototype Effect

 void clearviewport() Clears the active viewport. The current window is the
default viewport.

 void delay(int) The program pauses for the number of milliseconds
 specified by its argument.

 swapbuffers() Swaps the buffers if double buffering is turned on.

 EXERCISES FOR SECTION 5.11

 Self-Check

 1. What would be drawn by the following fragment?

 radius = 20;
 x = radius; y = getmaxy() / 2;
 for (int i = 1; i <= 10; ++i)
 {
 color = i % 16;

296 Chapter 5 • Repetition and Loop Statements

 setcolor(color);
 setfillstyle(HATCH_FILL, color);
 fillellipse(x, y, radius, radius);
 x = x + radius;
 getch(); /* pause for user entry */
 }

 2. Experiment with the animation program by removing the call to clearview-
port . What happens? Also what happens if you eliminate double buffering by
removing the call to swapbuffers? How does changing the value of PAUSE
affect the animation?

 Programming

 1. Write a program that draws an archery target with alternating black and white
circles.

 2. Modify the program in Self-Check Exercise 1 so the ball moves continuously
back and forth in a horizontal direction.

 5.12 Common Programming Errors
 Beginners sometimes confuse if and while statements because both statements
contain a parenthesized condition. Always use an if statement to implement a deci-
sion step and a while or for statement to implement a loop.

 The syntax of the for statement header is repeated.

 for (initialization expression;
 loop repetition condition ;
 update expression)

 Remember to end the initialization expression and the loop repetition condition
with semicolons. Be careful not to put a semicolon before or after the closing paren-
thesis of the for statement header. A semicolon after this parenthesis would have
the effect of ending the for statement without making execution of the loop body
dependent on its condition.

 Another common mistake in using while and for statements is to forget that
the structure assumes that the loop body is a single statement. Remember to use
braces around a loop body consisting of multiple statements. Some C programmers
always use braces around a loop body, whether it contains one or many statements.
Keep in mind that your compiler ignores indentation, so the loop below (without
braces around the loop body)
 while (x > xbig)
 x -= 2;
 ++xbig;
 /* intended end of while loop */

2975.12 • Common Programming Errors

 really executes as
 while (x > xbig)
 x -= 2; /* only this statement is repeated */
 ++xbig;

 The C compiler can easily detect that there is something wrong with a program
fragment in which a closing brace has been omitted in a compound statement.
However, the error message noting the symbol’s absence may be far from the spot
where the brace belongs, and other error messages often appear as a side effect of
the omission. When compound statements are nested, the compiler will associate
the first closing brace encountered with the innermost structure. Even if it is the
terminator for this inner structure that is left out, the compiler may complain about
the outer structure. In the example that follows, the body of the while statement is
missing a brace. However, the compiler will associate the closing brace before else
with the body of the while loop and then proceed to mark the else as improper.
 printf("Experiment successful? (Y/N)> ");
 scanf("%c", &ans);
 if (ans == 'Y') {
 printf("Enter one number per line (Enter %d to quit)\n> ",
 SENT);
 scanf("%d", &data);
 while (data != SENT) {
 sum += data;
 printf("> ");
 scanf("%d", &data);
 /* <— missing } */
 } else {
 printf("Try it again tomorrow.\n");
 printf("Now follow correct shutdown procedure.\n");
 }

 Be careful when you use tests for inequality to control the repetition of a loop.
The following loop is intended to process all transactions for a bank account while
the balance is positive:
 scanf("%d%lf", &code, &amount);
 while (balance != 0.0) {
 . . .
 scanf("%d%lf", &code, &amount);
 }

 If the bank balance goes from a positive to a negative amount without being exactly
 0.0 , the loop will not terminate (an infinite loop). This loop is safer:
 scanf("%d%lf", &code, &amount);
 while (balance > 0.0) {
 . . .
 scanf("%d%lf", &code, &amount);
 }

298 Chapter 5 • Repetition and Loop Statements

 Be sure to verify that a loop’s repetition condition will eventually become false (0);
otherwise, an infinite loop may result. If you use a sentinel-controlled loop, remember
to provide a prompt that tells the program’s user what value to enter as the sentinel.
Make sure that the sentinel value cannot be confused with a normal data item.

 One common cause of a nonterminating loop is the use of a loop repetition
condition in which an equality test is mistyped as an assignment operation. Consider
the following loop that expects the user to type the number 0 (actually any integer
other than 1) to exit:
 do {
 . . .
 printf("One more time? (1 to continue/0 to quit)> ");
 scanf("%d", &again);
 } while (again = 1); /* should be: again == 1 */

 The value of the loop repetition condition will always be 1 , never 0 (false), so this
loop will not exit on an entry of zero or of any other number.

 A do-while always executes at least once. Use a do-while only when there is
no possibility of zero loop iterations. If you find yourself adding an if statement to
patch your code with a result like this

 if (condition 1)
 do {
 . . .
 } while (condition 1);

 replace the segment with a while or for statement. Both these statements auto-
matically test the loop repetition condition before executing the loop body.

 Do not use increment, decrement, or compound assignment operators as sub-
expressions in complex expressions. At best, such usage leads to expressions that are
difficult to read; at worst, to expressions that produce varying results in different
implementations of C.

 Remember the parentheses that are assumed to be around any expression that
is the second operand of a compound assignment operator. Since the statement

 a *= b + c;
is equivalent to
a = a * (b + c);

 there is no shorter way to write
 a = a * b + c;

 Be sure that the operand of an increment or decrement operator is a variable
and that this variable is referenced after executing the increment or decrement
operation. Without a subsequent reference, the operator’s side effect of changing
the value of the variable is pointless. Do not use a variable twice in an expression in
which it is incremented/decremented. Applying the increment/decrement operators
to constants or expressions is illegal.

299Chapter Review

 ■ Chapter Review

 1. Use a loop to repeat steps in a program. Two kinds of loops occur frequently
in programming: counting loops and sentinel-controlled loops. For a counting
loop, the number of iterations required can be determined before the loop
is entered. For a sentinel-controlled loop, repetition continues until a special
data value is scanned. The pseudocode for each loop form follows.

 Counter-Controlled Loop
 Set loop control variable to an initial value of 0 .
 While loop control variable < final value
 . . .
 Increase loop control variable by 1 .

 Sentinel-Controlled Loop
 Get a line of data.
 While the sentinel value has not been encountered
 Process the data line.
 Get another line of data.
 2. We also introduced pseudocode forms for three other kinds of loops:

 Endfile-Controlled Loop
 Get first data value and save input status.
 While input status does not indicate that end of file has been reached
 Process data value.
 Get next data value and save input status.

 Input Validation Loop
 Get a data value.
 If data value isn’t in the acceptable range,
 go back to first step.

 General Conditional Loop
 Initialize loop control variable.
 As long as exit condition hasn’t been met,
 continue processing.

 3. C provides three statements for implementing loops: while, for , and do-
while . Use the for to implement counting loops and the do-while to imple-
ment loops that must execute at least once, such as data validation loops for
interactive programs. Depending on which implementation is clearer, code
other conditional loops using for or while statements.

 4. In designing a loop, focus on both loop control and loop processing. For loop
processing, make sure that the loop body contains steps that perform the operation
that must be repeated. For loop control, you must provide steps that initialize, test,
and update the loop control variable. Make sure that the initialization step leads to
correct program results when the loop body is not executed (zero-iteration loop).

300 Chapter 5 • Repetition and Loop Statements

 5. A function can take another function as a parameter.
 6. Numerical analysis is the branch of mathematics and computer science

that develops algorithms for mathematical computation. We demonstrated
how to use the bisection method, a technique for iterative approximation
of a root of a function.

 NEW C CONSTRUCTS

 Construct Effect

 Counting for Loop

 for (num = 0;
 num < 26;
 ++num) {
 square = num * num;
 printf("%5d %5d\n", num,
 square);
 }

 Displays 26 lines, each containing an integer
from 0 to 25 and its square.

 Counting for Loop with a Negative Step

 for (volts = 20;
 volts >= -20;
 volts -= 10) {
 current = volts / resistance;
 printf("%5d %8.3f\n", volts,
 current);
 }

 For values of volts equal to 20 , 10 , 0 ,
− 10 , − 20 , computes value of current
and displays volts and current .

 Sentinel-Controlled while Loop

 product = 1;
 printf("Enter %d to quit\n",
 SENVAL);
 printf("Enter first number> ");
 scanf("%d", &dat);
 while (dat != SENVAL) {
 product *= dat;
 printf("Next number> ");
 scanf("%d", &dat);
 }

 Computes the product of a list of numbers.
The product is complete when the user
enters the sentinel value (SENVAL).

 Endfile-Controlled while Loop

 sum = 0;
 status = scanf("%d", &n);
 while (status == 1) {
 sum += n;
 status =
 scanf("%d", &n);
 }

 Accumulates the sum of a list of numbers
input from a file. The sum is complete when
 scanf detects the endfile character or
encounters erroneous data.

(continued)

301Quick-Check Exercises

 ■ Quick-Check Exercises

 1. A loop that continues to process input data until a special value is entered is
called a ___________ -controlled loop.

 2. Some for loops cannot be rewritten in C using a while loop. True or false?
 3. It is an error if the body of a for loop never executes. True or false?
 4. In an endfile-controlled while loop, the initialization and update expressions

typically include calls to the function ___________.
 5. In a typical counter-controlled loop, the number of loop repetitions may not

be known until the loop is executing. True or false?
 6. During execution of the following program segment, how many lines of aster-

isks are displayed?

 for (i = 0; i < 10; ++i)
 for (j = 0; j < 5; ++j)
 printf("**********\n");

 7. During execution of the following program segment:
 a. How many times does the first call to printf execute?
 b. How many times does the second call to printf execute?
 c. What is the last value displayed?

 for (i = 0; i < 7; ++i) {
 for (j = 0; j < i; ++j)
 printf("%4d", i * j);
 printf("\n");
 }

 Construct Effect

 do-while Loop

 do {
 printf("Positive number < 10> ");
 scanf("d%, &num");
 } while (num < 1 || num >= 10);

 Repeatedly displays prompts and stores a
number in num until user enters a number
that is in range.

 Increment / Decrement

 z = ++j * k--; Stores in z the product of the incremented
value of j and the current value of k. Then
 k is decremented.

 Compound Assignment

 ans *= a - b; Assigns to ans the value of
 ans * (a - b).

NEW C CONSTRUCTS (continued)

302 Chapter 5 • Repetition and Loop Statements

 8. If the value of n is 4 and m is 5 , is the value of the following expression 21 ?

 ++(n * m)

 Explain your answer.
 9. What are the values of n , m , and p after execution of this three-statement fragment?

j

5

k

2

n = j – ++k;
m = j– – + k– –;
p = k + j;

 10. What are the values of x , y , and z after execution of this three-statement
fragment?

x

3

y

5

z

2

x *= y + z;
y /= 2 * z + 1;
z += x;

 11. What does the following code segment display? Try each of these inputs: 345 ,
 82 , 6 . Then, describe the action of the code.

 printf("\nEnter a positive integer> ");
 scanf("%d", &num);
 do {
 printf("%d ", num % 10);
 num /= 10;
 } while (num > 0);
 printf("\n");

 ■ Answers to Quick-Check Exercises
 1. sentinel
 2. false
 3. false
 4. scanf
 5. false
 6. 50
 7. a. 0 + 1 + 2 + 3 + 4 + 5 + 6 = 21
 b. 7
 c. 30
 8. No. The expression is illegal. The increment operator cannot be applied to an

expression such as (n * m).
 9. n=2, m=8, p=6
 10. x=21, y=1, z=23

303Review Questions

 11. Enter a positive integer> 345
 5 4 3
 Enter a positive integer> 82
 2 8
 Enter a positive integer> 6
 6

 The code displays the digits of an integer in reverse order and separated by spaces.

 ■ Review Questions

 1. In what ways are the initialization, repetition test, and update steps alike for a
sentinel-controlled loop and an endfile-controlled loop? How are they different?

 2. Write a program that computes and displays the sum of a collection of Celsius
temperatures entered at the terminal until a sentinel value of -275 is entered.

 3. Hand trace the program that follows given the following data:

 4 2 8 4 1 4 2 1 9 3 3 1 -22 10 8 2 3 3 4 5
 #include <stdio.h>
 #define SPECIAL_SLOPE 0.0

 int
 main(void)
 {
 double slope, y2, y1, x2, x1;

 printf("Enter 4 numbers separated by spaces.");
 printf("\nThe last two numbers cannot be the ");
 printf("same, but\nthe program terminates if ");
 printf("the first two are.\n");
 printf("\nEnter four numbers> ");
 scanf("%lf%lf%lf%lf", &y2, &y1, &x2, &x1);

 for (slope = (y2 - y1) / (x2 - x1);
 slope != SPECIAL_SLOPE;
 slope = (y2 - y1) / (x2 - x1)) {
 printf("Slope is %5.2f.\n", slope);
 printf("\nEnter four more numbers> ");
 scanf("%lf%lf%lf%lf", &y2, &y1, &x2, &x1);
 }
 return (0);
 }

 4. Rewrite the program in Review Question 3 so that it uses a while loop .

304 Chapter 5 • Repetition and Loop Statements

 5. Rewrite the program segment that follows, using a for loop:

 count = 0;
 i = 0;
 while (i < n) {
 scanf("%d", &x);
 if (x == i)
 ++count;
 ++i;
 }

 6. Rewrite this for loop heading, omitting any invalid semicolons.

 for (i = n;
 i < max;
 ++i;);

 7. Write a do-while loop that repeatedly prompts for and takes input until a
value in the range 0 through 15 inclusive is input. Include code that prevents
the loop from executing forever on input of a wrong data type.

 ■ Programming Projects

 1. An integer n is divisible by 9 if the sum of its digits is divisible by 9.
 Develop a program to display each digit, starting with the rightmost digit.

Your program should also determine whether or not the number is divisible by
9. Test it on the following numbers:

 n = 154368
 n = 621594
 n = 123456

 Hint: Use the % operator to get each digit; then use / to remove that digit.
So 154368 % 10 gives 8 and 154368 / 10 gives 15436. The next digit extracted
should be 6, then 3 and so on.

 2. Redo programming project 1 by reading each digit of the number to be tested
into a type char variable digit . Display each digit and form the sum of the
numeric values of the digits. Hint: The numeric value of digit is

 (int) digit - (int) '0'

 3. Write a program to create an output file containing a customized loan amorti-
zation table. Your program will prompt the user to enter the amount borrowed
(the principal), the annual interest rate, and the number of payments (n). To
calculate the monthly payment, it will use the formula from Programming

305Programming Projects

Project 1 in Chapter 3 . This payment must be rounded to the nearest cent.
After the payment has been rounded to the nearest cent, the program will
write to the output file n lines showing how the debt is paid off. Each month
part of the payment is the monthly interest on the principal balance, and the
rest is applied to the principal. Because the payment and each month’s inter-
est are rounded, the final payment will be a bit different and must be calcu-
lated as the sum of the final interest payment and the final principal balance.
Here is a sample table for a $1000 loan borrowed at a 9% annual interest rate
and paid back over 6 months.

 Principal
Annual interest

 $1000.00
9.0%

 Payment
Term

 $171.07
6 months

 Payment
Balance

 Interest Principal Principal

 1 7.50 163.57 836.43

 2 6.27 164.80 671.63

 3 5.04 166.03 505.60

 4 3.79 167.28 338.32

 5 2.54 168.53 169.79

 6 1.27 169.79 0.00

 Final payment $171.06

 4. a. Write a program that will find the smallest, largest, and average values in a
collection of N numbers. Get the value of N before scanning each value in
the collection of N numbers.

 b. Modify your program to compute and display both the range of values in the
data collection and the standard deviation of the data collection. To compute
the standard deviation, accumulate the sum of the squares of the data values
(sum_squares) in the main loop. After loop exit, use the formula

standard deviation =

sum_squares

N
− average2

 5. The greatest common divisor (gcd) of two integers is the product of the inte-
gers’ common factors. Write a program that inputs two numbers and imple-
ments the following approach to finding their gcd. We will use the numbers
−252 and 735. Working with the numbers’ absolute values, we find the
remainder of one divided by the other.

0
735 252

0
252

306 Chapter 5 • Repetition and Loop Statements

 Now we calculate the remainder of the old divisor divided by the remainder
found.

2
252 735

504
231

 We repeat this process until the remainder is zero.

1
231 252

231
21

11
21 231

211
21
21
0

 The last divisor (21) is the gcd.

 6. The Environmental Awareness Club of BigCorp International is proposing
that the company subsidize at $.08 per passenger-kilometer the commuting
costs of employees who form carpools that meet a prescribed minimum pas-
senger efficiency. Passenger efficiency P (in passenger-kilometers per liter) is
defined as

P =

ns

l

 where n is the number of passengers, s is the distance traveled in kilometers,
and l is the number of liters of gasoline used.

 Write a program that processes an input file of data on existing carpools
(carpool.txt), creating an output file effic.txt containing a table of all
carpools that meet the passenger efficiency minimum. The input file begins
with a number that is the minimum passenger efficiency. Each carpool is rep-
resented by a data line containing three numbers: the number of people in the
carpool, the total commuting distance per five-day week, and the number of
liters of gasoline consumed in a week of commuting. The data file ends with a
line of zeros. Write your results with this format:

 CARPOOLS MEETING MINIMUM PASSENGER EFFICIENCY OF 25 PASSENGER KM/L

 Passengers Weekly Commute
(km)

 Gasoline
Consumption(L)

 Efficiency
(pass km/L)

 Weekly
Subsidy($)

 4 75 11.0 27.3 24.00

 2 60 4.5 26.7 19.60

 . . .

307Programming Projects

 7. a. Write a program to process a collection of daily high temperatures. Your
program should count and print the number of hot days (high tempera-
ture 85 or higher), the number of pleasant days (high temperature 60–84),
and the number of cold days (high temperatures less than 60). It should
also display the category of each temperature. Test your program on the
following data:

 55 62 68 74 59 45 41 58 60 67 65 78 82 88 91
 92 90 93 87 80 78 79 72 68 61 59

 b. Modify your program to display the average temperature (a real number)
at the end of the run.

 8. Write a program to process weekly employee time cards for all employees of
an organization. Each employee will have three data items: an identification
number, the hourly wage rate, and the number of hours worked during a given
week. Each employee is to be paid time and a half for all hours worked over
40. A tax amount of 3.625% of gross salary will be deducted. The program out-
put should show the employee’s number and net pay. Display the total payroll
and the average amount paid at the end of the run.

 9. Suppose you own a beer distributorship that sells Piels (ID number 1), Coors
(ID number 2), Bud (ID number 3), and Iron City (ID number 4) by the case.
Write a program to

 a. Get the case inventory for each brand for the start of the week.
 b. Process all weekly sales and purchase records for each brand.
 c. Display out the final inventory.

 Each transaction will consist of two data items. The first item will be the brand
ID number (an integer). The second will be the amount purchased (a positive
integer value) or the amount sold (a negative integer value). For now you may
assume that you always have sufficient foresight to prevent depletion of your
inventory for any brand. (Hint: Your data entry should begin with four values
representing the case inventory, followed by the transaction values.)

 10. The pressure of a gas changes as the volume and temperature of the gas vary.
Write a program that uses the Van der Waals equation of state for a gas,

(P + an2) (V � bn) = nRT

V2
 to create a file that displays in tabular form the relationship between the pres-

sure and the volume of n moles of carbon dioxide at a constant absolute tem-
perature (T). P is the pressure in atmospheres, and V is the volume in liters.
The Van der Waals constants for carbon dioxide are a = 3.592 L 2 · atm/mol 2
and b = 0.0427 L/mol. Use 0.08206 L · atm/mol · K for the gas constant R.
Inputs to the program include n, the Kelvin temperature, the initial and final

308 Chapter 5 • Repetition and Loop Statements

volumes in milliliters, and the volume increment between lines of the table.
Your program will output a table that varies the volume of the gas from the
initial to the final volume in steps prescribed by the volume increment. Here
is a sample run:

 Please enter at the prompts the number of moles of carbon
 dioxide, the absolute temperature, the initial volume in
 milliliters, the final volume, and the increment volume
 between lines of the table.

 Quantity of carbon dioxide (moles)> 0.02
 Temperature (kelvin)> 300
 Initial volume (milliliters)> 400
 Final volume (milliliters)> 600
 Volume increment (milliliters)> 50

 Output File

 0.0200 moles of carbon dioxide at 300 kelvin

 Volume (ml) Pressure (atm)

 400 1.2246
 450 1.0891
 500 0.9807
 550 0.8918
 600 0.8178

 11. A concrete channel to bring water to Crystal Lake is being designed. It will
have vertical walls and be 15 feet wide. It will be 10 feet deep, have a slope of
.0015 feet/foot, and a roughness coefficient of .014. How deep will the water
be when 1,000 cubic feet per second is flowing through the channel?

 To solve this problem, we can use Manning’s equation

 Q =
1.486

N
AR2>3S1>2

 where Q is the flow of water (cubic feet per second), N is the roughness coef-
ficient (unitless), A is the area (square feet), S is the slope (feet/foot), and R is
the hydraulic radius (feet).

 The hydraulic radius is the cross-sectional area divided by the wetted
perimeter. For square channels like the one in this example,

 Hydraulic radius = depth * width>(2.0 * depth + width)

 To solve this problem, design a program that allows the user to guess a depth
and then calculates the corresponding flow. If the flow is too little, the user

309Programming Projects

should guess a depth a little higher; if the flow is too high, the user should
guess a depth a little lower. The guessing is repeated until the computed flow
is within 0.1% of the flow desired.

 To help the user make an initial guess, the program should display the
flow for half the channel depth. Note the example run:

 At a depth of 5.0000 feet, the flow is 641.3255 cubic
 feet per second.

 Enter your initial guess for the channel depth
 when the flow is 1000.0000 cubic feet per second
 Enter guess> 6.0

 Depth: 6.0000 Flow: 825.5906 cfs Target: 1000.0000 cfs
 Difference: 174.4094 Error: 17.4409 percent
 Enter guess> 7.0

 Depth: 7.0000 Flow: 1017.7784 cfs Target: 1000.0000 cfs
 Difference: -17.7784 Error: -1.7778 percent

 Enter guess> 6.8

 12. Assume that United States consumers put $51 billion in fast food charges on
their credit and debit cards in 2006, up from $33.2 billion in 2005. Based on
this model of the billions of fast food charges,

 F(t) = 33.2 + 16.8t

 where t is years since 2005, write a program that repeatedly prompts the user to
enter a year after 2005 and then predicts the billions of dollars of fast food charges
U.S. consumers will make in that year. Define and call a function fast_food_
billions that takes the year as its input argument and returns the prediction as its
result. Tell the user that entry of a year before 2005 will cause the program to stop.

 13. A baseball player’s batting average is calculated as the number of hits divided
by the official number of at-bats. In calculating official at-bats, walks, sacri-
fices, and occasions when hit by the pitch are not counted. Write a program
that takes an input file containing player numbers and batting records. Trips
to the plate are coded in the batting record as follows: H—hit, O—out, W—
walk, S—sacrifice, P—hit by pitch. The program should output for each player
the input data followed by the batting average. (Hint : Each batting record is
followed by a newline character.)

 Sample input file:
 12 HOOOWSHHOOHPWWHO
 4 OSOHHHWWOHOHOOO
 7 WPOHOOHWOHHOWOO

310 Chapter 5 • Repetition and Loop Statements

 Corresponding output:
 Player 12's record: HOOOWSHHOOHPWWHO
 Player 12's batting average: 0.455

 Player 4's record: OSOHHHWWOHOHOOO
 Player 4's batting average: 0.417

 Player 7's record: WPOHOOHWOHHOWOO
 Player 7's batting average: 0.364

 14. The rate of decay of a radioactive isotope is given in terms of its half-life H,
the time lapse required for the isotope to decay to one-half of its original mass.
The isotope cobalt-60 (60 Co) has a half-life of 5.272 years. Compute and print
in table form the amount of this isotope that remains after each year for 5
years, given the initial presence of an amount in grams. The value of amount
should be provided interactively. The amount of 60 Co remaining can be com-
puted by using the following formula:

 r = amount * C (y>H)

 where amount is the initial amount in grams, C is expressed as e −0.693 (e = 2.71828),
 y is the number of years elapsed, and H is the half-life of the isotope in
years.

 15. The value for � can be determined by the series equation

4 × 1 − 1 + 1 − 1 + 1 −

3 5 7 9 11 13
1 + 1π = − . . .

 Write a program to approximate the value of � using the formula given includ-

ing terms up through 1/99.

 16. In this chapter we studied the bisection method for finding a root of an equa-
tion. Another method for finding a root, Newton’s method, usually converges
to a solution even faster than the bisection method, if it converges at all.
Newton’s method starts with an initial guess for a root, x 0 , and then generates
successive approximate roots x 1 , x 2 , . . . , x j , x j+1 , … , using the iterative formula

 xj +1 = xj -
f(xj)

f�(xj)

 where f �(x) is the derivative of function f evaluated at x = x j . The formula gen-
erates a new guess, x j +1 , from a previous one, x j . Sometimes Newton’s method
will fail to converge to a root. In this case, the program should terminate after
many trials, perhaps 100.

 Figure 5.25 shows the geometric interpretation of Newton’s method
where x 0 , x 1 , and x 2 represent successive guesses for the root. At each point

311Programming Projects

 x j , the derivative, f �(x j), is the slope of the tangent to the curve, f (x). The next
guess for the root, x j +1 , is the point at which the tangent crosses the x -axis.

 From geometry, we get the equation

yj +1 - yj

xj +1 - xj
= m

 where m is the slope of the line between points (x j +1 , y j +1) and (x j , y j). In Fig.
 5.23 , we see that y j +1 is zero, y j is f (x j), and m is f �(x j); therefore, by substituting
and rearranging terms, we get

 - f1xj2 = f�1xj2 * 1xj +1 - xj2
 leading to the formula shown at the beginning of this problem.
 Write a program that uses Newton’s method to approximate the n th root

of a number to six decimal places. If x n = c , then x n − c = 0. Finding a root of
the second equation will give you 1n c . Test your program on 12, 13 7 , and
 13 -1. Your program could use c /2 as its initial guess.

 17. You would like to find the area under the curve

 y = f(x)

 between the lines x = a and x = b . One way to approximate this area is to use
line segments as approximations of small pieces of the curve and then to sum

Root

x

y = f (x)
y

x3 x2 x1 x0

 FIGURE 5.25

 Geometric
Interpretation of
Newton’s Method

312 Chapter 5 • Repetition and Loop Statements

the areas of trapezoids created by drawing perpendiculars from the line segment
endpoints to the x -axis, as shown in Fig. 5.26 . We will assume that f (x) is non-
negative over the interval [a , b]. The trapezoidal rule approximates this area T as

T =

h
2

ƒ(a) + ƒ(b) + 2 Σ
n−1

i = 1
ƒ(xi)

 for n subintervals of length h:

 h =
b - a

n

 Write a function trap with input parameters a , b , n , and f that implements
the trapezoidal rule. Call trap with values for n of 2, 4, 8, 16, 32, 64, and 128
on functions

 g(x) = x2 sinx (a = 0, b = 3.14159)

 and

 h(x) = 4 − x2 (a = −2, b = 2)
 Function h defines a half-circle of radius 2. Compare your approximation to

the actual area of this half-circle.

 Note: If you have studied calculus, you will observe that the trapezoidal rule is
approximating

ƒ(x)dxb

a∫

x

y = f(x)

y

x xn – 1x2x1x0 = a x n = b

(x1, y1)

(x0, y0)

(x2, y2)

(xn, yn)

h

 FIGURE 5.26

 Approximating
the Area Under
a Curve with
Trapezoids

313Graphics Projects

 ■ Graphics Projects
 18. Draw a series of circles along one diagonal of a window. The circles should be

different colors and each circle should touch the ones next to it.

 19. Redo Programming Project 18 but this time draw a series of squares along the
other diagonal as well.

 20. Draw a simple stick figure and move it across the screen.

 21. Redo Programming Project 18 but this time draw a single circle that moves
down a diagonal.

 22. Redo Programming Project 19 with a single circle and square moving along
each diagonal.

This page intentionally left blank

 Pointers and Modular
Programming

 CHAPTER OBJECTIVES
 • To learn about pointers and indirect addressing

 • To see how to access external data files in a program
and to be able to read from input files and write to out-
put files using file pointers

 • To learn how to return function results through a func-
tion’s arguments

 • To understand the differences between call-by-value and
call-by-reference

 • To understand the distinction between input, inout, and
output parameters and when to use each kind

 • To learn how to modularize a program system and pass
information between system modules (functions)

 • To understand how to document the flow of informa-
tion using structure charts

 • To learn testing and debugging techniques appropriate
for a program system with several modules

 C H A P T E R

6

 This chapter begins with a discussion of pointers and highlights some of their
uses in C. We will see how pointers can be used to store a memory cell address
and access or modify the contents of this cell through indirect reference. We
will also learn how to use file pointers to enable a program to access input and
output files.

 In Chapter 3 you learned how to write the separate modules—functions—of
a program. The functions correspond to the individual steps in a problem solution.
You also learned how to provide inputs to a function and how to return a single
output. In this chapter you learn how to write functions that can return multiple
outputs. You will also learn how to write programs that use several functions to build
modular program systems.

 6.1 Pointers and the Indirection Operator
 The declaration

 float *p;

 identifies p as a pointer variable of type “pointer to float .” This means that we
can store the memory address of a type float variable in p .

 pointer or pointer
variable A memory
cell that stores the
address of a data item.

 Pointer Type Declaration

 SYNTAX: type * variable ;

 EXAMPLE: float *p;

 INTERPRETATION: The value of the pointer variable p is a memory address. A data item

whose address is stored in this variable must be of the specified type .

 EXAMPLE 6.1 The declaration statements

 int m = 25;
 int *itemp; /* a pointer to an integer */

 allocate storage for an int variable (m) and a pointer variable (itemp). The fol-
lowing statement stores the memory address of m in pointer itemp . It applies the

3176.1 • Pointers and the Indirection Operator

unary address of operator & to variable m to get its address which is then stored
in itemp .

 itemp = &m; /* Store address of m in pointer itemp */

 This is the same & operator that we have applied to variables in the input list of a
scanf statement.

 Figure 6.1 is a diagram of the situation that results after the above assignment assum-
ing that variable m is associated with memory cell 1024. Because it makes no differ-
ence to a program which memory cell is used, we represent the address in a pointer
by drawing an arrow from the pointer (itemp) to the variable (m) that it points to.

 Indirect Reference

 The label below the arrow in Fig. 6.1 shows that we can use *itemp to reference the
cell selected by pointer itemp . When the unary indirection operator * is applied to
a pointer variable, it has the effect of following the pointer referenced by its oper-
and. This provides an indirect reference to the cell that is selected by the pointer
variable. Table 6.1 shows the values of some pointer references for Fig. 6.1 .

 EXAMPLE 6.2 For the declarations shown earlier, the statement

 *itemp = 35;

 stores 35 in the variable m that is pointed to by itemp . The statement

 printf("%d", *itemp);

 displays the new value of m (35). The statement

 *itemp = 2 * (*itemp);

 doubles the value currently stored in m, the variable pointed to by itemp . Note that
the parentheses are inserted for clarity but are not needed.

 FIGURE 6.1

 Referencing a
Variable through a
Pointer

25

m itemp

*itemp 1024

 Indirect
reference Accessing
the contents of a
memory cell through
a pointer variable that
stores its address

 TABLE 6.1 References with Pointers
 Reference Cell referenced Cell Type (Value)

 itemp gray shaded cell pointer (1024)

 *itemp cell in color int (25)

318 Chapter 6 • Pointers and Modular Programming

 Pointers to Files

 As an alternative to input/output redirection, C allows a program to explicitly name
a file from which the program will take input or write output. To use files in this
way, we must declare pointer variables of type FILE * . The statements

 FILE *inp; /* pointer to input file */
 FILE *outp; /* pointer to ouput file */

 declare that file pointer variables inp and outp will hold information allowing
access to the program’s input and output files, respectively.

 The operating system must prepare a file for input or output before permitting
access. This preparation is the purpose of the calls to function fopen in the statements

 inp = fopen("distance.txt", "r");
 outp = fopen("distout.txt", "w");

 The first assignment statement opens (prepares for access) file distance.txt as
a source of program input and stores the necessary access value in the file pointer
variable inp . The "r" in the first call to fopen indicates that we wish to read (scan)
data from the file opened. Because the second assignment statement includes a
 "w" , indicating our desire to write to distout.txt , outp is initialized as an output
file pointer.

 The next two statements demonstrate the use of the functions fscanf and
 fprintf , file equivalents of functions scanf and printf .

 fscanf(inp, "%lf", &item);
 fprintf(outp, "%.2f\n", item);

 Function fscanf must first be given an input file pointer like inp . The remainder
of a call to fscanf is identical to a call to scanf : It includes a format string and
an input list. Similarly, function fprintf differs from function printf only in its
requirement of an output file pointer like outp as its first argument. Like scanf ,
function fscanf returns either the number of items read or a negative value (EOF)
if the end of file character is detected.

 When a program has no further use for its input and output files, it closes them
by calling function fclose with the file pointers.

 fclose(inp);
 fclose(outp);

 Figure 6.2 shows a program that reads a collection of numbers from a file indata.
txt and writes each number rounded to 2 decimal places on a separate line of file
 outdata.txt . We show a sample file indata.txt and outdata.txt after the
program.

3196.1 • Pointers and the Indirection Operator

 FIGURE 6.2 Program Using File Pointers

 1. /* Reads each number from an input file and writes it
 2. * rounded to 2 decimal places on a line of an output file.
 3. */
 4. #include <stdio.h>
 5 .
 6. int
 7. main(void)
 8. {
 9. FILE *inp; /* pointer to input file */
 10. FILE *outp; /* pointer to ouput file */
 11. double item;
 12. int input_status; /* status value returned by fscanf */
 13.
 14. /* Prepare files for input or output */
 15. inp = fopen("indata.txt", "r");
 16. outp = fopen("outdata.txt", "w");
 17.
 18. /* Read each item, format it, and write it */
 19. input_status = fscanf(inp, "%lf", &item);
 20. while (input_status == 1) {
 21. fprintf(outp, "%.2f\n", item);
 22. input_status = fscanf(inp, "%lf", &item);
 23. }
 24.
 25. /* Close the files */
 26. fclose(inp);
 27. fclose(outp);
 28.
 29. return (0);
 30. }

 File indata.txt
 344 55 6.3556 9.4
 43.123 47.596

 File outdata.txt
 344.00
 55.00
 6.36
 9.40
 43.12
 47.60

320 Chapter 6 • Pointers and Modular Programming

 EXERCISES FOR SECTION 6.1

 Self-check

 1. Trace the execution of the following fragment.

 int m = 10, n = 5;
 int *mp, *np;
 mp = &m;
 np = &n;
 *mp = *mp + *np;
 *np = *mp – *np;
 printf("%d %d\n%d %d\n", m, *mp, n, *np);

 2. Given the declarations

 int m = 25, n = 77;
 char c = '*';
 int *itemp;

 describe the errors in each of the following statements.

 m = &n;
 itemp = m;
 *itemp = c;
 *itemp = &c;

 Programming

 1. Add statements to Fig. 6.2 that count the number of items read and write the
count (an integer) as the last line of the output file. Why can’t you write the
count as the first item of the output file?

 6.2 Functions with Output Parameters
 Argument lists provide the communication links between the main function and
its function subprograms. Arguments make functions more versatile because they
enable a function to manipulate different data each time it is called. So far, we know
how to pass inputs to a function and how to use the return statement to send back
one result value from a function. This section describes how programmers use out-
put parameters to return multiple results from a function.

 When a function call executes, the computer allocates memory space in the
function data area for each formal parameter. The value of each actual parameter is
stored in the memory cell allocated to its corresponding formal parameter. Or, we
can use the address of operator (&) to store the actual parameter’s address instead of
its value. Next, we discuss how a function uses pointers and the indirection operator
(*) to return results to the function that calls it.

3216.2 • Functions with Output Parameters

 EXAMPLE 6.3 Function separate in Fig. 6.3 finds the sign, whole number magnitude,
and fractional parts of its first parameter. In our previous examples, all the for-
mal parameters of a function represent inputs to the function from the calling
function. In function separate , however, only the first formal parameter, num ,
is an input; the other three formal parameters— signp , wholep , and fracp —
are output parameters, used to carry multiple results from function sepa-
rate back to the function calling it. Note that output parameters are declared
as pointers. Figure 6.4 illustrates the function as a box with one input and three
outputs.

 FIGURE 6.3 Function separate

 1. /*
 2. * Separates a number into three parts: a sign (+, -, or blank),
 3. * a whole number magnitude, and a fractional part.
 4. */
 5. void
 6. separate(double num, /* input - value to be split */
 7. char *signp, /* output - sign of num */
 8. int *wholep, /* output - whole number magnitude of num */
 9. double *fracp) /* output - fractional part of num */
 10. {
 11. double magnitude; /* local variable - magnitude of num */
 12.
 13. /* Determines sign of num */
 14. if (num < 0)
 15. *signp = '-';
 16. else if (num == 0)
 17. *signp = ' ';
 18. else
 19. *signp = '+';
 20.
 21. /* Finds magnitude of num (its absolute value) and
 22. separates it into whole and fractional parts */
 23. magnitude = fabs(num);
 24. *wholep = floor(magnitude);
 25. *fracp = magnitude - *wholep;
 26. }

322 Chapter 6 • Pointers and Modular Programming

 Let’s focus for a moment on the heading of the function in Fig. 6.3 .

 void
 separate(double num, /* input - value to be split */
 char *signp, /* output - sign of num */
 int *wholep, /* output - whole number magnitude
 of num */
 double *fracp) /* output - fractional part of num */

 The actual argument value passed to the formal parameter num is used to deter-
mine the values to be sent back through signp , wholep , and fracp . Notice that in
 Fig. 6.3 the declarations of these output parameters in the function heading have
asterisks before the parameter names denoting that they are pointers. The assign-
ment statements in the function use indirect reference to send back the function
results. The function type is void as it is for functions returning no result, and the
function body does not include a return statement to send back a single value, as we
saw in earlier functions.

 The declaration char *signp tells the compiler that output parameter signp
will contain the address of a type char variable. Another way to express the idea
that signp is the address of a type char variable is to say that the parameter
 signp is a pointer to a type char variable. Similarly, the output parameters
 wholep and fracp are pointers to variables of types int and double . We have
chosen names for these output parameters that end in the letter “p” because they
are all pointers.

 Figure 6.5 shows a complete program including a brief function main that
calls function separate . Function separa te is defined as it was in Fig. 6.3 ,

 FIGURE 6.4

 Diagram of
Function separate
with Multiple
Results

separate
input
parameter

signp
wholep
fracp

num output
parameters

 FIGURE 6.5 Program That Calls a Function with Output Arguments

 1. /*
 2. * Demonstrates the use of a function with input and output parameters.
 3. */
 4.
 5. #include <stdio.h>
 6. #include <math.h>

(continued)

3236.2 • Functions with Output Parameters

 FIGURE 6.5 (continued)

 7. void separate(double num, char *signp, int *wholep, double *fracp);
 8.
 9. int
 10. main(void)
 11. {
 12. double value; /* input - number to analyze */
 13. char sn; /* output - sign of value */
 14. int whl; /* output - whole number magnitude of value */
 15. double fr; /* output - fractional part of value */
 16.
 17. /* Gets data */
 18. printf("Enter a value to analyze> ");
 19. scanf("%lf", &value);
 20.
 21. /* Separates data value into three parts */
 22. separate(value, &sn, &whl, &fr);
 23.
 24. /* Prints results */
 25. printf("Parts of %.4f\n sign: %c\n", value, sn);
 26. printf(" whole number magnitude: %d\n", whl);
 27. printf(" fractional part: %.4f\n", fr);
 28.
 29. return (0);
 30. }
 31.
 32. /*
 33. * Separates a number into three parts: a sign (+, -, or blank),
 34. * a whole number magnitude, and a fractional part.
 35. * Pre: num is defined; signp, wholep, and fracp contain addresses of memory
 36. * cells where results are to be stored
 37. * Post: function results are stored in cells pointed to by signp, wholep, and
 38. * fracp
 39. */
 40. void
 41. separate(double num, /* input - value to be split */
 42. char *signp, /* output - sign of num */
 43. int *wholep, /* output - whole number magnitude of num */
 44. double *fracp) /* output - fractional part of num */
 45. {
 46. double magnitude; /* local variable - magnitude of num */

(continued)

324 Chapter 6 • Pointers and Modular Programming

 FIGURE 6.5 (continued)

 47. /* Determines sign of num */
 48. if (num < 0)
 49. *signp = '-';
 50. else if (num == 0)
 51. *signp = ' ';
 52. else
 53. *signp = '+';
 54.
 55. /* Finds magnitude of num (its absolute value) and separates it into
 56. whole and fractional parts */
 57. magnitude = fabs(num);
 58. *wholep = floor(magnitude);
 59. *fracp = magnitude - *wholep;
 60. }

 Enter a value to analyze> 35.817
 Parts of 35.8170
 sign: +
 whole number magnitude: 35
 fractional part: 0.8170

but pre- and postconditions have been added to its block comment. The calling
function must declare variables in which function separate can store the mul-
tiple results it computes. Function main in our example declares three variables
to receive these results—a type char variable sn , a type int variable whl , and
a type double variable fr . Notice that no values are placed in these variables
prior to the call to function separate , for it is the job of separate to define
their values.

 Figure 6.6 shows the data areas of main and separate as they are set up by the
function call statement

 separate(value, &sn, &whl, &fr);
 This statement causes the number stored in the actual argument value to be copied
into the input parameter num and the addresses of the arguments sn , whl , and fr
to be stored in the corresponding output parameters signp , wholep , and fracp .
The small numbers in color represent possible actual addresses in memory. Since
it makes no difference to our program which specific cells are used, we draw an
arrow from signp to sn . Note that the use of the address-of operator & on the actual
arguments sn , whl , and fr is essential. If the operator & were omitted, we would
be passing to separate the values of sn , whl , and fr , information that is worthless
from the perspective of separate . The only way separate can store values in sn ,

3256.2 • Functions with Output Parameters

 whl , and fr is if it knows where to find them in memory. The purpose of separate
with regard to its second, third, and fourth arguments is comparable to the purpose
of the library function scanf with regard to all of its arguments except the first (the
format string).

 In addition to the fact that the values of the actual output arguments in the
call to separate are useless, these values are also of data types that do not match
the types of the corresponding formal parameters. Table 6.2 shows the effect of
the address-of operator & on the data type of a reference. You see that in general if
a reference x is of type “ whatever-type ,” the reference &x is of type “pointer to
 whatever-type ,” that is, “ whatever-type * .”

 So far, we have examined how to declare simple output parameters in a function
prototype and how to use the address-of operator & in a function call statement to

num

35.817

signp

7421

wholep

7422

fracp

7424

magnitude

?

Function separate
Data Area

value

35.817

sn

?

whl

?

fr

?

Function main
Data Area

 FIGURE 6.6

 Parameter
Correspondence
for separate(value,
&sn, &whl, &fr);

 TABLE 6.2 Effect of & Operator on the Data Type of a Reference
 Declaration Data Type of x Data Type of &x

 char x char char * (pointer to char)

 int x int int * (pointer to int)

 double x double double * (pointer to double)

326 Chapter 6 • Pointers and Modular Programming

pass pointers of appropriate types. Now we need to study how the function manipu-
lates these pointers in order to send back multiple results. The statements in func-
tion separate that cause the return of results follow.

 *signp = '-';
 *signp = ' ';
 *signp = '+';
 *wholep = floor(magnitude);
 *fracp = magnitude - *wholep;

 In each case, the name of the formal parameter is preceded by the indirection
operator * . Recall that when the unary * operator is applied to a reference that
is of some pointer type, it has the effect of following the pointer referenced by its
operand.

 For the data pictured in Fig. 6.6 , the statement

 *signp = '+';

 follows the pointer in signp to the cell that function main calls sn and stores in it
the character '+' . The statement

 *wholep = floor(magnitude);

 follows the pointer in wholep to the cell called whl by main and stores the integer
 35 there. Similarly, the statement

 *fracp = magnitude - *wholep;

 uses two indirect references: One accesses the value in main ’s local variable whl
through the pointer wholep , and another accesses fr of main through the pointer
 fracp to give the final output argument the value 0.817 .

 Meanings of * Symbol

 We have now seen three distinct meanings of the symbol * . In Chapter 2 we studied
its use as the binary operator meaning multiplication. Function separate intro-
duces two additional meanings. The * ’s in the declarations of the function’s formal
parameters are part of the names of the parameters’ data types. These * ’s should be
read as “pointer to.” Thus the declaration

 char *signp;

 tells the compiler that the type of parameter signp is “pointer to char .”
 The * has a completely different meaning when it is used as the unary indirec-

tion operator in the function body. Here it means “follow the pointer.” Thus, when
used in a reference, *signp means follow the pointer in signp . Notice that the data
type of the reference *signp is char , the data type of *wholep is int , and the data
type of *fracp is double .

3276.2 • Functions with Output Parameters

 EXERCISES FOR SECTION 6.2

 Self-Check

 1. Write a prototype for a function sum_n_avg that has three type double input
parameters and two output parameters.

sum_n_avg
n1
n2
n3

sump
avgp

x

17.1

code

g

many

14

Function main
Data Area

valp

letp

countp

Function sub
Data Area

 The function computes the sum and the average of its three input arguments
and relays its results through two output parameters.

 2. The following code fragment is from a function preparing to call sum_n_avg
(see Exercise 1). Complete the function call statement.

 {
 double one, two, three, sum_of_3, avg_of_3;
 printf("Enter three numbers> ");
 scanf("%lf%lf%lf", &one, &two, &three);
 sum_n_avg(__________________________________);
 . . .
 }

 3. Given the memory setup shown, fill in the chart by indicating the data type
and value of each reference as well as the name of the function in which the
reference would be legal.

328 Chapter 6 • Pointers and Modular Programming

 Describe pointer values by referring to cell attributes. For example, the value
of valp would be “pointer to color-shaded cell,” and the value of &many would
be “pointer to gray-shaded cell.”

 Reference Where Legal Data Type Value

 valp sub double * pointer to color-shaded cell
 &many

 code

 &code

 countp

 *countp

 *valp

 letp

 &x

 Programming

 1. Define the function sum_n_avg whose prototype you wrote in Self-Check
Exercise 1. The function should compute both the sum and the average
of its three input parameters and relay these results through its output
parameters.

 6.3 Multiple Calls to a Function with
Input/Output Parameters

 In previous examples, we passed information into a function through its input
parameters and returned results from a function through its output parameters. Our
next example demonstrates the use of a single parameter both to bring a data value
into a function and to carry a result value out of the function. It also demonstrates
how a function may be called more than once in a given program and process dif-
ferent data in each call.

 EXAMPLE 6.4 The main function in Fig. 6.7 gets three data values, num1 , num2 , and num3 ,
and rearranges the data so that they are in increasing sequence with the small-
est value in num1 . The three calls to function order perform this sorting
operation.

 sorting rearranging
data in a particular
sequence (increasing
or decreasing)

3296.3 • Multiple Calls to a Function with Input/Output Parameters

 FIGURE 6.7 Program to Sort Three Numbers

 1. /*
 2. * Tests function order by ordering three numbers
 3. */
 4. #include <stdio.h>
 5.
 6. void order(double *smp, double *lgp);
 7.
 8. int
 9. main(void)
 10. {
 11. double num1, num2, num3; /* three numbers to put in order */
 12.
 13. /* Gets test data */
 14. printf("Enter three numbers separated by blanks> ");
 15. scanf("%lf%lf%lf", &num1, &num2, &num3);
 16.
 17. /* Orders the three numbers */
 18. order(&num1, &num2);
 19. order(&num1, &num3);
 20. order(&num2, &num3);
 21.
 22. /* Displays results */
 23. printf("The numbers in ascending order are: %.2f %.2f %.2f\n",
 24. num1, num2, num3);
 25.
 26. return (0);
 27. }
 28.
 29. /*
 30. * Arranges arguments in ascending order.
 31. * Pre: smp and lgp are addresses of defined type double variables
 32. * Post: variable pointed to by smp contains the smaller of the type
 33. * double values; variable pointed to by lgp contains the larger
 34. */
 35. void
 36. order(double *smp, double *lgp) /* input/output */
 37. {
 38. double temp; /* temporary variable to hold one number during swap */

(continued)

330 Chapter 6 • Pointers and Modular Programming

 FIGURE 6.7 (continued)

 39. /* Compares values pointed to by smp and lgp and switches if necessary */
 40. if (*smp > *lgp) {
 41. temp = *smp;
 42.
 43. *smp = *lgp;
 44. *lgp = temp;
 45. }
 46. }

 Enter three numbers separated by blanks> 7.5 9.6 5.5
 The numbers in ascending order are: 5.50 7.50 9.60

 Each time function order executes, the smaller of its two argument values is stored
in its first actual argument and the larger is stored in its second actual argument.
Therefore, the function call

 order(&num1, &num2);

 stores the smaller of num1 and num2 in num1 and the larger in num2 . In the sample
run shown, num1 is 7.5 and num2 is 9.6 , so these values are not changed by the
function execution. However, the function call

 order(&num1, &num3);

 switches the values of num1 (initial value is 7.5) and num3 (initial value is 5.5).
 Table 6.3 traces the main function execution.

 The body of function order is based on the if statement from Fig. 4.6 . The func-
tion heading

 void
 order(double *smp, double *lgp) /* input/output */

 TABLE 6.3 Trace of Program to Sort Three Numbers

 Statement num1 num2 num3 Effect

 scanf(". . .", &num1, &num2, &num3); 7.5 9.6 5.5 Enters data

 order(&num1, &num2); No change

 order(&num1, &num3); 5.5 9.6 7.5 Switches num1 and num3

 order(&num2, &num3); 5.5 7.5 9.6 Switches num2 and num3

 printf(". . .", num1, num2, num3); Displays 5.5 7.5 9.6

3316.3 • Multiple Calls to a Function with Input/Output Parameters

 identifies smp and lgp as input/output parameters because the function uses the
current actual argument values as inputs and may return new values.

 During the execution of the second call

 order(&num1, &num3);

 the formal parameter smp contains the address of the actual argument num1 , and the
formal parameter lgp contains the address of the actual argument num3 . Testing the
condition

 (*smp > *lgp)

 causes both of these pointers to be followed, resulting in the condition

 (7.5 > 5.5)

 which evaluates to true. Executing the first assignment statement in the true task,

 temp = *smp;

 causes the 7.5 to be copied into the local variable temp . Figure 6.8 shows us a
snapshot of the values in memory immediately after execution of this assignment
statement.
 Execution of the next assignment statement,

 *smp = *lgp;

 would cause the 7.5 in the variable pointed to by smp to be replaced by 5.5 , the
value of the variable pointed to by lgp . The final assignment statement,

 *lgp = temp;

 copies the contents of the temporary variable (7.5) into the variable pointed to by
 lgp . This completes the swap of values.

num1

7.5

num2

9.6

num3

5.5

Function main
Data Area

smp

lgp

temp

Function order
Data Area

7.5

 FIGURE 6.8

 Data Areas After
 temp = *smp;
During Call
 order(&num1,
&num3);

332 Chapter 6 • Pointers and Modular Programming

 So far we have seen four kinds of functions, and we have studied how formal
parameters are used in all of them. Table 6.4 compares the various kinds of func-
tions and indicates the circumstances when each kind should be used.

 Program Style Preferred Kinds of Functions

 Although all the kinds of functions in Table 6.4 are useful in developing program
systems, we recommend that you use the first kind whenever it is possible to do
so. Functions that return a single value are the easiest functions for a program
reader to deal with. You will note that all the mathematical functions we discussed
in Section 3.2 are of this variety. Since such functions take only input argu-
ments, the programmer is not concerned with using such complexities as indirect
 referencing in the function definition or applying the address-of operator in the

 TABLE 6.4 Different Kinds of Function Subprograms

 Purpose Function Type Parameters To Return Result

 To compute or
obtain as input
a single numeric
or character value.

 Same as type
of value to be
computed or
obtained.

 Input parameters
hold copies of data
provided by calling
function.

 Function code includes
a return state-
ment with an
expression whose
value is the result.

 To produce printed
output containing
values of numeric or
character arguments.

 void Input parameters
hold copies of data
provided by calling
function.

 No result is returned.

 To compute mul-
tiple numeric or
character results.

 void Input parameters
hold copies of data
provided by calling
function.

 Output parameters
are pointers to
actual arguments.

 Results are stored
in the calling
function’s data
area by indirect
assignment
through output
parameters. No
 return statement
is required.

 To modify
argument values.

 void Input/output
parameters are
pointers to actual
arguments. Input
data is accessed
by indirect refer-
ence through
parameters.

 Results are stored
in the calling
function’s data
area by indirect
assignment through
output parameters.
No return statement
is required.

3336.3 • Multiple Calls to a Function with Input/Output Parameters

function call. If the value returned by the function is to be stored in a variable,
the reader sees an assignment statement in the code of the calling function. If a
function subprogram has a meaningful name, the reader can often get a good idea
of what is happening in the calling function without reading the function sub-
program’s code.

 EXERCISES FOR SECTION 6.3

 Self-Check

 1. What would be the effect of the following sequence of calls to function order ?
(Hint: Trace the calls for num1 = 8 , num2 = 12 , num3 = 10 .)

 order(&num3, &num2);
 order(&num2, &num1);
 order(&num3, &num2);

 2. Show the table of values for x , y , and z that is the output displayed by the fol-
lowing program. You will notice that the function sum does not follow the sug-
gestion in the last Program Style segment of Section 6.3 . You can improve this
program in the programming exercise that follows.

 #include <stdio.h>

 void sum(int a, int b, int *cp);

 int
 main(void)
 {
 int x, y, z;

 x = 7; y = 2;

 printf(" x y z\n\n");

 sum(x, y, &z);
 printf("%4d%4d%4d\n", x, y, z);

 sum(y, x, &z);
 printf("%4d%4d%4d\n", x, y, z);

 sum(z, y, &x);
 printf("%4d%4d%4d\n", x, y, z);

 sum(z, z, &x);
 printf("%4d%4d%4d\n", x, y, z);

334 Chapter 6 • Pointers and Modular Programming

 sum(y, y, &y);
 printf("%4d%4d%4d\n", x, y, z);

 return (0);
 }

 void
 sum(int a, int b, int *cp)
 {
 *cp = a + b;
 }

 Programming

 1. Rewrite the sum function in Self-Check Exercise 2 as a function that takes just
two input arguments. The sum computed should be returned as the function’s
type int result. Also, write an equivalent function main that calls your sum
function.

 6.4 Scope of Names
 The scope of a name refers to the region of a program where a particular meaning
of a name is visible or can be referenced. Let’s consider the names in the program
outline shown in Fig. 6.9 . The names MAX and LIMIT are defined as constant macros
and their scope begins at their definition and continues to the end of the source file.
This means that all three functions can access MAX and LIMIT .

 scope of a name the
region in a program
where a particular
meaning of a name
is visible

 FIGURE 6.9 Outline of Program for Studying Scope of Names

 1. #define MAX 950
 2. #define LIMIT 200
 3.
 4. void one(int anarg, double second); /* prototype 1 */
 5.
 6. int fun_two(int one, char anarg); /* prototype 2 */
 7.
 8. int
 9. main(void)
 10. {
 11. int localvar;

(continued)

3356.4 • Scope of Names

 FIGURE 6.9 (continued)

 12. . . .
 13. } /* end main */
 14.
 15.
 16. void
 17. one(int anarg, double second) /* header 1 */
 18. {
 19. int onelocal; /* local 1 */
 20. . . .
 21. } /* end one */
 22.
 23.
 24. int
 25. fun_two(int one, char anarg) /* header 2 */
 26. {
 27. int localvar; /* local 2 */
 28. . . .
 29. } /* end fun_two */

 The scope of the function subprogram name fun_two begins with its prototype
and continues to the end of the source file. This means that function fun_two can
be called by functions one , main , and itself. The situation is different for func-
tion one because one is used as a formal parameter name in function fun_two .
Therefore, function one can be called by the main function and itself but not by
function fun_two .

 All of the formal parameters and local variables in Fig. 6.9 are visible only from
their declaration to the closing brace of the function in which they are declared.
For example, from the line that is marked with the comment /* header 1 */ to
the line marked /* end one */ the identifier anarg means an integer variable
in the data area of function one . From the line with the comment /* header 2 */
through the line marked /* end fun_two */ this name refers to a character
variable in the data area of fun_two . In the rest of the file, the name anarg is not
visible.

 Table 6.5 shows which identifiers are visible within each of the three
functions.

336 Chapter 6 • Pointers and Modular Programming

 6.5 Formal Output Parameters as Actual Arguments
 So far, all of our actual arguments in calls to functions have been either local vari-
ables or input parameters of the calling function. However, sometimes a function
needs to pass its own output parameter as an argument when it calls another func-
tion. In Fig. 6.10 , which we have left incomplete, we write a function that scans a
data line representing a common fraction of the form

 numerator / denominator

 where numerator is an integer and denominator is a positive integer. The / symbol
is a separator. The function is based on function get_int (see Fig. 5.14). Its outer
loop repeats until a valid fraction is scanned, and its inner loop skips any characters
at the end of the data line.

 Function scan_fraction has two output parameters, nump and denomp ,
through which it returns the numerator and denominator of the fraction scanned.
Function scan_fraction needs to pass its output parameters to library function
 scanf which gets the needed numerator and denominator values. In all other
calls to scanf , we applied the address-of operator & to each variable to be filled.
However, because nump and denomp store addresses, we can use them directly in
the call to scanf :

 status = scanf("%d %c%d", nump, &slash, denomp);

 TABLE 6.5 Scope of Names in Fig. 6.9

 Name
 Visible
in one

 Visible
in fun_two

 Visible
in main

 MAX yes yes yes

 LIMIT yes yes yes

 main yes yes yes

 localvar (in main) no no yes

 one (the function) yes no yes

 anarg (int) yes no no

 second yes no no

 onelocal yes no no

 fun_two yes yes yes

 one (formal parameter) no yes no

 anarg (char) no yes no

 localvar (in fun_two) no yes no

3376.5 • Formal Output Parameters as Actual Arguments

 FIGURE 6.10 Function scan_fraction (incomplete)

 1. /*
 2. * Gets and returns a valid fraction as its result
 3. * A valid fraction is of this form: integer/positive integer
 4. * Pre : none
 5. */
 6. void
 7. scan_fraction(int *nump, int *denomp)
 8. {
 9. char slash; /* character between numerator and denominator */
 10. int status; /* status code returned by scanf indicating
 11. number of valid values obtained */
 12. int error; /* flag indicating presence of an error */
 13. char discard; /* unprocessed character from input line */
 14. do {
 15. /* No errors detected yet */
 16. error = 0;
 17.
 18. /* Get a fraction from the user */
 19. printf("Enter a common fraction as two integers separated ");
 20. printf("by a slash> ");
 21. status = scanf("%d %c%d",_______, _______, _______);
 22.
 23. /* Validate the fraction */
 24. if (status < 3) {
 25. error = 1;
 26. printf("Invalid-please read directions carefully\n");
 27. } else if (slash != '/') {
 28. error = 1;
 29. printf("Invalid-separate numerator and denominator");
 30. printf(" by a slash (/)\n");
 31. } else if (*denomp <= 0) {
 32. error = 1;
 33. printf("Invalid—denominator must be positive\n");
 34. }
 35.
 36. /* Discard extra input characters */
 37. do {
 38. scanf("%c", &discard);
 39. } while (discard != '\n');
 40. } while (error);
 41. }

338 Chapter 6 • Pointers and Modular Programming

 The statement

status = scanf("%d %c%d", nump, &slash, denomp);

stores the first number scanned in the variable whose address is in nump , the slash
character (possibly preceded by blanks) in local variable slash , and the second
number scanned in the variable whose address is in denomp . The if statement vali-
dates the fraction, setting the flag error to 1 (true) if the data entry was unsuccessful.

 Figure 6.11 shows the data areas for scan_fraction and the function calling
it. For the situation shown, scanf stores the two numbers scanned in variables
 numerator and denominator . The slash character is stored in local variable slash .

 When you pass an output parameter of function a to function b, you need to
carefully consider how it will be used in function b. You may find it helpful to sketch
the data areas as we did in Fig. 6.11 . Table 6.6 gives you guidelines for function
arguments of type int , double , and char .

 EXERCISES FOR SECTION 6.5

 Self-Check

 1. Box models of functions onef and twof follow. Do not try to define the
 complete functions; write only the portions described.

nump

denomp

slash

Function scan_

fraction Data Area

?

numerator

?

denominator

?

Calling Function

Data Area

 FIGURE 6.11

 Data Areas for
scan_fraction and
Its Caller

onef out2p
dat

twof

result1p
indat

result2p

outlp

3396.5 • Formal Output Parameters as Actual Arguments

 Assume that these functions are concerned only with integers, and write head-
ings for onef and twof . Begin the body of function onef with a declaration
of an integer local variable tmp . Show a call from onef to twof in which the
input argument is dat , and tmp and out2p are the output arguments. Function
 onef intends for twof to store one integer result in tmp and one in the variable
pointed to by out2p .

 2. a. Classify each formal parameter of double_trouble and trouble as
input, output, or input/output.

 b. What values of x and y are displayed by this program? (Hint: Sketch
the data areas of main , trouble , and double_trouble as the program
executes.)

 void double_trouble(int *p, int y);
 void trouble(int *x, int *y);

 int
 main(void)

 {
 int x, y;

 TABLE 6.6 Passing an Argument x to Function some_fun

 Actual
Argument
Type

 Use in
Calling
Function

 Purpose in
Called
Function
(some_fun)

 Formal
Parameter
Type

 Call to
some_fun Example

 int
char
double

 local
variable
or input
parameter

 input
parameter

 int
char
double

 some_fun(x) Fig. 6.5 , main:
 separate(value,
&sn, &whl, &fr);
(1st argument)

 int
char
double

 local
variable

 output or
input/
output
parameter

 int *
char *
double *

 some_fun(&x) Fig. 6.5 , main:
separate(value,
&sn, &whl, &fr);
(2nd–4th arguments)

 int *
char *
double *

 output or
input/
output
parameter

 output or input/
output parameter

 int *
char *
double *

 some_fun(x) Fig. 6.10 completed,
 scanf(. . .,nump,
&slash denomp); (2nd
and 4th arguments)

 int *
char *
double *

 output or
input/
output
parameter

 input
parameter

 int
char
double

 some_fun(*x) Self-Check Ex. 2 in Section
6.6, trouble: double_
trouble(y, *x);
(2nd argument)

340 Chapter 6 • Pointers and Modular Programming

 trouble(&x, &y);
 printf("x = %d, y = %d\n", x, y);
 return (0);
 }

 void
 double_trouble(int *p, int y)
 {
 int x;
 x = 10;
 *p = 2 * x - y;
 }

 void
 trouble(int *x, int *y)
 {
 double_trouble(x, 7);
 double_trouble(y, *x);
 }

 c. What naming convention introduced in Section 6.2 is violated in the
formal parameter list of trouble ?

 6.6 Problem Solving Illustrated
 In this section, we examine two programming problems that illustrate many of the
concepts discussed in this chapter. The top-down design process will be demon-
strated in solving each programming problem. Each program will be implemented
in a stepwise manner, starting with a list of major algorithm steps and continuing to
add detail through refinement until the program and its function subprogram can be
written. The first problem uses files and file pointers. The second problem imple-
ments a set of functions for manipulating fractions.

 CASE STUDY Collecting Area For Solar-Heated House

 PROBLEM

 An architect needs a program that can estimate the appropriate size for the col-
lecting area of a solar-heated house. Determining collecting area size requires
consideration of several factors, including the average number of heating degree
days for the coldest month of a year (the product of the average difference between
inside and outside temperatures and the number of days in the month), the heating

3416.6 • Problem Solving Illustrated

requirement per square foot of floor space, the floor space, and the efficiency of
the collection method. The program will have access to two data files. File hdd.txt
contains numbers representing the average heating degree days in the construction
location for each of 12 months. File solar.txt contains the average solar insolation
(rate in BTU/day at which solar radiation falls on one square foot of a given location)
for each month. The first entry in each file represents data for January, the second,
data for February, and so on.

 ANALYSIS

 The formula for approximating the desired collecting area (A) is

A � heat loss
 energy resource

 In turn, heat loss is computed as the product of the heating requirement, the floor
space, and the heating degree days. We compute the necessary energy resource by
multiplying the efficiency of the collection method by the average solar insolation
per day and the number of days.

 In all of our previous programs, data for program inputs have come from the
same source—either the keyboard or a file. In this program we will use three input
sources: the two data files and the keyboard. We can now identify the problem’s
data requirements and develop an algorithm.

 DATA REQUIREMENTS

 Problem Inputs
 Average heating degree days file
 Average solar insolation file

 heat_deg_days /* average heating degree days for coldest month */
 coldest_mon /* coldest month (number 1 .. 12) */
 solar_insol /* average daily solar insolation (BTU/ft^2)for
 coldest month */
 heating_req /* BTU/degree day ft^2 for planned type construction*/
 efficiency /* % of solar insolation converted to usable heat */
 floor_space /* square feet */

 Program Variables
 energy_resrc /* usable solar energy available in coldest month
 (BTUs obtained from 1 ft^2 of collecting area) */

 Problem Outputs
 heat_loss /* BTUs of heat lost by structure in coldest month */
 collect_area /* approximate size (ft^2) of collecting area needed*/

342 Chapter 6 • Pointers and Modular Programming

 DESIGN

 Initial Algorithm
 1. Determine the coldest month and the average heating degree days for this

month.
 2. Find the average daily solar insolation per ft 2 for the coldest month.
 3. Get from the user the other problem inputs: heating_req , efficiency , and

 floor_space .
 4. Estimate the collecting area needed.
 5. Display results.

 As shown in the structure chart (Fig. 6.12), we will design step 2 as a separate
function. Function nth_item will find the value in file solar.txt that corresponds to
the coldest month. Steps 3 and 5 are quite straightforward, so only steps 1 and 4 call
for refinement here.

Estimate
collecting

area

Estimate solar
collecting area

size

Display
results

Get heating
requirement,

efficiency, floor
space from user

Get solar
insolation for

coldest month
(function nth_item)

Determine coldest
month, average
heating degree

days for it

hdd_file

coldest_mon
heat_deg_days

solar_file
coldest_mon

solar_insol

heating_req
efficiency

floor_space
heat_deg_days

solar_insol
coldest_mon

collect_area

collect_areaheating_req
efficiency

floor_space

days_in_month

num_dayscoldest_mon

 FIGURE 6.12

 Structure Chart for Computing Solar Collecting Area Size

3436.6 • Problem Solving Illustrated

 STEP 1 REFINEMENT

 We will introduce three new variables to use in our refinement—a counter, ct,
to keep track of our position in the heating degree days file, an integer variable to
record file status, and an integer variable next_hdd to hold each heating degree
days value in turn.

 Additional Program Variables
 ct /* position in file */
 status /* input status */
 next_hdd /* one heating degree days value */

 1.1 Scan first value from heating degree days file into heat_deg_days , and initial-
ize coldest_mon to 1.

 1.2 Initialize ct to 2.
 1.3 Scan a value from the file into next_hdd , saving status .
 1.4 As long as no faulty data or not at end of file, repeat
 1.5 if next_hdd is greater than heat_deg_days
 1.6 Copy next_hdd into heat_deg_days .
 1.7 Copy ct into coldest_mon .
 1.8 Increment ct .
 1.9 Scan a value from the file into next_hdd , saving status .

 STEP 4 REFINEMENT

 4.1 Calculate heat_loss as the product of heating_req , floor_space , and
 heat_deg_days .

 4.2 Calculate energy_resrc as the product of efficiency (converted to hun-
dredths), solar_insol , and the number of days in the coldest month.

 4.3 Calculate collect_area as heat_loss divided by energy_resrc . Round
result to nearest whole square foot.

 We will develop a separate function for finding the number of days in a month, a
value needed in step 4.2 (see Fig. 6.12).

 Functions
 Functions nth_item and days_in_month are quite simple, so we will show only
their implementation. Figure 6.13 is an implementation of the entire program for
approximating the necessary size of a solar collecting area for solar heating a certain
structure in a given geographic area.

 Input file hdd.txt
 995 900 750 400 180 20 10 10 60 290 610 1051

 Input file solar.txt
 500 750 1100 1490 1900 2100 2050 1550 1200 900 500 500

344 Chapter 6 • Pointers and Modular Programming

 FIGURE 6.13 Program to Approximate Solar Collecting Area Size

 1. /*
 2. * Estimate necessary solar collecting area size for a particular type of
 3. * construction in a given location.
 4. */
 5. #include <stdio.h>
 6.
 7. int days_in_month(int);
 8. int nth_item(FILE *, int);
 9.
 10. int main(void)
 11. {
 12. int heat_deg_days, /* average for coldest month */
 13. solar_insol, /* average daily solar radiation per
 14. ft^2 for coldest month */
 15. coldest_mon, /* coldest month: number in range 1..12 */
 16. heating_req, /* BTU / degree day ft^2 requirement for
 17. given type of construction */
 18. efficiency, /* % of solar insolation converted to
 19. usable heat */
 20. collect_area, /* ft^2 needed to provide heat for
 21. coldest month */
 22. ct, /* position in file */
 23. status, /* file status variable */
 24. next_hdd; /* one heating degree days value */
 25. double floor_space, /* ft^2 */
 26. heat_loss, /* BTUs lost in coldest month */
 27. energy_resrc; /* BTUs heat obtained from 1 ft^2
 28. collecting area in coldest month */
 29. FILE *hdd_file; /* average heating degree days for each
 30. of 12 months */
 31. FILE *solar_file; /* average solar insolation for each of
 32. 12 months */
 33.
 34. /* Get average heating degree days for coldest month from file */
 35. hdd_file = fopen("hdd.txt", "r");
 36. fscanf(hdd_file, "%d", &heat_deg_days);
 37. coldest_mon = 1;
 38. ct = 2;
 39. status = fscanf(hdd_file, "%d", &next_hdd);
 40. while (status == 1) {

(continued)

3456.6 • Problem Solving Illustrated

 FIGURE 6.13 (continued)

 41. if (next_hdd > heat_deg_days) {
 42. heat_deg_days = next_hdd;
 43. coldest_mon = ct;
 44. }
 45.
 46. ++ct;
 47. status = fscanf(hdd_file, "%d", &next_hdd);
 48. }
 49. fclose(hdd_file);
 50.
 51. /* Get corresponding average daily solar insolation from other file */
 52. solar_file = fopen("solar.txt", "r");
 53. solar_insol = nth_item(solar_file, coldest_mon);
 54. fclose(solar_file);
 55.
 56. /* Get from user specifics of this house */
 57. printf("What is the approximate heating requirement (BTU / ");
 58. printf("degree day ft^2)\nof this type of construction?\n=> ");
 59. scanf("%d", &heating_req);
 60. printf("What percent of solar insolation will be converted ");
 61. printf("to usable heat?\n=> ");
 62. scanf("%d", &efficiency);
 63. printf("What is the floor space (ft^2)?\n=> ");
 64. scanf("%lf", &floor_space);
 65.
 66. /* Project collecting area needed */
 67. heat_loss = heating_req * floor_space * heat_deg_days;
 68. energy_resrc = efficiency * 0.01 * solar_insol *
 69. days_in_month(coldest_mon);
 70. collect_area = (int)(heat_loss / energy_resrc + 0.5);
 71.
 72. /* Display results */
 73. printf("To replace heat loss of %.0f BTU in the ", heat_loss);
 74. printf("coldest month (month %d)\nwith available ", coldest_mon);
 75. printf("solar insolation of %d BTU / ft^2 / day,", solar_insol);
 76. printf(" and an\nefficiency of %d percent,", efficiency);
 77. printf(" use a solar collecting area of %d", collect_area);
 78. printf(" ft^2.\n");
 79.
 80. return (0);
 81. } (continued)

346 Chapter 6 • Pointers and Modular Programming

 FIGURE 6.13 (continued)

 82.
 83. /*
 84. * Given a month number (1 = January, 2 = February, …,
 85. * 12 = December), return the number of days in the month
 86. * (nonleap year).
 87. * Pre: 1 <= monthNumber <= 12
 88. */
 89. int days_in_month(int month_number)
 90. {
 91.
 92. int ans;
 93.
 94. switch (month_number) {
 95. case 2: ans = 28; /* February */
 96. break;
 97.
 98. case 4: /* April */
 99. case 6: /* June */
 100. case 9: /* September */
 101. case 11: ans = 30; /* November */
 102. break;
 103.
 104. default: ans = 31;
 105. }
 106.
 107. return ans;
 108. }
 109.
 110. /*
 111. * Finds and returns the nth integer in a file.
 112. * Pre: data_file accesses a file of at least n integers (n >= 1).
 113. */
 114. int nth_item(FILE *data_file, int n)
 115. {
 116. int i, item;
 117.
 118. for (i = 1; i <= n; ++i)
 119. fscanf(data_file, "%d", &item);
 120.

(continued)

3476.6 • Problem Solving Illustrated

 FIGURE 6.13 (continued)

 121. return item;
 122. }

 Sample Run
 What is the approximate heating requirement (BTU / degree day ft^2)
 of this type of construction?
 => 9
 What percent of solar insolation will be converted to usable heat?
 => 60
 What is the floor space (ft^2)?
 => 1200
 To replace heat loss of 11350800 BTU in the coldest month (month 12)
 with available solar insolation of 500 BTU / ft^2 / day, and an
 efficiency of 60 percent, use a solar collecting area of 1221 ft^2.

 Functions for Common Fractions

 In our next case study, we manipulate numeric data of a type not provided as one
of C’s base types. In order to do this, we must write our own functions to perform
operations on common fractions that we take for granted when using types int
and double .

 CASE STUDY Arithmetic with Common Fractions

 PROBLEM

 You are working problems in which you must display your results as integer ratios;
therefore, you need to be able to perform computations with common fractions and get
results that are common fractions in reduced form. You want to write a program that
will allow you to add, subtract, multiply, and divide several pairs of common fractions.

 ANALYSIS

 Because the problem specifies that results are to be in reduced form, we will need
to include a fraction-reducing function in addition to the computational functions. If
we break the problem into small enough chunks, there should be an opportunity to
reuse code by calling the same function multiple times. The in-depth analysis of the
problem is actually distributed through the development of these functions.

348 Chapter 6 • Pointers and Modular Programming

 DATA REQUIREMENTS

 Problem Inputs
 int n1, d1 /* numerator, denominator of first fraction */
 int n2, d2 /* numerator, denominator of second fraction */
 char op /* arithmetic operator + - * or / */
 char again /* y or n depending on user's desire to continue */

 Problem Outputs
 int n_ans /* numerator of answer */
 int d_ans /* denominator of answer */

 DESIGN

 As we develop an algorithm through stepwise refinement, we will look for instances
in which a definition of a new function would simplify the design.

 INITIAL ALGORITHM

 1. Repeat as long as user wants to continue.
 2. Get a fraction problem.
 3. Compute the result.
 4. Display problem and result.
 5. Check if user wants to continue.

 Step 2 Refinement
 2.1 Get first fraction.
 2.2 Get operator.
 2.3 Get second fraction.

 Step 3 Refinement
 3.1 Select a task based on operator:
 ‘+’: 3.1.1 Add the fractions.
 ‘−’: 3.1.2 Add the first fraction and the negation of the second.
 ‘*’: 3.1.3 Multiply the fractions.
 ‘/’: 3.1.4 Multiply the first fraction and the reciprocal of the second.
 3.2 Put the result fraction in reduced form.

 Step 3.2 Refinement
 3.2.1 Find the greatest common divisor (gcd) of the numerator and denominator.
 3.2.2 Divide the numerator and denominator by the gcd.

 The structure chart in Fig. 6.14 shows the data flow among the steps we have
identified.

3496.6 • Problem Solving Illustrated

n1
d1
op
n2
d2

Perform arithmetic
operations on
common fractions

Get
fraction
problem

Continue? Compute
result

Print problem
and result

n1
d1
op
n2
d2

n1,d1
op
n2,d2
n_ans
d_ans

again

scan_
fraction

get_
operator

num
denom

op n1
d1
n2
d2

add_
fractions

multiply_
fractions

reduce_
fraction

n_ans
d_ans

n_ans
d_ans

n1
d1
n2
d2

n_ans
d_ans

num
denom

print_
fraction

num,denom

find_gcd

n1,n2

gcd

 FIGURE 6.14

 Structure Chart for
Common Fraction
Problem

 IMPLEMENTATION

 For steps 2.1 and 2.3 we will use function scan_fraction from Fig. 6.10 . We
will write new function subprograms for get_operator (step 2.2), add_frac-
tions (steps 3.1.1 and 3.1.2), multiply_fractions (steps 3.1.3 and 3.1.4),
 reduce_fraction (step 3.2), find_gcd (step 3.2.1), and print_fraction (part
of step 4). As a result, coding function main is quite straightforward. Figure
 6.15 shows most of the program; however, the functions multiply_fractions
and find_gcd have been left as exercises. In their places, we have inserted
 stubs , skeleton functions that have complete comments and headers but merely
assign values to their output parameters to allow testing of the partial system.
Debugging and testing the system will be explained in Section 6.7 .

 stub a skeleton
function that consists
of a header and
statements that display
trace messages and
assign values to output
parameters; enables
testing of the flow
of control among
functions before this
function is completed

350 Chapter 6 • Pointers and Modular Programming

 FIGURE 6.15 Program to Perform Arithmetic Operations on Common Fractions

 1. /*
 2. * Adds, subtracts, multiplies and divides common fractions, displaying
 3. * results in reduced form.
 4. */
 5.
 6. #include <stdio.h>
 7. #include <stdlib.h> /* provides function abs */
 8.
 9. /* Function prototypes */
 10. void scan_fraction(int *nump, int *denomp);
 11.
 12. char get_operator(void);
 13.
 14. void add_fractions(int n1, int d1, int n2, int d2,
 15. int *n_ansp, int *d_ansp);
 16.
 17. void multiply_fractions(int n1, int d1, int n2, int d2,
 18. int *n_ansp, int *d_ansp);
 19.
 20. int find_gcd (int n1, int n2);
 21.
 22. void reduce_fraction(int *nump, int *denomp);
 23.
 24. void print_fraction(int num, int denom);
 25.
 26. int
 27. main(void)
 28. {
 29. int n1, d1; /* numerator, denominator of first fraction */
 30. int n2, d2; /* numerator, denominator of second fraction */
 31. char op; /* arithmetic operator + - * or / */
 32. char again; /* y or n depending on user's desire to continue */
 33. int n_ans, d_ans; /* numerator, denominator of answer */
 34. /* While the user wants to continue, gets and solves arithmetic
 35. problems with common fractions */
 36. do {
 37. /* Gets a fraction problem */
 38. scan_fraction(&n1, &d1);
 39. op = get_operator();

(continued)

3516.6 • Problem Solving Illustrated

 FIGURE 6.15 (continued)

 40. scan_fraction(&n2, &d2);
 41.
 42. /* Computes the result */
 43. switch (op) {
 44. case '+':
 45. add_fractions(n1, d1, n2, d2, &n_ans, &d_ans);
 46. break;
 47.
 48. case '-':
 49. add_fractions(n1, d1, -n2, d2, &n_ans, &d_ans);
 50. break;
 51.
 52. case '*':
 53. multiply_fractions(n1, d1, n2, d2, &n_ans, &d_ans);
 54. break;
 55.
 56. case '/':
 57. multiply_fractions(n1, d1, d2, n2, &n_ans, &d_ans);
 58. }
 59. reduce_fraction(&n_ans, &d_ans);
 60.
 61. /* Displays problem and result */
 62. printf("\n");
 63. print_fraction(n1, d1);
 64. printf(" %c ", op);
 65. print_fraction(n2, d2);
 66. printf(" = ");
 67. print_fraction(n_ans, d_ans);
 68.
 69. /* Asks user about doing another problem */
 70. printf("\nDo another problem? (y/n)> ");
 71. scanf(" %c", &again);
 72. } while (again == 'y' || again == 'Y');
 73. return (0);
 74. }
 75. /* Insert function scan_fraction from Fig. 6.10 here. */
 76.
 77. /*
 78. * Gets and returns a valid arithmetic operator. Skips over newline
 79. * characters and permits reentry of operator in case of error.

(continued)

352 Chapter 6 • Pointers and Modular Programming

 FIGURE 6.15 (continued)

 80. */
 81. char
 82. get_operator(void)
 83. {
 84. char op;
 85.
 86. printf("Enter an arithmetic operator (+,-,*, or /)\n> ");
 87. for (scanf("%c", &op);
 88. op != '+' && op != '-' &&
 89. op != '*' && op != '/';
 90. scanf("%c", &op)) {
 91. if (op != '\n')
 92. printf("%c invalid, reenter operator (+,-, *,/)\n> ", op);
 93. }
 94. return (op);
 95. }
 96.
 97. /*
 98. * Adds fractions represented by pairs of integers.
 99. * Pre: n1, d1, n2, d2 are defined;
 100. * n_ansp and d_ansp are addresses of type int variables.
 101. * Post: sum of n1/d1 and n2/d2 is stored in variables pointed
 102. * to by n_ansp and d_ansp. Result is not reduced.
 103. */
 104. void
 105. add_fractions(int n1, int d1, /* input - first fraction */
 106. int n2, int d2, /* input - second fraction */
 107. int *n_ansp, int *d_ansp) /* output - sum of 2 fractions*/
 108. {
 109. int denom, /* common denominator used for sum (may not be least) */
 110. numer, /* numerator of sum */
 111. sign_factor; /* -1 for a negative, 1 otherwise */
 112.
 113. /* Finds a common denominator */
 114. denom = d1 * d2;
 115.
 116. /* Computes numerator */
 117. numer = n1 * d2 + n2 * d1;
 118.
 119. /* Adjusts sign (at most, numerator should be negative) */

(continued)

3536.6 • Problem Solving Illustrated

 FIGURE 6.15 (continued)

 120. if (numer * denom >= 0)
 121. sign_factor = 1;
 122. else
 123. sign_factor = -1;
 124.
 125. numer = sign_factor * abs(numer);
 126. denom = abs(denom);
 127.
 128. /* Returns result */
 129. *n_ansp = numer;
 130. *d_ansp = denom;
 131. }
 132.
 133. /*
 134. ***** STUB *****
 135. * Multiplies fractions represented by pairs of integers.
 136. * Pre: n1, d1, n2, d2 are defined;
 137. * n_ansp and d_ansp are addresses of type int variables.
 138. * Post: product of n1/d1 and n2/d2 is stored in variables pointed
 139. * to by n_ansp and d_ansp. Result is not reduced.
 140. */
 141. void
 142. multiply_fractions(int n1, int d1, /* input - first fraction */
 143. int n2, int d2, /* input - second fraction */
 144. int *n_ansp, /* output - */
 145. int *d_ansp) /* product of 2 fractions */
 146. {
 147. /* Displays trace message */
 148. printf("\nEntering multiply_fractions with\n");
 149. printf("n1 = %d, d1 = %d, n2 = %d, d2 = %d\n", n1, d1, n2, d2);
 150. /* Defines output arguments */
 151. *n_ansp = 1;
 152. *d_ansp = 1;
 153. }
 154.
 155. /*
 156. ***** STUB *****
 157. * Finds greatest common divisor of two integers
 158. */
 159. int

(continued)

354 Chapter 6 • Pointers and Modular Programming

 FIGURE 6.15 (continued)

 160. find_gcd (int n1, int n2) /* input - two integers */
 161. {
 162. int gcd;
 163.
 164. /* Displays trace message */
 165. printf("\nEntering find_gcd with n1 = %d, n2 = %d\n", n1, n2);
 166.
 167. /* Asks user for gcd */
 168. printf("gcd of %d and %d?> ", n1, n2);
 169. scanf("%d", &gcd);
 170.
 171. /* Displays exit trace message */
 172. printf("find_gcd returning %d\n", gcd);
 173. return (gcd);
 174. }
 175.
 176. /*
 177. * Reduces a fraction by dividing its numerator and denominator by their
 178. * greatest common divisor.
 179. */
 180. void
 181. reduce_fraction(int *nump, /* input/output - */
 182. int *denomp) /* numerator and denominator of fraction */
 183. {
 184. int gcd; /* greatest common divisor of numerator & denominator */
 185.
 186. gcd = find_gcd(*nump, *denomp);
 187. *nump = *nump / gcd;
 188. *denomp = *denomp / gcd;
 189. }
 190.
 191. /*
 192. * Displays pair of integers as a fraction.
 193. */
 194. void
 195. print_fraction(int num, int denom) /* input - numerator & denominator */
 196. {
 197. printf("%d/%d", num, denom);
 198. }

3556.6 • Problem Solving Illustrated

 TESTING

 We have chosen to leave portions of our fraction system for you to write, but we
would still like to test the functions that are complete. We have inserted a stub
for each function not yet completed. Each stub prints an identification message
and assigns values to its output parameters. For testing purposes, we made the
 find_gcd stub interactive so the program tester can enter a correct greatest com-
mon divisor and see if this leads to correct results.

 Figure 6.16 shows a run of the program in its present form. Notice that when
we choose operator + and enter a correct greatest common divisor interactively, the
result is correct. However, when we choose operator * , although the program con-
tinues execution by calling the stubs, the result is incorrect because the stub for func-
tion multiply_fractions always returns a numerator and denominator value of 1 .

 FIGURE 6.16 Sample Run of a Partially Complete Program Containing Stubs

 Enter a common fraction as two integers separated by a slash> 3/-4
 Input invalid—denominator must be positive
 Enter a common fraction as two integers separated by a slash> 3/4
 Enter an arithmetic operator (+,-,*, or /)
 > +
 Enter a common fraction as two integers separated by a slash> 5/8
 Entering find_gcd with n1 = 44, n2 = 32
 gcd of 44 and 32?> 4
 find_gcd returning 4

 3/4 + 5/8 = 11/8
 Do another problem? (y/n)> y
 Enter a common fraction as two integers separated by a slash> 1/2
 Enter an arithmetic operator (+,-,*, or /)
 > 5
 5 invalid, reenter operator (+,-,*,/)
 > *
 Enter a common fraction as two integers separated by a slash> 5/7
 Entering multiply_fractions with
 n1 = 1, d1 = 2, n2 = 5, d2 = 7
 Entering find_gcd with n1 = 1, n2 = 1
 gcd of 1 and 1?> 1
 find_gcd returning 1

 1/2 * 5/7 = 1/1
 Do another problem? (y/n)> n

356 Chapter 6 • Pointers and Modular Programming

 EXERCISES FOR SECTION 6.6

 Self-Check

 1. Why are pointer types used for the parameters of scan_fraction ?
 2. Why was it not necessary to include a default case in the switch statement

that calls add_fractions and multiply_fractions ?

 Programming

 1. Implement the following algorithm as the find_gcd function needed in
the common fraction system of Fig. 6.15 . Your function will find the great-
est common divisor (that is, the product of all common factors) of integers
 n1 and n2 .

 1. Put the absolute value of n1 in q and of n2 in p .
 2. Store the remainder of q divided by p in r .
 3. while r is not zero

 4. Copy p into q and r into p .
 5. Store the remainder of q divided by p in r .

 6. p is the gcd .
 2. Write the function multiply_fractions . If your result has a zero denomina-

tor, display an error message and change the denominator to 1 .

 6.7 Debugging and Testing a Program System
 As the number of statements in a program system grows, the possibility of error
also increases. If we keep each function to a manageable size, the likelihood of
error increases much more slowly. It is also easier to read and test each function.

 In the last case study, we inserted stubs in the program for functions that were
not yet written. When a team of programmers is working on a problem, using stubs
is a common practice. Obviously, not all functions will be ready at the same time,
and the use of stubs enables us to test and debug the main program flow and those
functions that are available.

 Each stub displays an identification message and assigns values to its output
parameters to prevent execution errors caused by undefined values. We show the
stub for function multiply_fractions again in Fig. 6.17 . If a program contains
one or more stubs, the message printed by each stub when it is called provides a
trace of the call sequence and allows the programmer to determine whether the
flow of control within the program is correct. The process of testing a program in
this way is called top-down testing .

 When a function is completed, it can be substituted for its stub in the program.
However, we often perform a preliminary test of a new function before substitution

 top-down testing
 the process of testing
flow of control between
a main function and its
subordinate functions

3576.7 • Debugging and Testing a Program System

because it is easier to locate and correct errors when dealing with a single function
rather than with a complete program system. We can perform such a unit test by
writing a short driver function to call it.

 Don’t spend a lot of time creating an elegant driver because you will discard it as
soon as the new function is tested. A driver function should contain only the declara-
tions and executable statements necessary to perform a test of a single function. A driver
function should begin by giving values to all input and input/output parameters. Next
comes the call to the function being tested. After calling the function, the driver should
display the function results. A driver for function scan_fraction is shown in Fig. 6.18 .

 Once you are confident that a function works properly, substitute it for its stub
in the program system. The process of separately testing individual functions before
inserting them in a program system is called bottom-up testing . Tests of the entire
system are system integration tests .

 By following a combination of top-down and bottom-up testing, a programming
team can be fairly confident that the complete program system will be relatively free
of errors when it is finally put together. Consequently, the final debugging sessions
should proceed quickly and smoothly.

 unit test a test of an
individual function

 FIGURE 6.17 Stub for Function multiply_fractions

 1. /*
 2. ***** STUB *****
 3. * Multiplies fractions represented by pairs of integers.
 4. * Pre: n1, d1, n2, d2 are defined;
 5. * n_ansp and d_ansp are addresses of type int variables.
 6. * Post: product of n1/d1 and n2/d2 is stored in variables pointed
 7. * to by n_ansp and d_ansp. Result is not reduced.
 8. */
 9. void
 10. multiply_fractions(int n1, int d1, /* input - first fraction */
 11. int n2, int d2, /* input - second fraction */
 12. int *n_ansp, /* output - */
 13. int *d_ansp) /* product of 2 fractions */
 14. {
 15. /* Displays trace message */
 16. printf("\nEntering multiply_fractions with\n");
 17. printf("n1 = %d, d1 = %d, n2 = %d, d2 = %d\n", n1, d1, n2, d2);
 18.
 19. /* Defines output arguments */
 20. *n_ansp = 1;
 21. *d_ansp = 1;
 22. }

 system integration
tests testing a system
after replacing all its
stubs with functions
that have been
pretested

 bottom-up testing
 the process of
separately testing
individual functions of a
program system

358 Chapter 6 • Pointers and Modular Programming

 Debugging Tips for Program Systems

 A list of suggestions for debugging a program system follows.

 1. Carefully document each function parameter and local variable using comments
as you write the code. Also, describe the function’s purpose using comments.

 2. Create a trace of execution by displaying the function name as you enter it.
 3. Trace or display the values of all input and input/output parameters upon

entry to a function. Check that these values make sense.
 4. Trace or display the values of all function outputs after returning from a func-

tion. Verify that these values are correct by hand computation. Make sure you
declare all input/output and output parameters as pointer types.

 5. Make sure that a function stub assigns a value to the variable pointed to by
each output parameter.

 If you are using a debugger, you may be able to specify whether you want
to execute a function as if it were a single statement or whether you want to step
through the individual statements of a function. Initially, execute the function as a
single statement and trace the values of all input and output parameters (tips 3 and
4 above). If the function results are incorrect, step through its individual statements.

 If you are not using a debugger, you should plan for debugging as you write each
function rather than waiting until after you finish the whole program. Include the
display statements (mentioned in debugging tips 2 through 4) in the original C code
for the function. When you are satisfied that the function works correctly, remove the
debugging statements. The simplest way is to change them to comments by enclosing

 FIGURE 6.18 Driver for Function scan_fraction

 1. /* Driver for scan_fraction */
 2.
 3. int
 4. main(void)
 5. {
 6. int num, denom;
 7. printf("To quit, enter a fraction with a zero numerator\n");
 8. scan_fraction(&num, &denom);
 9. while (num != 0) {
 10. printf("Fraction is %d/%d\n", num, denom);
 11. scan_fraction(&num, &denom);
 12. }
 13.
 14. return (0);
 15. }

359Chapter Review

them within the symbols /* , */ ; if you have a problem later, you can remove these
symbols, thereby changing the comments back to executable statements.

 6.8 Common Programming Errors
 Many opportunities for error arise when you use functions with parameter lists, so
be extremely careful. Proper use of parameters is difficult for new programmers to
master, but it is an essential skill. One obvious pitfall is not ensuring that the actual
argument list has the same number of items as the formal parameter list. Each
actual input argument must be of a type that can be assigned to its corresponding
formal parameter. An actual output argument must be of the same pointer data type
as the corresponding formal parameter.

 It is easy to introduce errors in a function that produces multiple results. If an
output parameter is not of a pointer type or if the calling function neglects to send a
correct variable address, the function results will be incorrect.

 The C scope rules determine where a name is visible and can, therefore, be
referenced. If an identifier is referenced outside its scope, an undeclared symbol
syntax error will result.

 ■ Chapter Review

 1. A program can declare pointers to variables of a specified type. For example,
 int *mp declares mp as a pointer to an integer. The statement mp = &p;
stores the address of p (type int) in mp . The unary indirection operator * ena-
bles indirect access through a pointer. The statement n1 = *mp; stores the
value of p in n1 where *mp means follow the pointer in mp . The statement
 *mp = n2; stores the value of n2 (type int) in the variable p .

 2. The declaration FILE *inp; declares inp as a pointer to a type FILE variable.
The function fopen is used to prepare a file for access by a C program. The
function fscanf (fprintf) is used to read (write) data from (to) a file. The
function fclose is used to close or disconnect a file.

 3. Parameters enable a programmer to pass data to functions and to return
 multiple results from functions. The parameter list provides a highly visible
 communication path between a function and its calling program. Using
parameters enables a function to process different data each time it executes,
thereby making it easier to reuse the function in other programs.

 4. Parameters may be used for input to a function, for output or sending back
results, and for both input and output. An input parameter is used only for
passing data into a function. The parameter’s declared type is the same as the

360 Chapter 6 • Pointers and Modular Programming

type of the data. Output and input/output parameters must be able to access
variables in the calling function’s data area so they are declared as pointers to
the result data types. The actual argument corresponding to an input param-
eter may be an expression or a constant; the actual argument corresponding to
an output or input/output parameter must be the address of a variable.

5. A function can use parameters declared as pointers to return values. Use &x in
a function call to pass the address of x to an output parameter or to an input/
output parameter. In the function called, use *xp = . . . to assign a value to
the actual argument associated with formal parameter xp.

 6. The scope of an identifier dictates where it can be referenced. A parameter or
local variable can be referenced anywhere in the function that declares it. A func-
tion name is visible from its declaration (the function prototype) to the end of the
source file except within functions that have local variables of the same name. The
same rule applies for a constant macro: It is visible from its #define directive.

 NEW C CONSTRUCTS

 Construct Effect

 File Open
 inp = fopen("num.txt", "r");
 outp = fopen("out.txt", "w");

 Opens num.txt as an input fi le, storing fi le pointer
in inp . Opens out.txt as an output fi le, storing fi le
pointer in outp .

 Calls to Input/Output Functions
 fscanf(inp, "%d%d", &mid, &low); Copies input data from fi le num.txt into the type int

variables mid and low .
 fprintf(outp, "%5d %5d %5d\n",
 high, mid, low);

 Stores in the fi le out.txt a line containing the values of
 high , mid , and low .

 File Close
 fclose(inp);
 fclose(outp);

 Closes input fi le num.txt and newly created fi le
 out.txt .

 Function that Returns Multiple Results
 void
 make_change(double change, /* input */
 double token_val, /* input */
 int *num_tokenp, /* output*/
 double *leftp) /* output*/
 {
 *num_tokenp = floor(change /
 token_val);
 *leftp = change - *num_tokenp *
 token_val;
 }

 Determines how many of a certain bill or coin
(token_val) should be included in change amount.
This number is sent back through the output parameter
 num_tokenp . The amount of change remaining to
be made is sent back through the output parameter
 leftp . The following call assigns a 3 to num_
twenties and 11.50 to remaining_change .
 int num_twenties;
 double remaining_change;
 . . .
 make_change(71.50, 20.00,
 &num_twenties,
 &remaining_change);

(continued)

361Quick-Check Exercises

 Construct Effect

 Function with Input/Output Parameters
 void
 correct_fraction(int *nump, /* input/ */
 int *denomp) /* output */
 {
 if ((*nump * *denomp) > 0)
 *nump = abs(*nump);
 else
 *nump = -abs(*nump);
 *denomp = abs(*denomp);
 }

 The following call corrects the form of a common fraction
so the denominator is always positive (e.g., −5/3 rather
than 5/−3).

 int num, denom;

 num = 5;
 denom = -3;
 correct_fraction(&num, &denom);

NEW C CONSTRUCTS (continued)

 ■ Quick-Check Exercises

 1. The items passed in a function call are the ________ ________. The corre-
sponding ________ ________ appear in the function prototype and heading.

 2. Constants and expressions can be actual arguments corresponding to formal
parameters that are ________ parameters.

 3. Formal parameters that are output parameters must have actual arguments
that are ________.

 4. Which of the following is used to test a function: A driver or a stub?
 5. Which of the following is used to test program flow in a partially complete sys-

tem: A driver or a stub?
 6. The part of a program where an identifier can be referenced is called the

________ of the identifier.
 7. What are the values of main function variables x and y at the point marked

/ * values here */ in the following program?

 /* nonsense */
 void silly(int x);
 int
 main(void)
 {
 int x, y;

 x = 10; y = 11;
 silly(x);
 silly(y); /* values here */
 . . .
 }

362 Chapter 6 • Pointers and Modular Programming

 void
 silly(int x)
 {
 int y;

 y = x + 2;
 x *= 2;
 }

 8. Let’s make some changes in our nonsense program. What are main ’s x and y
at /* values here */ in the following version?
 /* nonsense */
 void silly(int *x);

 int
 main(void)
 {
 int x, y;

 x = 10; y = 11;
 silly(&x);
 silly(&y); /* values here */
 . . .
 }

 void
 silly(int *x)
 {
 int y;

 y = *x + 2;
 *x = 2 * *x;
}

 ■ Answers to Quick-Check Exercises
 1. actual arguments; formal parameters
 2. input
 3. addresses of variables/pointers
 4. driver
 5. stub
 6. scope
 7. x is 10 , y is 11
 8. x is 20 , y is 22

363Review Questions

 ■ Review Questions

 1. Write a function called letter_grade that has a type int input parameter called
 points and returns through an output parameter gradep the appropriate let-
ter grade using a straight scale (90–100 is an A, 80–89 is a B, and so on). Return
through a second output parameter (just_missedp) an indication of whether
the student just missed the next higher grade (true for 89, 79, and so on).

 2. Why would you choose to write a function that computes a single numeric or
character value as a non void function that returns a result through a return
statement rather than to write a void function with an output parameter?

 3. Explain the allocation of memory cells when a function is called. What is
stored in the function data area for an input parameter? Answer the same
question for an output parameter.

 4. Which of the functions in the following program outline can call the function
 grumpy ? All function prototypes and declarations are shown; only executable
statements are omitted.

 int grumpy(int dopey);

 char silly(double grumpy);

 double happy(int goofy, char greedy);

 int
 main(void)
 {
 double p, q, r;
 . . .
 }

 int
 grumpy(int dopey)
 {
 double silly;
 . . .
 }

 char
 silly(double grumpy)
 {
 double happy;
 . . .
 }

364 Chapter 6 • Pointers and Modular Programming

 double
 happy(int goofy, char greedy)
 {
 char grumpy;
 . . .
 }

 5. Sketch the data areas of functions main and silly as they appear imme-
diately before the return from the first call to silly in Quick-Check
Exercise 8.

 6. Present arguments against these statements:
 a. It is foolish to use function subprograms because a program written with

functions has many more lines than the same program written without
functions.

 b. The use of function subprograms leads to more errors because of mistakes
in using argument lists.

 ■ Programming Projects

 1. Write a program for an automatic teller machine that dispenses money.
The user should enter the amount desired (a multiple of 10 dollars) and the
machine dispenses this amount using the least number of bills. The bills dis-
pensed are 50s, 20s, and 10s. Write a function that determines how many of
each kind of bill to dispense.

 2. A hospital supply company wants to market a program to assist with the cal-
culation of intravenous rates. Design and implement a program that interacts
with the user as follows:

 INTRAVENOUS RATE ASSISTANT

 Enter the number of the problem you wish to solve.
 GIVEN A MEDICAL ORDER IN CALCULATE RATE IN
 (1) ml/hr & tubing drop factor drops / min
 (2) 1 L for n hr ml / hr
 (3) mg/kg/hr & concentration in mg/ml ml / hr
 (4) units/hr & concentration in units/ml ml / hr
 (5) QUIT

 Problem> 1
 Enter rate in ml/hr=> 150
 Enter tubing's drop factor(drops/ml)=> 15
 The drop rate per minute is 38.

365Programming Projects

 Enter the number of the problem you wish to solve.
 GIVEN A MEDICAL ORDER IN CALCULATE RATE IN
 (1) ml/hr & tubing drop factor drops / min
 (2) 1 L for n hr ml / hr
 (3) mg/kg/hr & concentration in mg/ml ml / hr
 (4) units/hr & concentration in units/ml ml / hr
 (5) QUIT

 Problem=> 2
 Enter number of hours=> 8
 The rate in milliliters per hour is 125.

 Enter the number of the problem you wish to solve.
 GIVEN A MEDICAL ORDER IN CALCULATE RATE IN
 (1) ml/hr & tubing drop factor drops / min
 (2) 1 L for n hr ml / hr
 (3) mg/kg/hr & concentration in mg/ml ml / hr
 (4) units/hr & concentration in units/ml ml / hr
 (5) QUIT

 Problem=> 3
 Enter rate in mg/kg/hr=> 0.6
 Enter patient weight in kg=> 70
 Enter concentration in mg/ml=> 1
 The rate in milliliters per hour is 42.

 Enter the number of the problem you wish to solve.
 GIVEN A MEDICAL ORDER IN CALCULATE RATE IN
 (1) ml/hr & tubing drop factor drops / min
 (2) 1 L for n hr ml / hr
 (3) mg/kg/hr & concentration in mg/ml ml / hr
 (4) units/hr & concentration in units/ml ml / hr
 (5) QUIT

 Problem=> 4
 Enter rate in units/hr=> 1000
 Enter concentration in units/ml=> 25
 The rate in milliliters per hour is 40.

 Enter the number of the problem you wish to solve.
 GIVEN A MEDICAL ORDER IN CALCULATE RATE IN
 (1) ml/hr & tubing drop factor drops / min
 (2) 1 L for n hr ml / hr
 (3) mg/kg/hr & concentration in mg/ml ml / hr
 (4) units/hr & concentration in units/ml ml / hr
 (5) QUIT

366 Chapter 6 • Pointers and Modular Programming

 Problem=> 5

 Implement the following functions:

 get_problem —Displays the user menu, then inputs and returns as the func-
tion value the problem number selected.

 get_rate_drop_factor —Prompts the user to enter the data required for
problem 1, and sends this data back to the calling module via output
parameters.

 get_kg_rate_conc —Prompts the user to enter the data required for prob-
lem 3, and sends this data back to the calling module via output para-
meters.

 get_units_conc —Prompts the user to enter the data required for problem 4,
and sends this data back to the calling module via output parameters.

 fig_drops_min —Takes rate and drop factor as input parameters and returns
drops/min (rounded to nearest whole drop) as function value.

 fig_ml_hr —Takes as an input parameter the number of hours over which
one liter is to be delivered and returns ml/hr (rounded) as function value.

 by_weight —Takes as input parameters rate in mg/kg/hr, patient weight in kg,
and concentration of drug in mg/ml and returns ml/hr (rounded) as func-
tion value.

 by_units —Takes as input parameters rate in units/hr and concentration in
units/ml, and returns ml/hr (rounded) as function value.

 (Hint: Use a sentinel-controlled loop. Call get_problem once before the loop
to initialize the problem number and once again at the end of the loop body to
update it.)

 3. Write a program to dispense change. The user enters the amount paid and
the amount due. The program determines how many dollars, quarters,
dimes, nickels, and pennies should be given as change. Write a function
with four output parameters that determines the quantity of each kind of
coin.

 4. The table below summarizes three commonly used mathematical models of
nonvertical straight lines.

 Mode Equation Given

 Two-point form (x 1 , y 1), (x 2 , y 2)

 Point-slope form y − y 1 = m (x − x 1) m , (x 1 , y 1)

 Slope-intercept form y = mx + b m , b

m

�

 y2 – y1

 x2 – x1

367Programming Projects

 Design and implement a program that permits the user to convert either
two-point form or point-slope form into slope-intercept form. Your program
should interact with the user as follows:
 Select the form that you would like to convert to slope-intercept
form:
 1) Two-point form (you know two points on the line)
 2) Point-slope form (you know the line's slope and one point)
 => 2

 Enter the slope=> 4.2
 Enter the x-y coordinates of the point separated by a space=> 1 1

 Point-slope form
 y – 1.00 = 4.20(x – 1.00)

 Slope-intercept form
 y = 4.20x – 3.20

 Do another conversion (Y or N)=> Y

 Select the form that you would like to convert to slope-intercept
form:
 1) Two-point form (you know two points on the line)
 2) Point-slope form (you know the line's slope and one point)
 => 1

 Enter the x-y coordinates of the first point separated by a
space=> 4 3
 Enter the x-y coordinates of the second point separated by a
space=> -2 1

 Two-point form
 (1.00 – 3.00)
 m = --------------
 (-2.00 – 4.00)

 Slope-intercept form
 y = 0.33x + 1.66

 Do another conversion (Y or N)=> N

 Implement the following functions:

 get_problem —Displays the user menu, then inputs and returns as the func-
tion value the problem number selected.

 get2_pt —Prompts the user for the x-y coordinates of both points, inputs the
four coordinates, and returns them to the calling function through output
parameters.

 get_pt_slope —Prompts the user for the slope and x-y coordinates of the
point, inputs the three values and returns them to the calling function
through output parameters.

368 Chapter 6 • Pointers and Modular Programming

 slope_intcpt_from2_pt —Takes four input parameters, the x-y coordinates
of two points, and returns through output parameters the slope (m) and
y-intercept (b).

 intcpt_from_pt_slope —Takes three input parameters, the x-y coordinates of
one point and the slope, and returns as the function value the y-intercept.

 display2_pt —Takes four input parameters, the x-y coordinates of two
points, and displays the two-point line equation with a heading.

 display_pt_slope —Takes three input parameters, the x-y coordinates of one
point and the slope, and displays the point-slope line equation with a heading.

 display_slope_intcpt —Takes two input parameters, the slope and y-inter-
cept, and displays the slope-intercept line equation with a heading.

 5. Determine the following information about each value in a list of positive integers.

 a. Is the value a multiple of 7, 11, or 13?
 b. Is the sum of the digits odd or even?
 c. Is the value a prime number?

 You should write a function with three type int output parameters that send
back the answers to these three questions. Some sample input data might be:

 104 3773 13 121 77 30751

 6. Develop a collection of functions to solve simple conduction problems using
various forms of the formula

H = kA(T2 – T1)
 X

 where H is the rate of heat transfer in watts, k is the coefficient of thermal
conductivity for the particular substance, A is the cross-sectional area in m2
(square meters), T 2 and T 1 are the kelvin temperatures on the two sides of the
conductor, and X is the thickness of the conductor in meters.

T1

X

A

T2

369Programming Projects

 Define a function for each variable in the formula. For example, function
 calc_h would compute the rate of heat transfer, calc_k would figure the
coefficient of thermal conductivity, calc_a would find the cross-sectional
area, and so on.

 Develop a driver function that interacts with the user in the following way:

 Respond to the prompts with the data known. For the
 unknown quantity, enter a question mark (?).
 Rate of heat transfer (watts) >> 755.0
 Coefficient of thermal conductivity (W/m-K) >> 0.8
 Cross-sectional area of conductor (m^2) >> 0.12
 Temperature on one side (K) >> 298
 Temperature on other side (K) >> ?
 Thickness of conductor (m) >> 0.003
 kA (T2 - T1)
 H = ----------------
 X
 Temperature on the other side is 274 K.
 H = 755.0 W T2 = 298 K
 k = 0.800 W/m-K T1 = 274 K
 A = 0.120 m^2 X = 0.0003 m

 (Hint: Input of the question mark when looking for a number will cause scanf
to return a value of 0. Be sure to check for this, and then scan the question
mark into a character variable before proceeding with the remaining prompts.)

 7. The square root of a number N can be approximated by repeated calculation
using the formula

 NG = 0.5(LG + N/LG)

 where NG stands for next guess and LG stands for last guess. Write a function
that calculates the square root of a number using this method.

 The initial guess will be the starting value of LG . The program will com-
pute a value for NG using the formula given. The difference between NG
and LG is checked to see whether these two guesses are almost identical. If
they are, NG is accepted as the square root; otherwise, the next guess (NG)
becomes the last guess (LG) and the process is repeated (another value is
computed for NG, the difference is checked, and so on). The loop should be
repeated until the difference is less than 0.005. Use an initial guess of 1.0.

 Write a driver function and test your square root function for the numbers
4, 120.5, 88, 36.01, 10,000, and 0.25.

 8. InternetLite Corporation is an Internet service provider that charges cus-
tomers a flat rate of $7.99 for up to 10 hours of connection time. Additional
hours or partial hours are charged at $1.99 each. Write a function charges
that computes the total charge for a customer based on the number of hours

370 Chapter 6 • Pointers and Modular Programming

of connection time used in a month. The function should also calculate the
average cost per hour of the time used (rounded to the nearest cent), so use
two output parameters to send back these results. Write a second function
 round_money that takes a real number as an input argument and returns as
the function value the number rounded to two decimal places. Write a main
function that takes data from an input file usage.txt and produces an output
file charges.txt . The data file format is as follows:

 Line 1: current month and year as two integers

 Other lines: customer number (a 5-digit number) and number of hours used

 Here is a sample data file and the corresponding output file:

 Data file usage.txt
 10 2009
 15362 4.2
 42768 11.1
 11111 9.9

 Output file charges.txt
 Charges for 10/2009

 Charge
Customer Hours used per hour Average cost

 15362 4.2 7.99 1.90

 42768 11.1 11.97 1.08

 11111 9.9 7.99 0.81

 9. When an aircraft or an automobile is moving through the atmosphere, it must
overcome a force called drag that works against the motion of the vehicle. The
drag force can be expressed as

F = 1

CD � A � � � V2

 2

 where F is the force (in newtons), CD is the drag coefficient, A is the pro-
jected area of the vehicle perpendicular to the velocity vector (in m2), is the
density of the gas or fluid through which the body is traveling (kg/m 3), and V
is the body’s velocity. The drag coefficient CD has a complex derivation and is
frequently an empirical quantity. Sometimes the drag coefficient has its own
dependencies on velocities: For an automobile, the range is from approxi-
mately 0.2 (for a very streamlined vehicle) through about 0.5. For simplicity,
assume a streamlined passenger vehicle is moving through air at sea level
(where � = 1.23 kg/m 3). Write a program that allows a user to input A and CD
interactively and calls a function to compute and return the drag force. Your

371Programming Projects

program should call the drag force function repeatedly and display a table
showing the drag force for the input shape for a range of velocities from 0 m/s
to 40 m/s in increments of 5 m/s.

 10. Write a program to model a simple calculator. Each data line should consist of
the next operation to be performed from the list below and the right operand.
Assume the left operand is the accumulator value (initial value of 0). You need
a function scan_data with two output parameters that returns the operator
and right operand scanned from a data line. You need a function do_next_op
that performs the required operation. do_next_op has two input parameters
(the operator and operand) and one input/output parameter (the accumulator).
The valid operators are:

 + add
 - subtract
 * multiply
 / divide
 ̂ power (raise left operand to power of right operand)
 q quit

 Your calculator should display the accumulator value after each operation. A
sample run follows.

 + 5.0
 result so far is 5.0
 ̂ 2
 result so far is 25.0
 / 2.0
 result so far is 12.5
 q 0
 final result is 12.5

 11. After studying gross annual revenues of Broadway shows over a 20-year
period, you model the revenue as a function of time:

 R(t) = 203.265 � (1.071)t

 where R is in millions of dollars and t is the years since 1984. Create the fol-
lowing C functions to implement this model:

 revenue —calculates and returns R for an input parameter of t .

 predict —predicts the year in which revenues (in millions) will first equal or
exceed the value of the input parameter. For example, predict(200) would
return 1984.

 Write a main function that calls predict to determine when revenues will
likely exceed $1 trillion (i.e., 1,000 million). Then create an output file that
contains a table of estimated revenues (in millions of dollars) for all the years

372 Chapter 6 • Pointers and Modular Programming

from 1984 through the year when revenues should exceed $1 trillion. Round
revenue estimates to three decimal places.

 12. Since communications channels are often noisy, numerous ways have been
devised to ensure reliable data transmission. One successful method uses a
checksum. A checksum for a message can be computed by summing the inte-
ger codes of the characters in the message and finding the remainder of this
sum divided by 64. The integer code for a space character is added to this
result to obtain the checksum. Since this value is within the range of the dis-
playable characters, it is displayed as a character as well. Write a program that
accepts single-line messages ending with a period and displays the checksum
character for each message. Your program should continue displaying check-
sums until the user enters a line with only a period.

 13. A finite state machine (FSM) consists of a set of states, a set of transitions,
and a string of input data. In the FSM of Fig. 6.19 , the named ovals repre-
sent states, and the arrows connecting the states represent transitions. The
FSM is designed to recognize a list of C identifiers and nonnegative integers,
assuming that the items are ended by one or more blanks and that a period
marks the end of all the data. The following table traces how the diagrammed
machine would process a string composed of one blank, the digits 9 and 5, two
blanks, the letter K, the digit 9, one blank, and a period. The machine begins
in the start state.

Output Identifier Message

Letter (4)

Blank (3)

Period (2)

Digit (1)

Digit (9)

Blank (10)

Output Number Message

Letter (5)

Blank (8)

Underscore (7)

Digit (6)

identifier

build_id

build_num

number

stop

start

 FIGURE 6.19

 Finite State
Machine for
Numbers and
Identifiers

373Programming Projects

 Trace of Fig. 6.19 FSM on data “ 95 K9 .”

 State Next Character Transition

 start ' ' 3
 start '9' 1
 build_num '5' 9
 build_num ' ' 10
 number Output number message
 start ' ' 3
 start 'K' 4
 build_id '9' 6
 build_id ' ' 8
 identifier Output identifier message
 start ' . ' 2
 stop

 Write a program that uses an enumerated type to represent the names
of the states. Your program should process a correctly formatted line of data,
identifying each data item. Here is a sample of correct input and output.

 Input :
 rate R2D2 48 2 time 555666

 Output :
 rate – Identifier
 R2D2 – Identifier
 48 – Number
 2 – Number
 time – Identifier
 555666 – Number

 Use the following code fragment in main , and design function transition
to return the next state for all the numbered transitions of the finite state
machine. If you include the header file ctype.h , you can use the library
function isdigit which returns 1 if called with a digit character, 0 other-
wise. Similarly, the function isalpha checks whether a character is a let-
ter. When your program correctly models the behavior of the FSM shown,
extend the FSM and your program to allow optional signs and optional
fractional parts (i.e., a decimal point followed by zero or more digits)
in numbers.

374 Chapter 6 • Pointers and Modular Programming

 current_state = start;
 do {
 if (current_state == identifier) {
 printf(" - Identifier\n");
 current_state = start;
 } else if (current_state == number) {
 printf(" - Number\n");
 current_state = start;
 }
 scanf("%c", &transition_char);
 if (transition_char != ' ')
 printf("%c", transition_char);
 current_state = transition(current_state, transition_char);
 } while (current_state != stop);

 14. Harlan A. Brothers and John A. Knox discovered that as the value of x gets

 larger, the value of the expression a 2x + 1
2x - 1

b x
 gets closer and closer to e . Write

 a program that evaluates this expression for x = 1, 2, 3, and so on until the
absolute difference between the expression’s value and the value of e calcu-
lated by the library function exp is less than 0.000001 . Display the value of x
that causes your loop to exit along with both the final approximation of e and
the value of e calculated by the exp function. Show 7 decimal places.

 Arrays

 CHAPTER OBJECTIVES

 • To learn how to declare and use arrays for storing collections
of values of the same type

 • To understand how to use a subscript to reference the indi-
vidual values in an array

 • To learn how to process the elements of an array in sequential
order using loops

 • To understand how to pass individual array elements and en-
tire arrays through function arguments

 • To learn a method for searching an array

 • To learn a method for sorting an array

 • To learn how to use multidimensional arrays for storing tables
of data

 • To understand the concept of parallel arrays

 • To learn how to declare and use your own data types

 C H A P T E R

7

 S imple data types use a single memory cell to store a variable. To solve many
programming problems, it is more efficient to group data items together in main
memory than to allocate an individual memory cell for each variable. A program
that processes exam scores for a class, for example, would be easier to write if all
the scores were stored in one area of memory and were able to be accessed as a
group. C allows a programmer to group such related data items together into a
single composite data structure . In this chapter, we look at one such data struc-
ture: the array .

 7.1 Declaring and Referencing Arrays
 An array is a collection of two or more adjacent memory cells, called array elements ,
that are associated with a particular symbolic name. To set up an array in memory, we
must declare both the name of the array and the number of cells associated with it.

 The declaration

 double x[8];

 instructs the compiler to associate eight memory cells with the name x ; these
memory cells will be adjacent to each other in memory. Each element of array x may
contain a single type double value, so a total of eight such numbers may be stored
and referenced using the array name x .

 To process the data stored in an array, we reference each individual element
by specifying the array name and identifying the element desired (for example,
element 3 of array x). The subscripted variable x[0] (read as x sub zero) may
be used to reference the initial or 0th element of the array x , x[1] the next ele-
ment, and x[7] the last element. The integer enclosed in brackets is the array
subscript , and its value must be in the range from 0 to one less than the number
of memory cells in the array.

 EXAMPLE 7.1 Let x be the array shown in Fig. 7.1 . Notice that x[1] is the second array ele-
ment and x[7] , not x[8] , is the last array element. A sequence of statements
that manipulate this array is shown in Table 7.1 . The contents of array x after
execution of these statements are shown after Table 7.1 . Only x[2] and x[3] are
changed.

 data structure a
composite of related
data items stored under
the same name

 array a collection of
data items of the same
type

 array element a data
item that is part of an
array

 subscripted
variable a variable
followed by a subscript
in brackets, designating
an array element

 array subscript a
value or expression
enclosed in brackets
after the array name,
specifying which array
element to access

7.1 • Declaring and Referencing Arrays 377

 EXAMPLE 7.2 You can declare more than one array in a single type declaration. The statements

 double cactus[5], needle, pins[6];
 int factor[12], n, index;

 declare cactus and pins to be arrays with five and six type double elements,
respectively. The variable factor is an array with 12 type int elements. In addition,
individual memory cells will be allocated for storage of the simple variables needle ,
 n , and index .

16.0 12.0 6.0 8.0 2.5 12.0 14.0 –54.5

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

Array x

double x[8]; FIGURE 7.1

 The Eight Elements
of Array x

 TABLE 7.1 Statements That Manipulate Array x

 Statement Explanation

 printf("%.1f", x[0]); Displays the value of x[0] , which is 16.0 .

 x[3] = 25.0; Stores the value 25.0 in x[3] .

 sum = x[0] + x[1]; Stores the sum of x[0] and x[1] , which is 28.0 in

the variable sum .

 sum += x[2]; Adds x[2] to sum . The new sum is 34.0 .

 x[3] += 1.0; Adds 1.0 to x[3] . The new x[3] is 26.0 .

 x[2] = x[0] + x[1]; Stores the sum of x[0] and x[1] in x[2] .

 The new x[2] is 28.0 .

16.0 12.0 28.0 26.0 2.5 12.0 14.0 –54.5

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

Array x

378 Chapter 7 • Arrays

 Array Initialization

 We can initialize a simple variable when we declare it:

 int sum = 0;

 We can also initialize an array in its declaration. We can omit the size of an array
that is being fully initialized since the size can be deduced from the initialization list.
For example, in the following statement, we initialize a 25-element array with the
prime numbers less than 100. Array element prime_lt_100[24] is 97.

 int prime_lt_100[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
 89, 97};

 Array Declaration

 SYNTAX: element-type aname [size]; /* uninitialized */

 element-type aname [size] = { initialization list }; /* initialized */

 EXAMPLE: #define A_SIZE 5
 . . .
 double a[A_SIZE];
 char vowels[] = {'A', 'E', 'I', 'O', 'U'};

 INTERPRETATION: The general uninitialized array declaration allocates storage space for

array aname consisting of size memory cells. Each memory cell can store one data item

whose data type is specified by element-type (i.e., double , int , or char). The individual

array elements are referenced by the subscripted variables aname [0] , aname [1] , . . . ,

 aname [size −1] . A constant expression of type int is used to specify an array’s size .

 In the initialized array declaration shown, the size shown in brackets is optional since

the array’s size can also be indicated by the length of the initialization list . The initialization

list consists of constant expressions of the appropriate element-type separated by commas.

Element 0 of the array being initialized is set to the first entry in the initialization list , element

 1 to the second, and so forth.

 Storing a String in an Array of Characters

 The previous syntax display shows that you can store individual characters in an
array by writing each character in the initialization list. If the list is long, you can do
this more easily by using a string instead of an initialization list.

 char vowels[] = "This is a long string";

3797.2 • Array Subscripts

 In this case, vowels[0] stores the character 'T' , vowels[] stores the character
 'h' , and so on. We will discuss this further in Sections 8.1 and 8.2.

 EXERCISES FOR SECTION 7.1

 Self-Check

 1. What is the difference in meaning between x3 and x[3] ?
 2. For the declaration

 int list[8];

 how many memory cells are allocated for data storage? What type of data can
be stored there? How does one refer to the initial array element? To the final
array element?

 3. Declare one array for storing the square roots of the integers from 0 through
10 and a second array for storing the cubes of the same integers.

 7.2 Array Subscripts
 We use a subscript to differentiate between the individual array elements and to
specify which array element is to be manipulated. We can use any expression of
type int as an array subscript. However, to create a valid reference, the value of
this subscript must lie between 0 and one less than the declared size of the array.

16.0 12.0 6.0 8.0 2.5 12.0 14.0 –54.5

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

Array x

 EXAMPLE 7.3 Understanding the distinction between an array subscript value and an array ele-
ment value is essential. The original array x from Fig. 7.1 follows. The subscripted
variable x[i] references a particular element of this array. If i has the value 0 ,
the subscript value is 0 , and x[0] is referenced. The value of x[0] in this case is
 16.0 . If i has the value 2 , the subscript value is 2 , and the value of x[i] is 6.0 . If
 i has the value 8 , the subscript value is 8 , and we cannot predict the value of x[i]
because the subscript value is out of the allowable range.

 EXAMPLE 7.4 Table 7.2 lists some sample statements involving the array x above. The variable i is
assumed to be of type int with value 5 . Make sure you understand each statement.

380 Chapter 7 • Arrays

 TABLE 7.2 Code Fragment That Manipulates Array x

 Statement Explanation

 i = 5;

 printf("%d %.1f", 4, x[4]); Displays 4 and 2.5 (value of x[4])

 printf("%d %.1f", i, x[i]); Displays 5 and 12.0 (value of x[5])

 printf("%.1f", x[i] + 1); Displays 13.0 (value of x[5] plus 1)

 printf("%.1f", x[i] + i); Displays 17.0 (value of x[5] plus 5)

 printf("%.1f", x[i + 1]); Displays 14.0 (value of x[6])

 printf("%.1f", x[i + i]); Invalid. Attempt to display x[10]

 printf("%.1f", x[2 * i]); Invalid. Attempt to display x[10]

 printf("%.1f", x[2 * i − 3]); Displays −54.5 (value of x[7])

 printf("%.1f", x[(int)x[4]]); Displays 6.0 (value of x[2])

 printf("%.1f", x[i++]); Displays 12.0 (value of x[5]);

then assigns 6 to i

 printf("%.1f", x[−−i]); Assigns 5 (6 − 1) to i and then

displays 12.0 (value of x[5])

 x[i − 1] = x[i]; Assigns 12.0 (value of x[5]) to x[4]

 x[i] = x[i + 1]; Assigns 14.0 (value of x[6]) to x[5]

 x[i] − 1 = x[i]; Illegal assignment statement

 The two attempts to display element x[10] , which is not in the array, may result in
a run-time error, but they are more likely to print incorrect results. Consider the
call to printf that uses (int)x[4] as a subscript expression. Since this expression
evaluates to 2 , the value of x[2] (not x[4]) is printed. If the value of (int)x[4]
were outside the range 0 through 7, its use as a subscript expression would not ref-
erence a valid array element.

 Array Subscripts

 SYNTAX: aname [subscript]

 EXAMPLE: b[i + 1]

 INTERPRETATION: The subscript may be any expression of type int . Each time a subscripted

variable is encountered in a program, the subscript is evaluated and its value determines

which element of array aname is referenced.

3817.3 • Using for Loops for Sequential Access

 EXERCISES FOR SECTION 7.2

 Self-Check

 1. Show the contents of array x after executing the valid statements in Table 7.2 .
 2. For the new array derived in Exercise 1, describe what happens when the

valid statements in Table 7.2 are executed for i = 2 .

 7.3 Using for Loops for Sequential Access
 Very often, we wish to process the elements of an array in sequence, starting with
element zero. An example would be scanning data into the array or printing its
contents. In C, we can accomplish this processing easily using an indexed for loop,
a counting loop whose loop control variable runs from 0 to one less than the array
size. Using the loop counter as an array index (subscript) gives access to each array
element in turn.

 Note: It is the programmer’s responsibility to verify that the subscript is within the declared

range. If the subscript is in error, an invalid reference will be made. Although occasionally

a run-time error message will be printed, more often an invalid reference will cause a side

effect whose origin is difficult for the programmer to pinpoint. The side effect can also lead

to incorrect program results.

0 1 4 9 16 25 36 49 64 81 100

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Array square

 EXAMPLE 7.5 The following array square will be used to store the squares of the integers 0
through 10 (e.g., square[0] is 0 , square[10] is 100) . We assume that the name
 SIZE has been defined to be 11 .

 int square[SIZE], i;

 The for loop

 for (i = 0; i < SIZE; ++i)
 square[i] = i * i;

 initializes this array, as shown.

382 Chapter 7 • Arrays

 Statistical Computations Using Arrays

 One common use of arrays is for storage of a collection of related data values. Once the
values are stored, we can perform some simple statistical computations. In Fig. 7.2 , we
use the array x for this purpose.

 FIGURE 7.2 Program to Print a Table of Differences

 1. /*
 2. * Computes the mean and standard deviation of an array of data and displays
 3. * the difference between each value and the mean.
 4. */
 5.
 6. #include <stdio.h>
 7. #include <math.h>
 8.
 9. #define MAX_ITEM 8 /* maximum number of items in list of data */
 10.
 11. int
 12. main(void)
 13. {
 14. double x[MAX_ITEM], /* data list */
 15. mean, /* mean (average) of the data */
 16. st_dev, /* standard deviation of the data */
 17. sum, /* sum of the data */
 18. sum_sqr; /* sum of the squares of the data */
 19. int i;
 20.
 21. /* Gets the data */
 22. printf("Enter %d numbers separated by blanks or <return>s\n> ",
 23. MAX_ITEM);
 24. for (i = 0; i < MAX_ITEM; ++i)
 25. scanf("%lf", &x[i]);
 26.
 27. /* Computes the sum and the sum of the squares of all data */
 28. sum = 0;
 29. sum_sqr = 0;
 30. for (i = 0; i < MAX_ITEM; ++i) {
 31. sum += x[i];
 32. sum_sqr += x[i] * x[i];
 33. }

(continued)

3837.3 • Using for Loops for Sequential Access

 34. /* Computes and prints the mean and standard deviation */
 35. mean = sum / MAX_ITEM;
 36. st_dev = sqrt(sum_sqr / MAX_ITEM - mean * mean);
 37. printf("The mean is %.2f.\n", mean);
 38. printf("The standard deviation is %.2f.\n", st_dev);
 39.
 40. /* Displays the difference between each item and the mean */
 41. printf("\nTable of differences between data values and mean\n");
 42. printf("Index Item Difference\n");
 43. for (i = 0; i < MAX_ITEM; ++i)
 44. printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ', x[i] - mean);
 45.
 46. return (0);
 47. }

 Enter 8 numbers separated by blanks or <return>s
 > 16 12 6 8 2.5 12 14 -54.5
 The mean is 2.00.
 The standard deviation is 21.75.

 Table of differences between data values and mean
 Index Item Difference
 0 16.00 14.00
 1 12.00 10.00
 2 6.00 4.00
 3 8.00 6.00
 4 2.50 0.50
 5 12.00 10.00
 6 14.00 12.00
 7 -54.50 -56.50

 FIGURE 7.2 (continued)

 The program in Fig. 7.2 uses three for loops to process the array x . The constant
macro MAX_ITEM determines the size of the array. The variable i is used as the loop
control variable and array subscript in each loop.

 The first for loop,

 for (i = 0; i < MAX_ITEM; ++i)
 scanf("%lf", &x[i]);

 stores one input value into each element of array x (the first item is placed in x[0] ,
the next in x[1] , and so on). The call to scanf is repeated for each value of i from
 0 to 7 ; each repetition gets a new data value and stores it in x[i] . The subscript i
determines which array element receives the next data value.

384 Chapter 7 • Arrays

 The second for loop accumulates (in sum) the sum of all values stored in the array.
The loop also accumulates (in sum_sqr) the sum of the squares of all element val-
ues. This loop implements the formulas

sum = x[0] + x[1]+ . . . + x[6] + x[7] = Σ
i=0

x[i]
MAX_ITEM − 1

sum_sqr = x[0]2 + x[1]2 + . . . + x[6]2 + x[7]2 = Σ
i=0

x[i]2
MAX_ITEM − 1

 This loop will be discussed in detail later.

 The last for loop,

 for (i = 0; i < MAX_ITEM; ++i)
 printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',
 x[i] - mean);

 displays a table. Each line of the table displays an array subscript, an array element,
and the difference between that element and the mean, x[i] − mean . Notice that
the placeholders in the format string of the call to printf cause each column of
values in the output table to be lined up under its respective column heading.

 Now that we have seen the entire program, we will take a closer look at the compu-
tation for loop:

 /* Computes the sum and the sum of the squares of all data */
 sum = 0;
 sum_sqr = 0;
 for (i = 0; i < MAX_ITEM; ++i) {
 sum += x[i];
 sum_sqr += x[i] * x[i];
 }

 This loop accumulates the sum of all eight elements of array x in the variable sum.
Each time the loop body executes, the next element of array x is added to sum. Then
this array element value is squared, and its square is added to the sum being accumu-
lated in sum_sqr . We trace the execution of this program fragment in Table 7.3 for
the first three repetitions of the loop.

 The standard deviation of a set of data is a measure of the spread of the data values
around the mean. A small standard deviation indicates that the data values are all
relatively close to the average value. For MAX_ITEM data items, if we assume that x is
an array whose lowest subscript is 0, the standard deviation is given by the formula

standard deviation = Σ
MAX_ITEM-1

i=0 − mean2

x[i]2

MAX_ITEM

3857.3 • Using for Loops for Sequential Access

 TABLE 7.3 Partial Trace of Computing for Loop

 Statement i x[i] sum sum_sqr Effect

 sum = 0; 0.0 Initializes sum
 sum_sqr = 0; 0.0 Initializes sum_sqr

 for (i = 0;
 i < MAX_ITEM;
 ++i)

 0 16.0 Initializes i to 0

which is less than 8

 sum += x[i];
 sum_sqr +=

 16.0 Adds x[0] to sum

 x[i] * x[i]; 256.0 Adds 256.0 to sum_sqr

 increment and test i 1 12.0 1 < 8 is true
 sum += x[i]; 28.0 Adds x[1] to sum
 sum_sqr +=
 x[i] * x[i]; 400.0 Adds 144.0 to sum_sqr

 increment and test i 2 6.0 2 < 8 is true
 sum += x[i]; 34.0 Adds x[2] to sum
 sum_sqr +=
 x[i] * x[i];

 436.0 Adds 36.0 to sum_sqr

 In Fig. 7.2 , this formula is implemented by the statement

 st_dev = sqrt(sum_sqr / MAX_ITEM - mean * mean);

 Program Style Using Loop Control Variables as Array Subscripts

 In Fig. 7.2 , the variable i , which is the counter of each indexed for loop, determines
which array element is manipulated during each loop repetition. The use of the loop
control variable as an array subscript is common, because it allows the programmer to
specify easily the sequence in which the elements of an array are to be manipulated.
Each time the value of the loop control variable is increased, the next array element
is automatically selected. Note that the same loop control variable is used in all three
loops. This reuse is not necessary, but is permitted since the loop control variable is
always initialized at loop entry. Thus, i is reset to 0 when each loop is entered.

 EXERCISES FOR SECTION 7.3

 Self-Check

 1. Write an indexed for loop to fill the arrays described in Exercise 3 at the end
of Section 7.1 . Each array element should be assigned the value specified for it.

386 Chapter 7 • Arrays

 Programming

 1. Write an indexed for loop to fill an array prime such that element prime[0]
contains the first prime number, prime[1] the second prime number, and so
on. The prime numbers will be provided as data. Also, write a loop that calcu-
lates the sum of all the prime numbers stored.

 7.4 Using Array Elements as Function Arguments
 Figure 7.2 uses x[i] as an argument for functions scanf and printf . The actual
array element referenced depends on the value of i . The call

 printf("%3d%4c%9.2f%5c%9.2f\n", i, ' ', x[i], ' ',
 x[i] - mean);

 uses array element x[i] as an input argument to function printf . When i is 3 , the
value of x[3] or 8.0 is passed to printf and displayed.

 The call

 scanf("%lf", &x[i]);

 uses array element x[i] as an output argument of scanf . When i is 4 , the address
of array element x[4] is passed to scanf , and scanf stores the next value scanned
(2.5) in element x[4] .

 You can also pass array elements as arguments to functions that you write. Each
array element must correspond to a formal parameter that is the same simple type
as the array element.

 EXAMPLE 7.6 The function prototype below shows one type double input parameter (arg_1) and
two type double * output parameters (arg2_p and arg3_p).

 void do_it (double arg_1, double *arg2_p, double *arg3_p);

 If p , q , and r are declared as type double variables in the calling module, the statement

 do_it (p, &q, &r);

 passes the value of p to function do_it and returns the function results to variables
 q and r . If x is declared as an array of type double elements in the calling module,
the statement

 do_it(x[0], &x[1], &x[2]);

 uses the first three elements of array x as actual arguments. Array element x[0] is
an input argument and x[1] and x[2] are output arguments (see Fig. 7.3). In func-
tion do_it , you can use statements like

 *arg2_p = ...
 *arg3_p = ...

3877.4 • Using Array Elements as Function Arguments

 to return values to the calling module. These statements use indirection to follow the
pointers arg2_p and arg3_p to send the function results back to the calling module.
Because the function parameters arg2_p and arg3_p contain addresses of array ele-
ments x[1] and x[2] , the function execution changes the values of those elements.

 EXERCISES FOR SECTION 7.4

 Self-Check

 1. Write a statement that assigns to seg_len the length of a line segment from
 x i y i to x i +1 y i +1 using the formula

 2(xi+1 - xi)2 + (yi+1 - yi)2

 Assume that x i represents the i th element of array x , y i represents the i th ele-
ment of array y , and the minimum i is 0 .

 2. Write a for loop that sums the odd values from the LIST_SIZE element array
 list . For example, the sum for this list would be 113 (51 + 17 + 45).

Data Area for
Function do_it

Data Area for
Calling Module

16.0

x arg_1

[0]

[1]

[2]

[3]

[4]

arg2_p

arg3_p

[5]

[6]

[7]

16.0

12.0

6.0

8.0

2.5

12.0

14.0

–54.6

 FIGURE 7.3

 Data Area for
Calling Module
and Function do_it

30 12 51 17 45 62

list[0]list[1]list[2]list[3]list[4]list[5]

Array list

388 Chapter 7 • Arrays

 3. Write a for loop that sums the even-numbered elements (elements 0 , 2 , and
 4) from array list . For the list shown in Exercise 2, the sum would be 126
(30 + 51 + 45).

 Programming

 1. Write a program to store an input list of ten integers in an array; then display
a table similar to the following, showing each data value and what percentage
each value is of the total of all ten values.

 n % of total

 8 4.00

 12 6.00

 18 9.00

 25 12.50

 24 12.00

 30 15.00

 28 14.00

 22 11.00

 23 11.50

 10 5.00

 7.5 Array Arguments
 Besides passing individual array elements to functions, we can write functions that
have arrays as arguments. Such functions can manipulate some, or all, of the ele-
ments corresponding to an actual array argument.

 Formal Array Parameters

 When an array name with no subscript appears in the argument list of a function call,
what is actually stored in the function’s corresponding formal parameter is the address
of the initial array element. In the function body, we can use subscripts with the
formal parameter to access the array’s elements. However, the function manipulates
the original array, not its own personal copy, so an assignment to one of the array ele-
ments by a statement in the function changes the contents of the original array.

 EXAMPLE 7.7 Figure 7.4 shows a function that stores the same value (in_value) in all elements of
the array corresponding to its formal array parameter list . The statement

 list[i] = in_value;

 stores in_value in element i of its actual array argument.

3897.5 • Array Arguments

 In function fill_array , the array parameter is declared as

 int list[]

 Notice that the parameter declaration does not indicate how many elements are in
 list . Because C does not allocate space in memory for a copy of the actual array,
the compiler does not need to know the size of the array parameter. In fact, since
we do not provide the size, we have the flexibility to pass to the function an array of
any number of integers.

 Argument Correspondence for Array Parameters

 To call function fill_array , you must specify the actual array argument, the
number of array elements, and the value to be stored in the array. If y is an array
with ten type int elements, the function call

 fill_array(y, 10, num);

 stores the value of num in the ten elements of array y . If x is a five-element array of
type int values, the statement

 fill_array(x, 5, 1);

 causes function fill_array to store 1 in all elements of array x .
 Figure 7.5 shows the data areas just before the return from the function call

 fill_array(x, 5, 1);

 FIGURE 7.4 Function fill_array

 1. /*
 2. * Sets all elements of its array parameter to in_value.
 3. * Pre: n and in_value are defined.
 4. * Post: list[i] = in_value, for 0 <= i < n.
 5. */
 6. void
 7. fill_array (int list[], /* output - list of n integers */
 8. int n, /* input - number of list elements */
 9. int in_value) /* input - initial value */
 10. {
 11.
 12. int i; /* array subscript and loop control */
 13.
 14. for (i = 0; i < n; ++i)
 15. list[i] = in_value;
 16. }

390 Chapter 7 • Arrays

 Notice that C stores the address of the type int variable x[0] in list. In fact, the call

 fill_array(&x[0], 5, 1);

 would execute exactly like the call above. However, this call may lead the reader of
the code to expect that fill_array may be using only the array element x[0] as
an output argument. For readability, you should use the name of an array (with no
subscript) when you call a function that processes the list the array represents.

 Use of *list Instead of list[] in a Formal Parameter List
 In the declaration for function fill_array , we can use either parameter declaration:

 int list[]
 int *list

 The first tells us that the actual argument is an array. However, because C passes an
array argument by passing the address of its initial element, the second declaration
would be equally valid for an integer array parameter. In this text, we will usually
use the first form to declare a parameter representing an array, saving the second
form to represent simple output parameters. You should take care, however, to
remember that a formal parameter of the form

 type 1 *param

 is compatible with an actual argument that is an array of type 1 values.

x list

Function fill_array
Data Area

n

in_value

i

5

1

5

1

1

1

1

1

[0]

[1]

[2]

[3]

[4]

Calling Function
Data Area

 FIGURE 7.5

 Data Areas Before
Return from
 fill_array
(x, 5, 1);

3917.5 • Array Arguments

 Arrays as Input Arguments

 ANSI C provides a qualifier that we can include in the declaration of the array for-
mal parameter in order to notify the C compiler that the array is only an input to
the function and that the function does not intend to modify the array. This quali-
fier allows the compiler to mark as an error any attempt to change an array element
within the function.

 EXAMPLE 7.8 Function get_max in Fig. 7.6 can be called to find the largest value in an array. It
uses the variable list as an array input parameter. If x is a five-element array of
type int values, the statement

 x_large = get_max(x, 5);

 causes function get_max to search array x for its largest element; this value is returned
and stored in x_large . As in the call to function fill_array shown in Fig. 7.5 , formal
parameter list actually contains the address of the type int variable x[0] .

 FIGURE 7.6 Function to Find the Largest Element in an Array

 1. /*
 2. * Returns the largest of the first n values in array list
 3. * Pre: First n elements of array list are defined and n > 0
 4. */
 5. int
 6. get_max(const int list[], /* input - list of n integers */
 7. int n) /* input - number of list elements to examine */
 8. {
 9. int i,
 10. cur_large; /* largest value so far */
 11.
 12. /* Initial array element is largest so far. */
 13. cur_large = list[0];
 14.
 15. /* Compare each remaining list element to the largest so far;
 16. save the larger */
 17. for (i = 1; i < n; ++i)
 18. if (list[i] > cur_large)
 19. cur_large = list[i];
 20.
 21. return (cur_large);
 22. }

392 Chapter 7 • Arrays

 Returning an Array Result

 In C, it is not legal for a function’s return type to be an array; therefore, defining a
function of the variety modeled in Fig. 7.7 requires use of an output parameter to
send the result array back to the calling module.

 In Section 6.2, we saw that when we use simple output parameters, the calling
function must declare variables into which the function subprogram will store its
results. Similarly, a function returning an array result depends on its caller to provide

 Array Input Parameter

 SYNTAX: const element-type array-name []

 or

 const element-type *array-name

 EXAMPLE:

 int

 get_min_sub(const double data[], /* input - array

 of numbers */

 int data_size) /* input -

 number of elements */

 {

 int i,

 small_sub; /* subscript of smallest value

 so far */

 small_sub = 0; /* Assume first element is

 smallest. */

 for (i = 1; i < data_size; ++i)

 if (data[i] < data[small_sub])

 small_sub = i;

 return (small_sub);

 }

 INTERPRETATION: In a formal parameter list, the reserved word const indicates that the

array variable declared is strictly an input parameter and will not be modified by the function.

This fact is important because the value of the declared formal parameter will be the address

of the actual argument array; if const were omitted, modification of the argument would

be possible. The data type of an array element is indicated by element-type . The [] after

 array_name means that the corresponding actual argument will be an array. What is actually

stored in the formal parameter when the function is called is the address of the initial element

of the actual argument array. Since this value is a pointer to a location used to store a value

of type element-type , the second syntax option is equivalent to the first.

3937.5 • Array Arguments

functioninput
parameters

array
result

(output
parameter)

 FIGURE 7.7

 Diagram of a
Function That
Computes an
Array Result

an array variable into which the result can be stored. We have already seen an exam-
ple of a function with an array output parameter (function fill_array in Fig. 7.4).
The next example shows a function with two input array parameters and an output
array parameter that returns an array result.

 EXAMPLE 7.9 Function add_arrays in Fig. 7.8 adds two arrays. The sum of arrays ar1 and ar2
is defined as arsum such that arsum[i] is equal to ar1[i] + ar2[i] for each
subscript i . The last parameter, n , specifies how many corresponding elements
are summed.

 FIGURE 7.8 Function to Add Two Arrays

 1. /*
 2. * Adds corresponding elements of arrays ar1 and ar2, storing the result in
 3. * arsum. Processes first n elements only.
 4. * Pre: First n elements of ar1 and ar2 are defined. arsum’s corresponding
 5. * actual argument has a declared size >= n (n >= 0)
 6. */
 7. void
 8. add_arrays(const double ar1[], /* input - */
 9. const double ar2[], /* arrays being added */
 10. double arsum[], /* output - sum of corresponding
 11. elements of ar1 and ar2 */
 12. int n) /* input - number of element
 13. pairs summed */
 14. {
 15. int i;
 16.
 17. /* Adds corresponding elements of ar1 and ar2 */
 18. for (i = 0; i < n; ++i)
 19. arsum[i] = ar1[i] + ar2[i];
 20. }

394 Chapter 7 • Arrays

 The formal parameter list declaration

 const double ar1[],
 const double ar2[],
 double arsum[],
 int n

 indicates that formal parameters ar1 , ar2 , and arsum stand for actual argument
arrays whose elements are of type double and that ar1 and ar2 are strictly input
parameters, as is n . The function can process type double arrays of any size as long
as the preconditions stated in the initial block comment are met.

 If we assume that a calling function has declared three five-element arrays x , y , and
 x_plus_y and has filled x and y with data, the call

 add_arrays(x, y, x_plus_y, 5);

 would lead to the memory setup pictured in Fig. 7.9 .

ar1

1.5 2.2 3.4 5.1 6.7

array x

2.0 4.5 1.3 4.0 5.5

array y
ar2

Function add_arrays
Data Area

? ? ? ? ?

array x_plus_y
arsum

n

5

Calling Function
Data Area

 FIGURE 7.9

 Function Data
Areas for add_
arrays(x, y,
x_plus_y, 5);

3957.5 • Array Arguments

 After execution of the function, x_plus_y[0] will contain the sum of x[0] and
 y[0] , or 3.5 ; x_plus_y[1] will contain the sum of x[1] and y[1] , or 6.7 ; and
so on. Input argument arrays x and y will be unchanged; output argument array
 x_plus_y will have these new contents:

4.7 9.1 12.26.73.5

x_plus_y after call to add_arrays

 Address-of Operator Not Used
 Note carefully that in the call to add_arrays there is no notational difference
between the references to input argument arrays x and y and the reference to
output argument array x_plus_y . Specifically, the & (address-of) operator is not
applied to the name of the output array argument. We discussed earlier the fact that
C always passes whole arrays used as arguments by storing the address of the initial
array element in the corresponding formal parameter. Since the output parameter
 arsum is declared with no const qualifier, function add_arrays automatically has
access and authority to change the corresponding actual array argument.

 Partially Filled Arrays

 Frequently, a program will need to process many lists of similar data; these lists may
not all be the same length. In order to reuse an array for processing more than one
data set, the programmer often declares an array large enough to hold the largest
data set anticipated. This array can be used for processing shorter lists as well, pro-
vided that the program keeps track of how many array elements are actually in use.

 EXAMPLE 7.10 The purpose of function fill_to_sentinel is to fill a type double array with data
until the designated sentinel value is encountered in the input data. Figure 7.10
shows both the input parameters that fill_to_sentinel requires and the results
that are communicated through its output parameters.

 When we use an array that may be only partially filled (such as dbl_arr in Fig. 7.10),
we must deal with two array sizes. One size is the array’s declared size, represented by
the input parameter dbl_max , shown in Fig. 7.10 . The other is the size counting only

fill_to_sentinel

dbl_max

sentinel

dbl_arr

dbl_sizep

 FIGURE 7.10

 Diagram of
Function
fill_to_sentinel

396 Chapter 7 • Arrays

 FIGURE 7.11 Function Using a Sentinel-Controlled Loop to Store Input Data in an Array

 1. /*
 2. * Gets data to place in dbl_arr until value of sentinel is encountered in
 3. * the input.
 4. * Returns number of values stored through dbl_sizep.
 5. * Stops input prematurely if there are more than dbl_max data values before
 6. * the sentinel or if invalid data is encountered.
 7. * Pre: sentinel and dbl_max are defined and dbl_max is the declared size
 8. * of dbl_arr
 9. */
 10. void
 11. fill_to_sentinel(int dbl_max, /* input - declared size of dbl_arr */
 12. double sentinel, /* input - end of data value in
 13. input list */
 14. double dbl_arr[], /* output - array of data */
 15. int *dbl_sizep) /* output - number of data values
 16. stored in dbl_arr */
 17. {
 18. double data;
 19. int i, status;
 20.
 21. /* Sentinel input loop */
 22. i = 0;
 23. status = scanf("%lf", &data);
 24. while (status == 1 && data != sentinel && i < dbl_max) {
 25. dbl_arr[i] = data;
 26. ++i;
 27. status = scanf("%lf", &data);
 28. }
 29.
 30. /* Issues error message on premature exit */
 31. if (status != 1) {
 32. printf("\n*** Error in data format ***\n");
 33. printf("*** Using first %d data values ***\n", i);

the elements in use, represented by the output parameter dbl_sizep . The declared
size is only of interest at the point in a program where the array is being filled, for
it is important not to try to store values beyond the array’s bounds. However, once
this input step is complete, the array size relevant in the rest of the processing is the
number of elements actually filled. Figure 7.11 shows an implementation of function
 fill_to_sentinel.

(continued)

3977.5 • Array Arguments

 Figure 7.12 shows a main function that calls fill_to_sentinel . The main function
is using batch mode; it issues no prompting message, but it does echo print its input
data. Notice that after the call to fill_to_sentinel , the expression used as the
upper bound on the subscripting variable in the loop that echo prints the data is not
the array’s declared size, A_SIZE . Rather, it is the variable in_use that designates
how many elements of arr are currently filled.

 In the call to fill_to_sentinel in Fig. 7.12 , we see another example of the differ-
ence between the way an array output argument is passed to a function and the way

 FIGURE 7.12 Driver for Testing fill_to_sentinel

 1. /* Driver to test fill_to_sentinel function */
 2.
 3. #define A_SIZE 20
 4. #define SENT -1.0
 5.
 6. int
 7. main(void)
 8. {
 9. double arr[A_SIZE];
 10. int in_use, /* number of elements of arr in use */
 11. i;
 12.
 13. fill_to_sentinel(A_SIZE, SENT, arr, &in_use);
 14.
 15. printf("List of data values\n");
 16. for (i = 0; i < in_use; ++i)
 17. printf("%13.3f\n", arr[i]);
 18.
 19. return (0);
 20. }

 34. } else if (data != sentinel) {
 35. printf("\n*** Error: too much data before sentinel ***\n");
 36. printf("*** Using first %d data values ***\n", i);
 37. }
 38.
 39. /* Sends back size of used portion of array */
 40. *dbl_sizep = i;
 41. }

 FIGURE 7.11 (continued)

398 Chapter 7 • Arrays

 Figure 7.13 shows functions pop and push . The formal parameter top points
to the variable that stores the subscript of the element at the top of the stack. Each
push operation increments the value pointed to by top before storing the new item
at the top of the stack (i.e., in element stack[*top]). Each pop operation returns
the item currently at the top of the stack and then decrements the value pointed
to by top . The if condition in push checks that there is room on the stack before
storing a new item. The if condition in pop checks that the stack is not empty
before popping it. If the stack is empty, STACK_EMPTY (a previously defined constant
macro) is returned instead.

 We can use the array s declared next to store a stack of up to STACK_SIZE
characters where s_top stores the subscript of the element at the top of the stack.
Giving s_top an initial value of -1 ensures that the first item pushed onto the stack
will be stored in the stack element s[0] .

 char s[STACK_SIZE]; /* a stack of characters */
 int s_top = -1; /* stack s is empty */

 The statements

 push(s, '2', &s_top, STACK_SIZE);
 push(s, '+', &s_top, STACK_SIZE);
 push(s, 'C', &s_top, STACK_SIZE);

 create the stack shown earlier where the last character pushed (C) is at the top of the
stack (array element s[2]).

a simple output argument is passed. Both arr and in_use are output arguments,
but the address-of operator & is applied only to the simple variable in_use . Since
 arr is an array name with no subscript, it already represents an address, the address
of the initial array element.

 Stacks

 A stack is a data structure in which only the top element can be accessed. To illus-
trate, the plates stored in the spring-loaded device in a buffet line perform like a
stack. A customer always takes the top plate; when a plate is removed, the plate
beneath it moves to the top.

 The following diagram shows a stack of three characters. The letter C, the char-
acter at the top of the stack, is the only one we can access. We must remove C from
the stack in order to access the symbol + . Removing a value from a stack is called
 popping the stack , and storing an item in a stack is called pushing it onto the
stack .

 pop remove the top
element of a stack

 push insert a new
element at the top of
the stack

C
+
2

3997.5 • Array Arguments

 FIGURE 7.13 Functions push and pop

 1. void
 2. push(char stack[], /* input/output - the stack */
 3. char item, /* input - data being pushed onto the stack */
 4. int *top, /* input/output - pointer to top of stack */
 5. int max_size) /* input - maximum size of stack */
 6. {
 7. if (*top < max_size-1) {
 8. ++(*top);
 9. stack[*top] = item;
 10. }
 11. }
 12.
 13. char
 14. pop(char stack[], /* input/output - the stack */
 15. int *top) /* input/output - pointer to top of stack */
 16. {
 17. char item; /* value popped off the stack */
 18.
 19. if (*top >= 0) {
 20. item = stack[*top];
 21. --(*top);
 22. } else {
 23. item = STACK_EMPTY;
 24. }
 25.
 26. return (item);
 27. }

 EXERCISES FOR SECTION 7.5

 Self-Check

 1. When is it better to pass an entire array of data to a function rather than indi-
vidual elements?

 2. Assume a main function contains declarations for three type double arrays—
 c , d , and e , each with six elements. Also, assume that values have been stored
in all array elements. Explain the effect of each valid call to add_arrays (see
 Fig. 7.8). Explain why each invalid call is invalid.

 a. add_arrays(ar1, ar2, c, 6);
 b. add_arrays(c[6], d[6], e[6], 6);

400 Chapter 7 • Arrays

 c. add_arrays(c, d, e, 6);
 d. add_arrays(c, d, e, 7);
 e. add_arrays(c, d, e, 5);
 f. add_arrays(c, d, 6, 3);
 g. add_arrays(e, d, c, 6);
 h. add_arrays(c, c, c, 6);
 i. add_arrays(c, d, e, c[1]); (if c[1] is 4.3 ?

 if c[1] is 91.7 ?)
 j. add_arrays(&c[2], &d[2], &e[2], 4);

 3. Modify function fill_to_sentinel from Fig. 7.11 so its return type is int
rather than void . Have the function return the value 1 if no error conditions
occur and 0 if there is an error. In all other respects, leave the function’s pur-
pose unchanged.

 4. Can you think of a way to combine the following two statements from the body
of the while loop of function fill_to_sentinel into just one statement?

 dbl_arr[i] = data;
 ++i;

 5. Assume stack s is a stack of MAX_SIZE characters and s_top is the subscript
of the element at the top of stack s . Perform the following sequence of opera-
tions. Indicate the result of each operation and the new stack if it is changed.
Rather than draw the stack each time, use the notation |2+C/ to represent a
stack of four characters, where the last symbol on the right (/) is at the top of
the stack.

 /* Start with an empty stack. */
 s_top = -1;
 push(s, '$', &s_top, MAXSIZE);
 push(s, '-', &s_top, MAXSIZE);
 ch = pop(s, &s_top);

 Programming

 1. Define a function multiply that computes and returns the product of the type
 int elements of its array input argument. The function should have a second
input argument telling the number of array elements to use.

 2. Define a function abs_table that takes an input array argument with type
 double values and displays a table of the data and their absolute values like
the table shown below.

 x |x|
 38.4 38.4
 -101.7 101.7
 -2.1 2.1
 . . .

4017.6 • Searching and Sorting an Array

 3. Write a function that negates the type double values stored in an array. The
first argument should be the array (an input/output parameter), and the sec-
ond should be the number of elements to negate.

 4. Write a function that takes two type int array input arguments and their
effective size and produces a result array containing the sums of correspond-
ing elements. For example, for the three-element input arrays 5 −1 7 and
 2 4 −2 , the result would be an array containing 7 3 5 .

 5. Rewrite operators push and pop for a stack of integers. Also, write a new function
 retrieve that accesses the element at the top of the stack without removing it.

 7.6 Searching and Sorting an Array
 This section discusses two common problems in processing arrays: searching an
array to determine the location of a particular value and sorting an array to rear-
range the array elements in numerical order. As an example of an array search, we
might want to search an array of student exam scores to determine which student,
if any, got a particular score. An example of an array sort would be rearranging the
array elements so that they are in increasing order by score. Sorting an array would
be helpful if we wanted to display the list in order by score or if we needed to locate
several different scores in the array.

 Array Search

 In order to search an array, we need to know the array element value we are seek-
ing, or the search target . Then, we can perform the search by examining in turn
each array element using a loop and by testing whether the element matches the
target. The search loop should be exited when the target value is found; this proc-
ess is called a linear search . The following algorithm for linear search sets a flag (for
loop control) when the element being tested matches the target.

 ALGORITHM

 1. Assume the target has not been found.
 2. Start with the initial array element.
 3. repeat while the target is not found and there are more array elements

 4. if the current element matches the target
 5. Set a flag to indicate that the target has been found.

 else
 6. Advance to the next array element.

 7. if the target was found
 8. Return the target index as the search result.

 else
 9. Return −1 as the search result.

402 Chapter 7 • Arrays

 Figure 7.14 shows a function that implements this algorithm. This function
returns the index of the target if it is present in the array; otherwise, it returns −1 .
The local variable i (initial value 0) selects the array element that is compared to
the target value.

 FIGURE 7.14 Function That Searches for a Target Value in an Array

 1. #define NOT_FOUND -1 /* Value returned by search function if target not
 2. found */
 3.
 4. /*
 5. * Searches for target item in first n elements of array arr
 6. * Returns index of target or NOT_FOUND
 7. * Pre: target and first n elements of array arr are defined and n>=0
 8. */
 9. int
 10. search(const int arr[], /* input - array to search */
 11. int target, /* input - value searched for */
 12. int n) /* input - number of elements to search */
 13. {
 14. int i,
 15. found = 0, /* whether or not target has been found */
 16. where; /* index where target found or NOT_FOUND */
 17.
 18. /* Compares each element to target */
 19. i = 0;
 20. while (!found && i < n) {
 21. if (arr[i] == target)
 22. found = 1;
 23. else
 24. ++i;
 25. }
 26.
 27. /* Returns index of element matching target or NOT_FOUND */
 28. if (found)
 29. where = i;
 30. else
 31. where = NOT_FOUND;
 32.
 33. return (where);
 34. }

4037.6 • Searching and Sorting an Array

 The type int variable found is used to represent the logical concept of whether
the target has been found yet and is tested in the loop repetition condition. The
variable is initially set to 0 for false (the target is certainly not found before we begin
searching for it) and is reset to 1 for true only if the target is found. After found
becomes true or the entire array has been searched, the loop is exited, and the deci-
sion statement following the loop defines the value returned.

 If array ids is declared in the calling function, the assignment statement

 index = search(ids, 4902, ID_SIZE);

 calls function search to search the first ID_SIZE elements of array ids for the tar-
get ID 4902 . The subscript of the first occurrence of 4902 is saved in index. If 4902
is not found, then index is set to −1 .

 Sorting an Array

 Many programs execute more efficiently if the data they process are sorted before
processing begins. For example, a check-processing program executes more quickly
if all checks are in order by checking account number. Other programs produce
more understandable output if the information is sorted before it is displayed. For
example, your university might want your instructor’s grade report sorted by student
ID number. In this section, we describe one simple sorting algorithm from among
the many that have been studied by computer scientists.

 The selection sort is a fairly intuitive (but not very efficient) sorting algorithm.
To perform a selection sort of an array with n elements (subscripts 0 through n-1),
we locate the smallest element in the array and then switch the smallest element
with the element at subscript 0 , thereby placing the smallest element in the first
position. Then we locate the smallest element remaining in the subarray with sub-
scripts 1 through n-1 and switch it with the element at subscript 1 , thereby placing
the second smallest element in the second position. Then we locate the smallest
element remaining in the subarray with subscripts 3 through n-1 and switch it with
the element at subscript 3 , and so on.

 ALGORITHM FOR SELECTION SORT

 1. for each value of fill from 0 to n-2
 2. Find index_of_min , the index of the smallest element in the

unsorted subarray list[fill] through list[n-1] .
 3. if fill is not the position of the smallest element (index_of_min)
 4. Exchange the smallest element with the one at position

 fill .

 Figure 7.15 traces the operation of the selection sort algorithm on an array
of length 4 . The first array shown is the original array. Then we show each step

404 Chapter 7 • Arrays

as the next smallest element is moved to its correct position. Each array diagram
has two parts: a subarray that is sorted (in color) and a subarray that has not yet
been sorted. After each pass through the array, the sorted subarray contains an
additional element. Notice that, at most, n-1 exchanges will be required to sort an
array with n elements.

 We will use function get_min_range to perform step 2. Function select_
sort in Fig. 7.16 performs a selection sort on the array represented by parameter
 list , which is an input/output parameter. Notice that its declaration is of the same
form as the output parameter arrays discussed in the previous section. Local vari-
able index_of_min holds the index of the smallest value found so far in the cur-
rent subarray. At the end of each pass, if index_of_min and fill are not equal,
the statements

 temp = list[index_of_min];
 list[index_of_min] = list[fill];
 list[fill] = temp;

 exchange the array elements with subscripts fill and index_of_min . After function
 select_sort executes, the values in its corresponding array argument will form
an increasing sequence. See Programming Exercise 1 for a description of function
 get_min_range .

fill is 2. Find the smallest element in subarray

list[2] through list[3] and swap it with list[2].

74 45 83 16

[0] [1] [2] [3]

16 45 83 74

[0] [1] [2] [3]

16 45 83 74

[0] [1] [2] [3]

16 45 74 83

[0] [1] [2] [3]

fill is 1. Find the smallest element in subarray

list[1] through list[3]—no exchange needed.

fill is 0. Find the smallest element in subarray

list[1] through list[3] and swap it with list[0].

 FIGURE 7.15

 Trace of Selection
Sort

4057.6 • Searching and Sorting an Array

 FIGURE 7.16 Function select_sort

 1. /*
 2. * Finds the position of the smallest element in the subarray
 3. * list[first] through list[last].
 4. * Pre: first < last and elements 0 through last of array list are defined.
 5. * Post: Returns the subscript k of the smallest element in the subarray;
 6. * i.e., list[k] <= list[i] for all i in the subarray
 7. */
 8. int get_min_range(int list[], int first, int last);
 9.
 10.
 11. /*
 12. * Sorts the data in array list
 13. * Pre: first n elements of list are defined and n >= 0
 14. */
 15. void
 16. select_sort(int list[], /* input/output - array being sorted */
 17. int n) /* input - number of elements to sort */
 18. {
 19. int fill, /* first element in unsorted subarray */
 20. temp, /* temporary storage */
 21. index_of_min; /* subscript of next smallest element */
 22.
 23. for (fill = 0; fill < n-1; ++fill) {
 24. /* Find position of smallest element in unsorted subarray */
 25. index_of_min = get_min_range(list, fill, n-1);
 26.
 27. /* Exchange elements at fill and index_of_min */
 28. if (fill != index_of_min) {
 29. temp = list[index_of_min];
 30. list[index_of_min] = list[fill];
 31. list[fill] = temp;
 32. }
 33. }
 34. }

406 Chapter 7 • Arrays

 EXERCISES FOR SECTION 7.6

 Self-Check

 1. For the search function in Fig. 7.14 , what happens if:

 a. the last ID stored matches the target?
 b. several ID’s match the target?

 2. Trace the execution of the selection sort on the following two lists:

 8 53 32 54 74 3 7 18 28 37 42 42

 Show the arrays after each exchange occurs. How many exchanges are required
to sort each list? How many comparisons?

 3. How could you modify the selection sort algorithm to get the scores in
descending order (largest score first)?

 Programming

 1. Write function get_min_range based on function get_min_sub in the syntax
display for array input parameter (see page 392). Function get_min_range
returns the subscript of the smallest value in a portion of an array containing
type int values. It has three arguments: an array, the first subscript in the sub-
array, and the last subscript in the subarray.

 2. Another method of performing the selection sort is to place the largest value
in position n −1, the next largest in position n −2, and so on. Write this version.

 3. Modify the heading and declarations of function select_sort so it would sort
an array of type double values. Be careful—some variables should still be of
type int !

 7.7 Parallel Arrays and Enumerated Types
 In this section, we discuss a collection of arrays called parallel arrays that have the
same number of elements. If there are n -elements, these parallel arrays contain data
for n -objects of the same kind. Further, all array elements at subscript i contain data
for the i th object in this group of n -objects.

 parallel arrays two
or more arrays with
the same number
of elements used
for storing related
information about a
collection of data objects

 EXAMPLE 7.11 We declare two parallel arrays for a student records program as follows:

 int id[NUM_STUDENTS];
 double gpa[NUM_STUDENTS];

4077.7 • Parallel Arrays and Enumerated Types

 Here we assume that NUM_STUDENTS has already appeared in a #define directive
such as

 #define NUM_STUDENTS 50

 The arrays id and gpa each have 50 elements. Each element of array id can be used
to store an integer value; each element of array gpa can be used to store a value
of type double . If you use these declarations in a problem to assess the range and
distribution of grade point averages, you can store the first student’s ID in id[0] ,
and store the same student’s gpa in gpa[0] . Samples of these arrays are shown next.

2.71

3.09

. . .

2.98

1.92

5503

4556

. . .

5691

9146

gpa[0]

gpa[1]

gpa[2]

gpa[49]

id[0]

id[1]

id[2]

id[49]

 Figure 7.17 shows a simple program that reads data into these two parallel arrays
and displays the information stored. We show just the output for the first two ele-
ments of each array.

 Enumerated Types

 Good solutions to many programming problems require new data types. For exam-
ple, in a budget program you might distinguish among the following categories of
expenses: entertainment, rent, utilities, food, clothing, automobile, insurance, and
miscellaneous. ANSI C allows you to associate a numeric code with each category by
creating an enumerated type that has its own list of meaningful values.

 For example, the enumerated type expense_t has eight possible values:

 typedef enum
 {entertainment, rent, utilities, food, clothing,
 automobile, insurance, miscellaneous}
 expense_t;

 Our new type name expense_t is used just as we would use a standard type such as
 int or double . Here is a declaration of variable expense_kind :

 expense_t expense_kind;

 Defining type expense_t as shown causes the enumeration constant enter-
tainment to be represented as the integer 0, constant rent to be represented as

 enumerated type a
data type whose list of
values is specified by
the programmer in a
type declaration

 enumeration
constant an identifier
that is one of the values
of an enumerated type

408 Chapter 7 • Arrays

integer 1, utilities as 2, and so on. Variable expense_kind and the eight enu-
meration constants can be manipulated just as one would handle any other integers.
 Figure 7.18 shows a program that scans an integer representing an expense code
and calls a function that uses a switch statement to display the code meaning.

 The scope rules for identifiers (see Section 6.4) apply to enumerated types and
enumeration constants. Enumeration constants must be identifiers; they cannot be
numeric, character, or string literals (e.g., "entertainment" cannot be a value for
an enumerated type). We recommend that you place type definitions immediately
after any #define and #include directives (see Fig. 7.18) so that you can use the
types throughout all parts of your program. The reserved word typedef can be used
to name many varieties of user-defined types. We will study some of these uses in
 Chapters 10 and 13 .

 FIGURE 7.17 Student Data in Parallel Arrays

 1. /* Read data for parallel arrays and echo stored data. */
 2.
 3. #include <stdio.h>
 4. #define NUM_STUDENTS 50
 5.
 6. int
 7. main(void) {
 8. {
 9. int id[NUM_STUDENTS];
 10. double gpa[NUM_STUDENTS];
 11. int i;
 12.
 13. for (i = 0; i < NUM_STUDENTS; ++i) {
 14. printf("Enter the id and gpa for student %d: ", i);
 15. scanf("%d%lf", &id[i], &gpa[i]);
 16. printf("%d %4.2f\n", id[i], gpa[i]);
 17. }
 18.
 19. return (0);
 20. }

 Enter the id and gpa for student 0: 5503 2.71
 5503 2.71
 Enter the id and gpa for student 1: 4556 3.09
 4556 3.09

4097.7 • Parallel Arrays and Enumerated Types

 FIGURE 7.18 Enumerated Type for Budget Expenses

 1. /* Program demonstrating the use of an enumerated type */
 2.
 3. #include <stdio.h>
 4.
 5. typedef enum
 6. {entertainment, rent, utilities, food, clothing,
 7. automobile, insurance, miscellaneous}
 8. expense_t;
 9.
 10. void print_expense(expense_t expense_kind);
 11.
 12. int
 13. main(void)
 14. {
 15. expense_t expense_kind;
 16.
 17. scanf("%d", &expense_kind);
 18. printf("Expense code represents ");
 19. print_expense(expense_kind);
 20. printf(".\n");
 21.
 22. return (0);
 23. }
 24.
 25. /*
 26. * Display string corresponding to a value of type expense_t
 27. */
 28. void
 29. print_expense(expense_t expense_kind)
 30. {
 31. switch (expense_kind) {
 32. case entertainment:
 33. printf("entertainment");
 34. break;
 35.
 36. case rent:
 37. printf("rent");
 38. break;
 39.

(continued)

410 Chapter 7 • Arrays

 40. case utilities:
 41. printf("utilities");
 42. break;
 43.
 44. case food:
 45. printf("food");
 46. break;
 47.
 48. case clothing:
 49. printf("clothing");
 50. break;
 51.
 52. case automobile:
 53. printf("automobile");
 54. break;
 55.
 56. case insurance:
 57. printf("insurance");
 58. break;
 59.
 60. case miscellaneous:
 61. printf("miscellaneous");
 62. break;
 63.
 64. default:
 65. printf("\n*** INVALID CODE ***\n");
 66. }
 67. }

 Enumerated Type Definition

 SYNTAX: typedef enum

 { identifier_list }

 enum_type ;

 EXAMPLE: typedef enum

 {monday, tuesday, wednesday, thursday,

 friday, saturday, sunday}

 day_t;

 FIGURE 7.18 (continued)

4117.7 • Parallel Arrays and Enumerated Types

 An identifier cannot appear in more than one enumerated type definition. For
example, the definition

 typedef enum
 {monday, tuesday, wednesday, thursday, friday}
 weekday_t;

 could not be used with the type day_t shown in the Syntax Display.
 Relational, assignment, and even arithmetic operators can be used with enu-

merated types, just as with other integers. For type day_t , the following relations
are true:

 sunday < monday
 wednesday != friday
 tuesday >= sunday

 We can combine the use of arithmetic operators and casts to find enumeration con-
stants that follow and precede a current value.

 EXAMPLE 7.12 If today and tomorrow are type day_t variables, the following if statement assigns
the value of tomorrow based on the value of today :

 if (today == sunday)
 tomorrow = monday;
 else
 tomorrow = (day_t)(today + 1);

 Because the days of a week are cyclical, tomorrow should be set to monday when
 today is sunday . The last value (saturday) in type day_t is treated separately,
because adding 1 to its integer representation yields a result not associated with a
valid day_t value.

 Because C handles enumerated type values just as it handles other integers, C pro-
vides no range checking to verify that the value stored in an enumerated type vari-
able is valid. For example, this assignment statement will not cause a run-time error
even though it is clearly invalid.

 today = saturday + 3;

 INTERPRETATION: A new data type named enum_type is defined. The valid values of this

type are the identifiers of identifier_list . The first identifier is represented by the integer 0, the

second by the integer 1, and so on.

 Note: A particular identifier can appear in only one identifier_list in a given scope.

412 Chapter 7 • Arrays

 We have seen that an enumerated type variable can be used as the control-
ling expression of a switch statement. Such a variable can also be used as a loop
counter:

 for (today = monday; today <= friday; ++today) {
 . . .
 }

 This loop will execute for each value of today from monday through friday .

 Array with Enumerated Type Subscript

The next example uses an array with an enumerated type subscript.

 EXAMPLE 7.13 The #define directives and type and variable declaration sections for a grading
program follow:

 #define NUM_QUEST 10 /* number of questions on daily quiz */
 #define NUM_CLASS_DAYS 5 /* number of days in a week of class */

 typedef enum
 {monday, tuesday, wednesday, thursday, friday}
 week day_t;

 . . .

 char answer[NUM_QUEST]; /* correct answers for one quiz */
 int score[NUM_CLASS_DAYS]; /* one student's quiz scores for each
 day */

 Array answer is declared with ten elements; each element can store a single
character. We can use this array to store the ten answers for a true–false quiz
(e.g., answer[0] is 'T' , answer[1] is 'F'). Array score has five elements cor-
responding to the five class days listed in the week day_t type declaration. Since
the enumeration constants monday through friday are represented by the inte-
gers 0 through 4, we can use them as subscripts on array score. Sample arrays are
illustrated in Fig. 7.19 .

 For array score the assignment statements

 score[monday] = 9;
 score[tuesday] = 7;
 score[wednesday] = 5;
 score[thursday] = 3;
 score[friday] = 1;

 assign the values shown in Fig. 7.19 to score . Assuming that today is type week
day_t and ascore is type int , the following statements have the same effect.

4137.7 • Parallel Arrays and Enumerated Types

 ascore = 9;
 for (today = monday; today <= friday; ++today) {
 score[today] = ascore;
 ascore -= 2;
 }

 EXERCISES FOR SECTION 7.7

 Self-Check

 1. Evaluate each of the following expressions, assuming before each operation
that the value of variable today (type day_t) is thursday .
 a. (int)monday
 b. (int)today
 c. today < tuesday
 d. (day_t)(today + 1)
 e. (day_t)(today − 1)
 f. today >= thursday

 2. Indicate whether each of the following type definition groups is valid or
invalid. Explain the flaws in invalid definitions.
 a. typedef enum

 {int, double, char}
 type_t;

 b. typedef enum
 {p, q, r}

 letters_t;
 typedef enum

 {o, p}
 more_letters_t;
 c. typedef enum

 {'X', 'Y', 'Z'}
 alpha_t;

 3. Declare parallel array for storing information about 10 employees. One array
will store the hours each person worked for a week and a second array will
store each person’s hourly pay rates.

T

F

F

. . .

T

answer[0]

answer[1]

answer[2]

answer[9]

9

7

5

3

1

score[monday]

score[tuesday]

score [wednesday]

score[friday]

score[thursday]

 FIGURE 7.19

 Arrays answer and
score

414 Chapter 7 • Arrays

 Programming

 1. Declare an enumerated type m onth_t and rewrite the following if statement,
assuming that cur_month is type month_t instead of type int . Also, write the
equivalent switch statement.

 if (cur_month == 1)
 printf("Happy New Year\n");
 else if (cur_month == 6)
 printf("Summer begins\n");
 else if (cur_month == 9)
 printf("Back to school\n");
 else if (cur_month == 12)
 printf("Happy Holidays\n");

 2. Write a function print_day for enumerated type day_t that displays its argu-
ment as a string.

 void print_day(day_t day);

 Hint: Use a switch statement to select the appropriate printf statement.
 3. Write a program fragment that fills the 2 arrays in self-check exercise 3 with

data and then calculates and displays each person’s salary for the week.

 7.8 Multidimensional Arrays
 In this section, we introduce multidimensional arrays , that is, arrays with two or
more dimensions. We will use two-dimensional arrays to represent tables of data,
matrices, and other two-dimensional objects. A two-dimensional object that many
are familiar with is a tic-tac-toe board. The array declaration

 char tictac[3][3];

 allocates storage for a two-dimensional array (tictac) with three rows and three col-
umns. This array has nine elements, each of which must be referenced by specifying
a row subscript (0 , 1 , or 2) and a column subscript (0 , 1 , or 2). Each array element
contains a character value. The array element tictac[1][2] marked in Fig. 7.20 is
in row 1, column 2 of the array; the element contains the character o. The diagonal
line consisting of array elements tictac[0][0] , tictac[1][1] , and tictac[2][2]
represents a win for player X because each cell contains the character X .

 multidimensional
array an array
with two or more
dimensions

0 1 2

O X O

O X X

0

1

2

Column

Row

tictac[1][2]

X O X

 FIGURE 7.20

 A Tic-tac-toe Board
Stored as Array
tictac

4157.8 • Multidimensional Arrays

 A function that takes a tic-tac-toe board as a parameter will have a declaration
similar to this in its prototype:
 char tictac[][3]

 In the declaration of a multidimensional array parameter, only the first dimension,
the number of rows, can be omitted. Including both dimensions is also permissible.
Because tic-tac-toe boards do not vary in size, using the declaration that follows
would probably make more sense.
 char tictac[3][3]

 Multidimensional Array Declaration

 SYNTAX: element-type aname [size 1] [size 2] … [size n]; /* storage

 allocation */

 element-type aname [][size 2] … [size n] /* parameter in

 prototype */

 EXAMPLES: double table[NROWS][NCOLS]; /* storage allocation */

 void

 process_matrix(int in[][4], /* input parameter */

 int out[][4], /* output parameter */

 int nrows); /* input - number of
 rows */

 INTERPRETATION: The first form shown allocates storage space for an array aname consisting

of size 1 × size 2 × … × size n memory cells. Each memory cell can store one data item whose

data type is specified by element-type . The individual array elements are referenced by the

subscripted variables aname [0][0] … [0] through aname [size 1 −1][size 2 −1] …[size n −1] .

An integer constant expression is used to specify each size i .

 The second declaration form shown is valid when declaring a multidimensional array

parameter in a function prototype. The size of the first dimension (the number of rows) is the

only size that can be omitted. As for one-dimensional arrays, the value actually stored in an

array formal parameter is the address of the initial element of the actual argument.

 Note: ANSI C requires that an implementation allow multidimensional arrays of at least six

dimensions.

 EXAMPLE 7.14 The array table

 double table[7][5][6];

 consists of three dimensions: The first subscript may take on values from 0 to 6 ; the
second, from 0 to 4 ; and the third, from 0 to 5 . A total of 7 × 5 × 6 , or 210 , type double
values may be stored in the array table . All three subscripts must be specified in each
reference to array table in order to access a single number (e.g., table[2][3][4]).

416 Chapter 7 • Arrays

 FIGURE 7.21 Function to Check Whether Tic-tac-toe Board Is Filled

 1. /* Checks whether a tic-tac-toe board is completely filled. */
 2. int
 3. filled(char ttt_brd[3][3]) /* input - tic-tac-toe board */
 4. {
 5. int r, c, /* row and column subscripts */
 6. ans; /* whether or not board filled */
 7.
 8. /* Assumes board is filled until blank is found */
 9. ans = 1;
 10.
 11. /* Resets ans to zero if a blank is found */
 12. for (r = 0; r < 3; ++r)
 13. for (c = 0; c < 3; ++c)
 14. if (ttt_brd[r][c] == ' ')
 15. ans = 0;
 16.
 17. return (ans);
 18. }

 EXAMPLE 7.15 Function filled checks whether a tic-tac-toe board is completely filled (see Fig. 7.21).
If the board contains no cells with the value ' ' , the function returns 1 for true; oth-
erwise, it returns 0 for false.

 Initialization of Multidimensional Arrays

 You can initialize multidimensional arrays in their declarations just like you initial-
ize one-dimensional arrays. However, instead of listing all table values in one list,
the values are usually grouped by rows. For example, the following statement would
declare a tic-tac-toe board and initialize its contents to blanks.

 char tictac[3][3] = { {' ', ' ', ' '}, {' ', ' ', ' '},
 {' ', ' ', ' '} };

 Arrays with Several Dimensions

 The array enroll declared here

 int enroll[MAXCRS][5][4];

 course year
 campus

 and pictured in Fig. 7.22 is a three-dimensional array that may be used to store the
enrollment data for a college. We will assume that the college offers 100 (MAXCRS)

4177.8 • Multidimensional Arrays

courses at five different campuses. In keeping with C’s practice of starting array sub-
scripts with zero, we will number the freshman year 0 , the sophomore year 1 , and so on.
Thus, enroll[1][4][3] represents the number of seniors taking course 1 at campus 4 .

 Array enroll is composed of a total of 2000 (100 × 5 × 4) elements. A potential
pitfall exists when you are dealing with multidimensional arrays: Memory space can
be used up rapidly if several multidimensional arrays are declared in the same pro-
gram. You should be aware of the amount of memory space required by each large
array in a program.

 We can answer many different questions by processing the data in Fig. 7.22 .
We can determine the total number of students taking a particular course, the
number of juniors in course 2 at all campuses, and so on. The type of information
desired determines the order in which we must reference the array elements.

3

2

1

year 0

course 0

1

99

0 1 2 3 4campus

3

10

18

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2

Number of seniors (year 3)
taking course 0 at campus 2

enroll[0][2][3]

 FIGURE 7.22

 Three-Dimensional
Array enroll

 EXAMPLE 7.16 The program fragment that follows finds and displays the total number of students
in each course.

 /* Finds and displays number of students in each course */
 for (course = 0; course < MAXCRS; ++course) {
 crs_sum = 0;
 for (campus = 0; campus < 5; ++campus) {
 for (cls_rank = 0; cls_rank < 4; ++cls_rank) {
 crs_sum += enroll[course][campus][cls_rank];
 }
 }

418 Chapter 7 • Arrays

 printf("Number of students in course %d is %d\n", course,
 crs_sum);
 }

 Since we are displaying the number of students in each course, the loop control
variable for the outermost indexed loop is the subscript that denotes the course.

 The program fragment that follows displays the number of students at each campus.
This time the loop control variable for the outermost indexed loop is the subscript
that denotes the campus.

 /* Finds and displays number of students at each campus */
 for (campus = 0; campus < 5; ++campus) {
 campus_sum = 0;
 for (course = 0; course < MAXCRS; ++course) {
 for (cls_rank = 0; cls_rank < 4; ++cls_rank) {
 campus_sum += enroll[course][campus][cls_rank];
 }
 }
 printf("Number of students at campus %d is %d\n",
 campus, campus_sum);
 }

 EXERCISES FOR SECTION 7.8

 Self-Check

 1. Redefine MAXCRS as 5 , and write and test program segments that perform the
following operations:
 a. Enter the enrollment data.
 b. Find the number of juniors in all classes at all campuses. Students will be

counted once for each course in which they are enrolled.
 c. Write a function that has three input parameters: the enrollment array,

a class rank, and a course number. The function is to find the number
of students of the given rank who are enrolled in the given course on all
campuses. Try using your function to find the number of sophomores
(rank = 1) on all campuses who are enrolled in course 2 .

 d. Compute and display the number of upperclass students in all courses at each
campus, as well as the total number of upperclass students enrolled on all cam-
puses. (Upperclass students are juniors and seniors—ranks 2 and 3 .) Again,
students will be counted once for each course in which they are enrolled.

 Programming

 1. Write a function that displays the values on the diagonal of its 10 � 10 matrix
parameter.

4197.9 • Array Processing Illustrated

 7.9 Array Processing Illustrated
 The next problem illustrates two common ways of selecting array elements for
processing. Sometimes we need to manipulate many or all elements of a table in
some uniform manner (for example, display them all). In such situations, it makes
sense to process the table rows or columns in sequence (sequential access), starting
with the first and ending with the last.

 At other times, the order in which the array elements are accessed depends
either on the order of the problem data or the nature of the formula that is the basis
of the processing. In these situations, access to element i+1 of an array does not
necessarily occur right after access to element i . Thus, we are not using sequential
access, but rather random access .

 CASE STUDY Summary of Hospital Revenue

 PROBLEM

 The chief financial officer of a regional medical center needs software to track revenue
by unit and by quarter. The program will input all revenue transactions from a text file.
The data for each transaction will be the unit number (0—Emergency, 1—Medicine,
2—Oncology, 3—Orthopedics, 4—Psychiatry), the quarter in which the revenue was
credited, and the revenue amount. These transactions are in no particular order. After
scanning all revenue items, the program should display a table in the form shown in
 Fig. 7.23 , which shows quarterly totals by unit along with annual unit totals and quar-
terly hospital totals rounded to the nearest thousand dollars.

 ANALYSIS

 You will need separate arrays to hold the revenue table, the unit totals (row sums)
and the hospital quarterly totals (column sums).

 FIGURE 7.23

 REVENUE SUMMARY

 Unit Summer Fall Winter Spring TOTAL*

 Emerg 12701466.16 12663532.66 12673191.41 11965595.94 50004
 Medic 12437354.59 11983744.61 12022200.48 11067640.00 47511
 Oncol 16611825.25 16996019.70 15976592.83 15391817.42 64976
 Ortho 16028467.82 15635498.54 15675941.06 15175890.29 62516
 Psych 6589558.39 6356869.38 5860253.24 6196157.30 25003

 TOTALS* 64369 63636 62208 59797

 *in thousands of dollars

420 Chapter 7 • Arrays

 DATA REQUIREMENTS

 New Types
 quarter_t {fall, winter, spring, summer}
 unit_t {emerg, medic, oncol, ortho, psych}

 Problem Constants
 NUM_UNITS 5
 NUM_QUARTERS 4

 Problem Inputs
 Revenue transactions file
 double revenue[NUM_UNITS][NUM_QUARTERS] /* revenue data array */

 Problem Outputs

 double unit_totals[NUM_UNITS]; /* Totals for
 each row of table */
 double quarter_totals[NUM_QUARTERS]; /* Totals for
 each column */

 DESIGN

 INITIAL ALGORITHM

 1. Scan revenue data, posting by unit and quarter, and returning a value to show
success or failure of the data scan.

 2. If the data scan proceeded without error:
 3. Compute unit totals (row sums).
 4. Compute quarterly totals (column sums).
 5. Display the revenue table along with the row and column sums.

 IMPLEMENTATION

 Coding Function main
 We will call functions for steps 1, 3, 4, and 5. After introducing a program variable
 status to record the success or failure of the data scan, we can code function main
directly from our initial algorithm pseudocode. Figure 7.24 shows the main function
along with the necessary preprocessor directives and type definitions.

4217.9 • Array Processing Illustrated

 FIGURE 7.24 Hospital Revenue Summary Main Function

 1. /*
 2. * Scans revenue figures for one year and stores them in a table organized
 3. * by unit and quarter. Displays the table and the annual totals for each
 4. * unit and the revenue totals for each quarter
 5. */
 6.
 7. #include <stdio.h>
 8.
 9. #define REVENUE_FILE "revenue.txt" /* name of revenue data file */
 10. #define NUM_UNITS 5
 11. #define NUM_QUARTERS 4
 12.
 13. typedef enum
 14. {summer, fall, winter, spring}
 15. quarter_t;
 16.
 17. typedef enum
 18. {emerg, medic, oncol, ortho, psych}
 19. unit_t;
 20.
 21. int scan_table(double revenue[][NUM_QUARTERS], int num_rows);
 22. void sum_rows(double row_sum[], double revenue[][NUM_QUARTERS], int num_rows);
 23. void sum_columns(double col_sum[], double revenue[][NUM_QUARTERS], int num_rows);
 24. void display_table(double revenue[][NUM_QUARTERS], const double unit_totals[],
 25. const double quarter_totals[], int num_rows);
 26. /* Insert function prototypes for any helper functions. */
 27.
 28. int
 29. main(void)
 30. {
 31. double revenue[NUM_UNITS][NUM_QUARTERS]; /* table of revenue */
 32. double unit_totals[NUM_UNITS]; /* row totals */
 33. double quarter_totals[NUM_QUARTERS]; /* column totals */
 34. int status;
 35.
 36. status = scan_table(revenue, NUM_UNITS);
 37. if (status == 1) {
 38. sum_rows(unit_totals, revenue, NUM_UNITS);
 39. sum_columns(quarter_totals, revenue, NUM_UNITS);
 40. display_table(revenue, unit_totals, quarter_totals,
 41. NUM_UNITS);
 42. }
 43. return (0);
 44. }

422 Chapter 7 • Arrays

 Coding Function scan_table
 Function scan_table (Fig. 7.25) scans in the data from the file revenue.txt one line
at a time until end of file or an error is encountered. The unit and quarter values are
input as int data, since types unit_t and quarter_t are strictly for the internal use of
the program. Because C represents enumeration types as integers, an array with enu-
meration type subscripts can be accessed using either an enumeration type subscript
or the associated integers. Within the loop body, scan_table checks the range of both
the unit and the quarter of the current transaction. If the data are valid, the statement

 revenue[trans_unit][quarter] += trans_revenue;

 adds the current revenue amount to the total being accumulated for the unit indi-
cated by trans_unit (row subscript) and quarter (column subscript). Because
the data are in no particular order, the elements of array revenue are accessed
randomly. Before beginning the data scan, the function must initialize all the ele-
ments of the revenue array to zero. This is the purpose of the call to initialize .
The implementation of function initialize is also shown in Fig. 7.25 . Because
 initialize must change the value of every element of revenue, it accesses the
elements sequentially, using nested for loops. The outer for loop provides row
subscripts of type unit_t running from emerg to psych , and the inner loop pro-
vides column subscripts of type quarter_t running from summer through spring .

 FIGURE 7.25 Function scan_table and Helper Function initialize

 1. /*
 2. * Scans the revenue data from REVENUE_FILE and computes and stores the
 3. * revenue results in the revenue table. Flags out-of-range data and data
 4. * format errors.
 5. * Post: Each entry of revenue represents the revenue total for a
 6. * particular unit and quarter.
 7. * Returns 1 for successful table scan, 0 for error in scan.
 8. * Calls: initialize to initialize table to all zeros
 9. */
 10. int
 11. scan_table(double revenue[][NUM_QUARTERS], /* output */
 12. int num_rows) /* input */
 13. {
 14. double trans_amt; /* transaction amount */
 15. int trans_unit; /* unit number */
 16. int quarter; /* revenue quarter */
 17. FILE *revenue_filep; /* file pointer to revenue file */
 18. int valid_table = 1;/* data valid so far */

(continued)

4237.9 • Array Processing Illustrated

(continued)

 19. int status; /* input status */
 20. char ch; /* one character in bad line */
 21.
 22. /* Initialize table to all zeros */
 23. initialize(revenue, num_rows, 0.0);
 24.
 25. /* Scan and store the valid revenue data */
 26. revenue_filep = fopen(REVENUE_FILE, "r");
 27. for (status = fscanf(revenue_filep, "%d%d%lf", &trans_unit,
 28. &quarter, &trans_amt);
 29. status == 3 && valid_table;
 30. status = fscanf(revenue_filep, "%d%d%lf", &trans_unit,
 31. &quarter, &trans_amt)) {
 32. if (summer <= quarter && quarter <= spring &&
 33. trans_unit >= 0 && trans_unit < num_rows) {
 34. revenue[trans_unit][quarter] += trans_amt;
 35. } else {
 36. printf("Invalid unit or quarter -- \n");
 37. printf(" unit is ");
 38. display_unit(trans_unit);
 39. printf(", quarter is ");
 40. display_quarter(quarter);
 41. printf("\n\n");
 42. valid_table = 0;
 43. }
 44. }
 45.
 46. if (!valid_table) { /* error already processed */
 47. status = 0;
 48. } else if (status == EOF) { /* end of data without error */
 49. status = 1;
 50. } else { /* data format error */
 51. printf("Error in revenue data format. Revise data.\n");
 52. printf("ERROR HERE >>> ");
 53. for (status = fscanf(revenue_filep, "%c", &ch);
 54. status == 1 && ch != '\n';
 55. status = fscanf(revenue_filep, "%c", &ch))
 56. printf("%c", ch);
 57. printf(" <<<\n");
 58. status = 0;
 59. }

 FIGURE 7.25 (continued)

424 Chapter 7 • Arrays

 60. return (status);
 61. }
 62. /*
 63. * Stores value in all elements of revenue.
 64. * Pre: value is defined and num_rows is the number of rows in
 65. * revenue.
 66. * Post: All elements of revenue have the desired value.
 67. */
 68. void
 69. initialize(double revenue[][NUM_QUARTERS], /* output */
 70. int num_rows, /* input */
 71. double value) /* input */
 72. {
 73. int row;
 74. quarter_t quarter;
 75.
 76. for (row = 0; row < num_rows; ++row)
 77. for (quarter = summer; quarter <= spring; ++quarter)
 78. revenue[row][quarter] = value;
 79. }

 FIGURE 7.25 (continued)

 Coding Functions sum_rows and sum_columns
 The design and implementation of functions sum_rows and sum_columns are left
as an exercise for you. Function sum_rows will need nested loops similar to those
in function initialize . Full execution of the inner loop should add up the values
in one row of sales . After exiting the inner loop, the accumulated sum should
be stored in the element of row_sum corresponding to the current row. Function
 sum_columns will need a revision of the nested loops that allows the column sub-
script to remain constant while the row subscript varies.

 Coding Function display_table
 You should display the information in a two-dimensional array in the same way that
humans visualize it: as a table whose rows correspond to the array’s first dimension
and whose columns correspond to the array’s second dimension. To accomplish this,
access and display the array elements row by row.

 Function display_table (Fig. 7.26) displays the data in the revenue table
in the form shown in Fig. 7.23 . Since the display represents thousands of dollars,
the values must be divided by 1,000 and rounded, the purpose of helper function
 whole_thousands , whose code is also shown in Fig. 7.26 . In addition to the array

4257.9 • Array Processing Illustrated

data (first parameter), the function also displays in whole thousands the unit totals
(second parameter) and the quarterly totals (third parameter). The column headings
are displayed by repeated calls to function display_quarter , whose code is also
part of Fig. 7.26 . The row labels require a similar function display_unit , which is
left as an exercise for you.

(continued)

 FIGURE 7.26 Function display_table and Helper Functions display_quarter and whole_thousands

 1. /*
 2. * Displays the revenue table data (rounded to whole thousands) in table
 3. * form along with the row and column sums (also rounded).
 4. * Pre: revenue, unit_totals, quarter_totals, and num_rows are defined.
 5. * Post: Values stored in the three arrays are displayed rounded to
 6. * whole thousands.
 7. */
 8. void
 9. display_table(double revenue[][NUM_QUARTERS], /* input */
 10. const double unit_totals[], /* input */
 11. const double quarter_totals[], /* input */
 12. int num_rows) /* input */
 13. {
 14. unit_t unit;
 15. quarter_t quarter;
 16.
 17. /* Display heading */
 18. printf("%34cREVENUE SUMMARY\n%34c---------------\n\n", ' ', ' ');
 19. printf("%4s%11c", "Unit", ' ');
 20. for (quarter = summer; quarter <= spring; ++quarter){
 21. display_quarter(quarter);
 22. printf("%8c", ' ');
 23. }
 24. printf("TOTAL*\n");
 25. printf("--");
 26. printf("--\n");
 27.
 28. /* Display table */
 29. for (unit = emerg; unit <= psych; ++unit) {
 30. display_unit(unit);
 31. printf(" ");

426 Chapter 7 • Arrays

 FIGURE 7.26 (continued)

 32. for (quarter = summer; quarter <= spring; ++quarter)
 33. printf("%14.2f", revenue[unit][quarter]);
 34. printf("%13d\n", whole_thousands(unit_totals[unit]));
 35. }
 36. printf("--");
 37. printf("--\n");
 38. printf("TOTALS*");
 39. for (quarter = summer; quarter <= spring; ++quarter)
 40. printf("%14d", whole_thousands(quarter_totals[quarter]));
 41. printf("\n\n*in thousands of dollars\n");
 42. }
 43. /*
 44. * Display an enumeration constant of type quarter_t
 45. */
 46. void
 47. display_quarter(quarter_t quarter)
 48. {
 49. switch (quarter) {
 50. case summer: printf("Summer");
 51. break;
 52.
 53. case fall: printf("Fall ");
 54. break;
 55.
 56. case winter: printf("Winter");
 57. break;
 58.
 59. case spring: printf("Spring");
 60. break;
 61.
 62. default: printf("Invalid quarter %d", quarter);
 63. }
 64. }
 65.
 66. /*
 67. * Return how many thousands are in number
 68. */
 69. int whole_thousands(double number)
 70. {
 71. return (int)((number + 500)/1000.0);
 72. }

4277.9 • Array Processing Illustrated

 TESTING

 To test the revenue summary program, create four sample data files. In one, place
only correct data. In the second, include a unit number >= NUM_UNITS . In the third,
include a quarter number >= NUM_QUARTERS . In the fourth file, place a data format
error such as a letter where a number belongs. Check that your correct data file
produces reasonable results: The sum of the unit totals should match the sum of
the quarterly totals. Verify that the program produces the correct error message for
each erroneous file.

 EXERCISES FOR SECTION 7.9

 Self-Check

 1. For each fragment, which array locations are displayed and in what order?
 a. for (next_quarter = summer;

 next_quarter <= spring;
 ++next_quarter)
 printf("%14.2f", revenue[oncol][next_quarter]);

 b. for (next_unit = emerg;
 next_unit <= psych;
 ++next_unit)
 printf("%14.2f", revenue[next_unit][spring]);

 c. for (next_quarter = fall;
 next_quarter < spring;
 ++next_quarter) {
 for (next_unit = emerg;
 next_unit <= psych;
 ++next_unit)
 printf("%14.2f", revenue[next_unit][next_quarter]);
 printf("\n");
 }

 Programming

 1. Write functions sum_rows and sum_columns called from function main
in Fig. 7.24 . Write function display_unit called from function
 display_table in Fig. 7.26 .

 2. Write a function that determines who has won a game of tic-tac-toe. The func-
tion should first check all rows to see whether one player occupies all the cells

428 Chapter 7 • Arrays

in one row, next check all columns, and then check the two diagonals. The
function should return a value from the enumerated type {no_winner,
x_wins, o_wins} .

 7.10 Graphics Programs with Arrays (Optional)
 In this section, we use arrays in graphics programs to draw a polygon and also to
draw a grid or a two-dimensional table. We begin by drawing a polygon.

 Drawing a Polygon

 Rectangles and squares have four sides, but there are times when you want to
draw a triangle (three sides) or a closed figure that has more than four sides. The
 graphics.h library has two functions that do this: drawpoly and fillpoly . Both
functions require an array argument that stores the points to be displayed. The
coordinates of each point are stored in consecutive elements of the array. For
 drawpoly , the polygon must be closed; that is, the first point should be repeated
as the last point.

 EXAMPLE 7.17 In Figure 3.30 , a house was drawn as a rectangle on top of a square. We can draw
the outline of a house as a polygon using the following statements.

 /* (x, y) */
 int poly[12] = { 100, 200, /* top-left corner */
 300, 100, /* roof peak */
 500, 200, /* top-right corner */
 500, 400, /* bottom-right corner */
 100, 400, /* bottom-left corner */
 100, 200 /* top-left corner */
 };
 drawpoly(6, poly);

 The first argument for drawpoly is the number of points to draw. The array size is
12 because there are two elements for each point. For example, poly[0] , poly[1]
are the x, y coordinates for the first point.

 The program in Fig. 7.27 draws a painted house by calling fillpoly instead
of drawpoly . Each time the user presses a key, the fill pattern and color changes.
 Figure 7.28 shows one example.

 The sentinel-controlled while loop repeats until the user types in q or Q. The
pattern and color are randomly selected. We explain the role of functions rand and
srand next.

4297.10 • Graphics Programs with Arrays (Optional)

 FIGURE 7.27 Drawing and filling a polygon

 1. /* Draw and fill a polygon that is shaped like a house.
 2. * The color and fill pattern are selected randomly.
 3. */
 4. #include <graphics.h>
 5. #include <stdlib.h>
 6. #include <time.h>
 7.
 8. int main()
 9. {
 10. /* (x , y) */
 11. int poly[12] = { 100, 200, /* top-left corner */
 12. 300, 100, /* roof peak */
 13. 500, 200, /* top-right corner */
 14. 500, 400, /* bottom-right corner */
 15. 100, 400, /* bottom-left corner */
 16. 100, 200, /* top-left corner */
 17. };
 18. char ch;
 19. int color; /* color of house */
 20. int fill; /* fill pattern of house */
 21. char message[] =
 22. "Press a key to repaint house - press Q to quit";
 23. initwindow(640, 500, "House");
 24. outtextxy(100, 450, message);
 25.
 26. srand(time(NULL));
 27. ch = '*';
 28. while (!(ch == 'q' || ch == 'Q')) {
 29. color = rand() % 16;
 30. fill = rand() % 12;
 31. setfillstyle(fill, color);
 32. fillpoly(6, poly);
 33. ch = getch();
 34. }
 35.
 36. closegraph(); /* close the window */
 37. }

430 Chapter 7 • Arrays

 Program Style Using an Array of Characters to Store a Prompt

 Method outtextxy in the graphics library expects a character array as its third
argument. That is the reason you may see the warning message: deprecated
conversion from string constant to char* when you use a literal string
as the third argument. You can avoid this warning if you store the literal string
in an array of characters and then pass the name of this array as an argument to
 outtextxy .

 char message[] =
 "Press a key to repaint house - press Q to quit");
 outtextxy (100, 450, message);

 Generating Random Numbers

 Library stdlib provides a function rand that generates a pseudo-random integer.
(They are called pseudo-random numbers because the sequence of numbers gener-
ated will eventually repeat, but they are certainly random enough for our purposes.)

 FIGURE 7.28

 A Painted House

4317.10 • Graphics Programs with Arrays (Optional)

In the statement below, function rand generates a random integer and the % opera-
tor yields a random value between 0 and 15.

 color = rand() % 16;

 Seeding the Random Number Generator

 The sequence of numbers that is generated depends on an integer value that seeds
the random number generator, or provides it with a starting value for the computa-
tion of random numbers. If no starting value is provided by the programmer, a con-
stant default value is used, so the sequence of numbers will be the same each time
the program runs. To seed the random number generator with a different starting
value each time, your program should execute the statement

 srand(time(NULL));

 before the first call to function rand where function time (defined in library time.h)
returns an integer value representing the system clock. (The predefined value NULL is
discussed in Section 13.2.) Because the system clock is always changing, the random
number generator will use a different starting value each time the program runs,
thereby generating a different sequence of random numbers. In Fig. 7.27 , the call to
 srand should be placed before the while loop in the main function.

 Drawing a Grid

 In game programs, we often need to draw a two-dimensional grid pattern to show
the current state of the game and record the position of a new move. Figure 7.29
is a program that draws the grid shown in Fig. 7.30 . The program constants can
be changed to allow different size grids and cells. In the main function, the two-
dimensional array gridArray stores the color values to be displayed in each cell,
starting with row 0 which happens to have all black cells (color value is 0). This array
is passed to function drawGrid .

 The body of function drawGrid contains a pair of nested loops to access each
element of gridArray . For element gridArray [r] [c], the statements

 color = gridArray[r][c] % 16; /* cell color */
 setfillstyle(SOLID_FILL, color);
 bar(c*CELL_SIZE, r*CELL_SIZE, /* top-left corner */
 c*CELL_SIZE + CELL_SIZE, /* bottom-right */
 r*CELL_SIZE + CELL_SIZE); /* corner */

 draws a bar (filled rectangle) at row r , column c of the array. The x-coordinates of
the pixels in the rectangle’s sides depend on the value of c —the larger c is, the fur-
ther to the right the rectangle is positioned. Adding CELL_SIZE to the x-coordinate
of the left side gives the x-coordinate of the rectangle’s right side. The y-coordinate
values for the rectangle depend on the value of r and are calculated in a similar

 seed seed for a
random number
generator. An initial
value used in the
computation of the first
random number.

432 Chapter 7 • Arrays

 FIGURE 7.29 Program to Draw a Two-Dimensional Grid

 1. /* Draws a grid and displays the row, column
 2. * of a selected cell
 3. */
 4. #include <graphics.h>
 5. #include <stdio.h>
 6.
 7. #define NUM_ROWS 5
 8. #define NUM_COLS 6
 9. #define CELL_SIZE 50 /* dimensions of a square cell */
 10.
 11. void drawGrid(int gridArray[][NUM_COLS]);
 12. void reportResult(int *row, int *column, int *color);
 13. void recolor(int r, int c, int color, int pattern);
 14.
 15. int main(void)
 16. {
 17. int gridArray[NUM_ROWS][NUM_COLS] =
 18. { {0, 0, 0, 0, 0, 0},
 19. {2, 4, 2, 4, 2, 4},
 20. {1, 2, 3, 4, 5, 6},
 21. {2, 3, 4, 15, 6, 7},
 22. {5, 5, 5, 5, 5, 5}
 23. };
 24.
 25. int width = CELL_SIZE * NUM_COLS;
 26. int height = CELL_SIZE * NUM_ROWS + 100;
 27. int row, column; /* row, column of cell clicked */
 28. int color; /* color of cell clicked */
 29. char message[100] = "Select a cell by clicking it";
 30.
 31. initwindow(width, height, "Grid");
 32. outtextxy(100, height - 50, message);
 33.
 34. drawGrid(gridArray); /* Draw and color the grid */
 35.
 36. /* Get position and color of cell clicked */
 37. reportResult(&row, &column, &color);
 38. printf("You clicked the cell in row %d, column %d\n",
 39. (row + 1), (column + 1));
 40.

(continued)

4337.10 • Graphics Programs with Arrays (Optional)

(continued)

 FIGURE 7.29 (continued)

 41. /* Draw hatch pattern in cell clicked */
 42. recolor(row, column, color, HATCH_FILL);
 43.
 44. getch();
 45. closegraph();
 46. }
 47.
 48.
 49. /* Draw the grid corresponding to the color values in gridArray
 50. * Pre: Array gridArray is defined
 51. * Post: A two-dimensional grid is drawn with the same number
 52. * rows and columns as gridArray. The cell at row r,
 53. * column c has the color value of gridArray[r][c].
 54. */
 55. void drawGrid(int gridArray[][NUM_COLS])
 56. {
 57. int color; /* color of cell */
 58. int r, c; /* row and column subscripts */
 59. /* Draw a grid cell for each array element */
 60. for (r = 0; r < NUM_ROWS; ++r) {
 61. for (c = 0; c < NUM_COLS; ++c) {
 62. /* Fill the cell */
 63. color = gridArray[r][c] % 16; /* cell color */
 64. setfillstyle(SOLID_FILL, color);
 65. bar(c*CELL_SIZE, r*CELL_SIZE, /* top-left corner */
 66. c*CELL_SIZE + CELL_SIZE, /* bottom-right */
 67. r*CELL_SIZE + CELL_SIZE); /* corner */
 68.
 69. /* Draw cell border */
 70. setcolor(WHITE); /* border color */
 71. rectangle(c*CELL_SIZE, r*CELL_SIZE, /* top-left corner */
 72. c*CELL_SIZE + CELL_SIZE, /* bottom-right */
 73. r*CELL_SIZE + CELL_SIZE); /* corner */
 74. }
 75. }
 76. }
 77.
 78.
 79. /* Report the results of a mouse click by the user.
 80. * Pre: The grid is displayed

434 Chapter 7 • Arrays

 81. * Post: The row, column, and color of the cell
 82. * clicked are returned through row and column.
 83. */
 84. void reportResult(int *row, int *column, int *color)
 85. {
 86. int x, y; /* (x, y) position of mouse click */
 87.
 88. clearmouseclick(WM_LBUTTONDOWN);
 89. while (!ismouseclick(WM_LBUTTONDOWN)) {
 90. delay(100);
 91. }
 92. getmouseclick(WM_LBUTTONDOWN, x, y);
 93.
 94. /* Convert x (y) pixel position to row (column) */
 95. *row = y / CELL_SIZE;
 96. *column = x / CELL_SIZE;
 97. *color = getpixel(x, y); /* get pixel color */
 98. }
 99.
 100. /* Recolors a selected grid cell with a new color and pattern.
 101. * Pre: The cell position, color,
 102. * and pattern are defined.
 103. * Post: The selected cell is filled with pattern
 104. */
 105. void recolor(int r, int c, int color, int pattern)
 106. {
 107. setfillstyle(pattern, color);
 108. bar(c*CELL_SIZE, r*CELL_SIZE, /* top-left corner */
 109. c*CELL_SIZE + CELL_SIZE, /* bottom-right */
 110. r*CELL_SIZE + CELL_SIZE); /* corner */
 111. }

 FIGURE 7.29 (continued)

manner. The rectangle has the color value stored in grid [r] [c]. Next, a white
rectangular border is drawn around each bar.

 After the grid is drawn, the main function prompts the user to select a cell
by clicking in it. Method reportResult determines the cell that was clicked and
returns its coordinates. The first statement below

 clearmouseclick(WM_LBUTTONDOWN);
 while (!ismouseclick(WM_LBUTTONDOWN)) {
 delay(100);
 }

4357.10 • Graphics Programs with Arrays (Optional)

 FIGURE 7.30

 Two-Dimensional
Grid

 clears any left mouse button clicks that may have occurred in the past. The
 while loop executes until the user clicks the left mouse button. The function call
 delay(100) causes the program to pause for 100 milliseconds. Passing the prede-
fined graphics constant WM_LBUTTONDOWN to the functions that process mouse clicks
causes these functions to respond to the left mouse button.

 After the mouse click occurs, the statement

 getmouseclick(WM_LBUTTONDOWN, x, y);

 stores in (x , y) the coordinates of the pixel clicked. The statements

 *row = y / CELL_SIZE;
 *column = x / CELL_SIZE;

 convert the pixel coordinates to a row and column value which are returned to the
main function. The graphics function getpixel returns an integer representing
the color value of the cell that was selected.

 color = getpixel (x, y); / get pixel color */

 The values of color , row , and column are outputs of reportResult .
 After the return from reportResult , the main function adds 1 to row and

 column before displaying the cell’s grid position because non-programmers tend to
think of the first row of a grid as row 1 and not row 0. The following line appears in
the console window:

You clicked the cell in row 3, column 3

436 Chapter 7 • Arrays

Next, the main function calls function recolor to draw a HATCH_FILL pattern
of the same color in the cell that was clicked. Fig. 7.30 shows the grid after the user
clicks the cell in row 3, column 3.

 Table 7.4 shows the new functions.

 EXERCISES FOR SECTION 7.10

 Self-Check

 1. Sketch the polygon corresponding to the following array.

 {100, 200, 300, 400, 200, 500, 50, 300, 250, 400, 100, 200}

 2. What changes would be needed to draw a grid with 10 rows and 20 columns
whose cells are twice as high as they are wide?

 Programming

 1. Draw a polygon that is a six-sided star.
 2. Draw a polygon that resembles the shape of a horse.

 TABLE 7.4 Functions in graphics Library

 Function Purpose

 drawpoly(int size, int
poly[])

 Draws a closed polygon with size vertices. poly

[0], poly[1] are (x, y) for the first point, poly[2] ,

 poly[3] are (x, y) for the second point, and so on.

The last pair of array elements, poly[size-2] and

 poly [size-1] , should be the same as poly[0]

and poly[1] .

 fillpoly(int size, int
poly[])

 Fills the specified polygon with color and fill style as

specified in the previous call to setfillstyle .

 int getpixel(int x, int y) Returns the color value at pixel (x, y).

 clearmouseclick(int) Clears any pending events for the argument.

 getmouseclick(int, int&,
int&)

 Returns the (x, y) position of the mouse through its sec-
ond and third arguments when the event specified by its
first argument occurs.

 ismouseclick(int) Returns true if the event specified by its first argument
occurs; otherwise, returns false.

 int rand() Returns a random integer.

 srand(time(NULL)) Seeds the random number generator with a value based
on the system clock.

 delay(int) Causes the program to pause for the number of millisec-
onds specified by the argument.

4377.11 • Common Programming Errors

 3. Write and test the program for Self-Check Exercise 2.
 4. Modify function drawGrid to display a tic-tac-toc board. Use the color value

 RED to represent moves for player X, GREEN for player O, and the background
color for unfilled cells. The moves for player X are in the middle of the first
row, in the first and third cells in the second row, and in the third cell in the
third row. Player O should be in the first cell in the first row, the middle cell
in the second row and in the first cell in the third row.

 5. In Figure 7.29 , the main function specifies the array element values for
 gridArray when it is declared. Change the declaration so that the array
values are not specified. Write and call a function loadGrid that loads the
array by reading its element values from a data stream.

 7.11 Common Programming Errors
 The most common error in using arrays is a subscript-range error. An out-of-range
reference occurs when the subscript value used is outside the range specified by the
array declaration. For the array celsius ,

 int celsius[100];

 a subscript-range error occurs when celsius is used with a subscript that has a
value less than 0 or greater than 99 . If the value of i is 150 , a reference to the sub-
scripted variable celsius[i] may cause an error message such as

 access violation at line no. 28

 In many situations, however, no run-time error message will be produced—the program
will simply produce incorrect results. In ANSI C, the prevention of subscript-range
errors is entirely the responsibility of the programmer. Subscript-range errors are not
syntax errors; consequently, they will not be detected until program execution, and often
not even then. They are most often caused by an incorrect subscript expression, a loop
counter error, or a nonterminating loop. Before spending considerable time in debug-
ging, you should check all suspect subscript calculations carefully for out-of-range errors.
View the successive values of a subscripting variable in a debugger program, or insert
diagnostic output statements that print subscript values that are of concern.

 If a subscript-range error occurs inside an indexed loop, verify that the sub-
script is in range for both the initial and the final values of the loop control variable.
If these values are in range, it is likely that all other subscript references in the loop
are in range as well.

 If a subscript-range error occurs in a loop controlled by a variable other
than the array subscript, check that the loop control variable is being updated as
required. If it is not, the loop may be repeated more often than expected, causing
the subscript-range error. This error could happen if the control variable update
step was inside a condition or was inadvertently omitted.

438 Chapter 7 • Arrays

 When using arrays as arguments to functions, be careful not to apply the address-
of operator to the array name even if the array is an output argument. However, do
remember to use the & on an array element that is being passed as an output argument.

 Be sure to use the correct forms for declaring array input and output parameters
in function prototypes. Remember when reading C code that a parameter declared as

 int *z

 could represent a single integer output parameter or an integer array parameter.
Comment your own prototypes carefully and use the alternate declaration form

 int z[]

 for array parameters to assist readers of your code.
 If you are working on a computer system with very limited memory, you may

find that some correct C programs generate run-time error messages indicating an
access violation. The use of arrays can cause a program to require large amounts of
memory for function data areas. The portion of memory set aside for function data
areas is called the stack . You may need to tell your operating system that an increased
stack size is necessary in order to be able to run programs using large arrays.

 When you define enumerated types, remember that only identifiers can appear
in the list of values (enumeration constants) for the type. Be careful not to reuse one
of these identifiers in another type or as a variable name in a function that needs
your type definition. Keep in mind that there is no built-in facility for input/output
of the identifiers that are the valid values of an enumerated type. You must either
scan and display the underlying integer representation or write your own input/
output functions. Remember that C does not verify the validity of integers stored in
enumerated type variables.

 ■ Chapter Review

 1. A data structure is a grouping of related data items in memory.
 2. An array is a data structure used to store a collection of data items of the same

type.
 3. An individual array element is referenced by placing immediately after the

array name a square-bracketed subscript for each dimension.
 4. The initial element of a one-dimensional array x is referenced as x[0] . If x has

 n elements, the final element is referenced as x[n-1] .
 5. An indexed for loop whose counter runs from 0 to one less than an array’s

size enables us to reference all the elements of a one-dimensional array in
sequence by using the loop counter as the array subscript. Nested for loops
provide sequential access to multidimensional array elements.

 6. For an array declared as a local variable, space is allocated in the function data
area for all the array elements.

439Chapter Review

 7. For an array declared as a function parameter, space is allocated in the function
data area for only the address of the initial element of the actual argument passed.

 8. The name of an array with no subscript always refers to the address of the ini-
tial array element.

 9. A function that creates an array result should require the calling module to
pass an output argument array in which to store the result.

 10. Defining an enumerated type requires listing the identifiers that are the values
of the type. Each value is represented by an integer. Using enumerated types
makes programs more readable because the type’s values are meaningful for a
particular application.

 NEW C CONSTRUCTS

 Example Effect

 Array Operations

 Local Variables

 double data[30];
 int matrix[2][3];

 Allocates storage for 30 type double items in array data

(data[0] , data[1] , ... , data[29]), and six type int

items (2 rows of 3 columns) in two-dimensional array matrix

(matrix[0][0] , matrix[0][1] , matrix[0][2] ,

 matrix[1][0] , matrix[1][1] , matrix[1][2]) .

 Initialization

 char vowels[5] =
 {'A', 'E', 'I', 'O', 'U'};

 Allocates storage for five type char items in array

 vowels and initializes the array contents: vowels[0]='A' ,

 vowels[1]='E' , … vowels[4]='U' .

 int id[2][2] =
 { {1, 0}, {0, 1} };

 Allocates four locations for the 2 × 2 matrix id , initializing the

storage so id[0][0]=1 , id[0][1]=0 , id[1][0]=0 ,

and id[1][1]=1 .

 Input Parameter

 void
 print_alpha(const char alpha[],
 const int m[],
 int a_size,
 int m_size)
 or
 . . . (const char *alpha, . . .

 States that function print_alpha uses arrays alpha and

 m as input parameters only— print_alpha will not change
their contents.

(continued)

440 Chapter 7 • Arrays

 ■ Quick-Check Exercises

 1. What is a data structure?

 2. Of what data type are array subscripting expressions?

 3. Can two elements of the same array be of different data types?

 4. If an array is declared to have ten elements, must the program use all ten?

 5. The two methods of array access are called _____________ and
_____________.

 Example Effect

 Output or Input/Output Parameter

 void
 fill(int nums[], int n)
 or
 fill(int *nums, int n)

 States that function fill can both look at and modify the

actual argument array passed to nums .

 Array References

 if (data[0] < 39.8)

 for (i = 0; i < 30; ++i)
 data[i] /= 2.0;

 for (i = 0; i < 2; ++i) {
 for (j = 0; j < 3; ++j)
 printf("%6d", matrix[i] [j]);
 printf("\n");
 }

 Compares value of initial element of array data to 39.8 .

 Divides each element of array data by 2, changing the array
contents.

 Displays contents of matrix in 2 rows with 3 columns.

 Enumerated Type Definition

 typedef enum
 {keyboard, mouse, dot_matrix,
 laser, scanner, synthesizer}
 periph_t;

 An enumerated type periph_t is defined with values key

 board, mouse, dot_matrix, laser, scanner ,

and synthesizer . Values will be represented by integers 0

(keyboard) through 5 (synthesizer).

 Enumeration Variable Declaration and Assignment

 periph_t peripheral;
 peripheral = scanner;

 Variable peripheral can represent any of the periph_t

enumeration constants. Integer 4 is stored in peripheral ,

representing value scanner .

NEW C CONSTRUCTS (continued)

441Quick-Check Exercises

 6. An _____________ loop allows us to access easily the elements of an array in
_____________ order.

 7. What is the difference in the use of array b that is implied by these two proto-
types?

 int fun_one(int b[], n) ;
 int fun_two(const int b[], n);

 8. Look again at the prototypes in Exercise 7. Why does neither array declaration
indicate a size?

 9. Let nums be an array of 12 type int locations. Describe how the following
loop works.

 i = 0;
 for (status = scanf("%d", &n);
 status == 1 && i < 12;
 status = scanf("%d", &n))
 nums[i++] = n;

 10. How many elements does array m have? Show how you would reference each
one.

 double m[2][4];

 11. If x is an array declared

 int x[10];

 and you see a function call such as

 some_fun(x, n);

 how can you tell whether x is an input or an output argument?

 12. Consider this enumerated type definition:

 typedef enum
 {frosh, soph, jr, sr}
 class_t;

 What is the value of each of the following?

 a. (int)sr
 b. (class_t)0
 c. (class_t)((int)soph + 1)

 What is displayed by this code fragment?

 for (class = frosh; class < sr; ++class)
 printf("%d ", class);
 printf("\n");

442 Chapter 7 • Arrays

 ■ Answers to Quick-Check Exercises

 1. A data structure is a grouping of related values in main memory.
 2. type int
 3. no
 4. no
 5. sequential, random
 6. indexed, sequential
 7. In fun_one , b can be used as an output parameter or as an input/output

parameter. In fun_two , b is strictly an input parameter array.
 8. The size of b is not needed because the function does not allocate storage for

copying parameter arrays. Only the starting address of the actual argument
array will be stored in the formal parameter.

 9. As long as scanf continues to return a value of 1 meaning a valid integer has
been obtained for n , unless the subscript i is ≥12 , the loop body will store the
input in the next element of nums and will increment the loop counter. The
loop exits on EOF (scanf returns a negative value), on invalid data (scanf
returns zero), or on i no longer being less than 12 .

 10. m has eight elements: m[0][0] , m[0][1] , m[0][2] , m[0][3] , m[1][0] ,
 m[1][1] , m[1][2] , m[1][3] .

 11. You can’t tell by looking at the function call, nor can you rely on the prototype
of some_fun to tell you either unless the corresponding formal parameter dec-
laration has a const qualifier. If it does, x must be an input argument.

 12. a. 3
 b. frosh
 c. jr

 0 1 2 3

 ■ Review Questions

 1. Identify an error in the following C statements:

 int x[8], i;
 for (i = 0; i <= 8; ++i)
 x[i] = i;

 Will the error be detected? If so, when?
 2. Declare an array of type double values called exper that can be referenced by

using any day of the week as a subscript, where 0 represents Sunday, 1 repre-
sents Monday, and so on.

443Programming Projects

 3. The statement marked /* this one */ in the following code is valid. True
or false?

 int counts[10], i;
 double x[5];
 printf("Enter an integer between 0 and 4> ");
 i = 0;
 scanf("%d", &counts[i]);
 x[counts[i]] = 8.384; /* this one */

 4. What are the two common ways of selecting array elements for processing?
 5. Write a C program segment to display the index of the smallest and the larg-

est numbers in an array x of 20 integers. Assume array x already has values
assigned to each element.

 6. Write a C function called reverse that takes an array named x as an input
parameter and an array named y as an output parameter. A third function
parameter is n , the number of values in x . The function should copy the inte-
gers in x into y but in reverse order (i.e., y[0] gets x[n - 1], . . . y[n - 1]
gets x[0]).

 7. Write a program segment to display the sum of the values in each row of a 5 × 3
type double array named table . How many row sums will be displayed? How
many elements are included in each sum?

 8. Answer Review Question 7 for the column sums.
 9. Write a function for displaying (as a string) a value of enumerated type

 season_t :

 typedef enum
 {winter, spring, summer, fall}
 season_t;

 ■ Programming Projects

 1. Write a program to grade an n -question multiple-choice exam (for n between
5 and 50) and provide feedback about the most frequently missed questions.
Your program will take data from the file examdat.txt . The first line of the
file contains the number of questions on the exam followed by a space and
then an n -character string of the correct answers. Write a function fgetAn-
swers that inputs the answers from an open input file. Each of the lines that
follow contain an integer student ID followed by a space and then that stu-
dent’s answers. Function fgetAnswers can also be called to input a student's
answers. Your program is to produce an output file, report.txt , containing
the answer key, each student’s ID and each student’s score as a percentage,

444 Chapter 7 • Arrays

and then information about how many students missed each question. Here are
short sample input and output files.

 examdat.txt
 5 dbbac
 111 dabac
 102 dcbdc
 251 dbbac

 report.txt
 Exam Report
 Question 1 2 3 4 5
 Answer d b b a c

 ID Score(%)
 111 80
 102 60
 251 100

 Question 1 2 3 4 5
 Missed by 0 2 0 1 0

 2. If n points are connected to form a closed polygon as shown below, the area A
of the polygon can be computed as

A x x y yi i i i

i

n

= +() −()+ +
=

−

∑1

2 1 1
0

2

 Notice that although the illustrated polygon has only six distinct corners, n for
this polygon is 7 because the algorithm expects that the last point, (x 6 , y 6), will
be a repeat of the initial point, (x 0 , y 0).

(x0 ,y0) =
(x6,y6)

(x5,y5)

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

y

x

n = 7

445Programming Projects

 x y

 4 0

 4 7.5

 7 7.5

 7 3

 9 0

 7 0

 4 0

 Implement the following functions:

 get_corners —Takes as parameters an input file, arrays x and y , and the
arrays’ maximum size. Fills the arrays with data from the file (ignoring any
data that would overflow the arrays) and returns as the function value the
number of (x , y) coordinates stored in the arrays.

 output_corners —Takes as parameters an output file and two type double
arrays of the same size and their actual size, and outputs to the file the
contents of the two arrays in two columns.

 polygon_area —Takes as parameters two arrays representing the (x , y) coor-
dinates of the corners of a closed polygon and their actual size and returns
as the function value the area of the closed polygon.

 3. A point mass consists of a 3-D location and an associated mass, such as
 Location: (6, 0, �2) Mass: 3g

 In a system of point masses, let p 1 , p 2 ,… p n be the n 3-D points and m 1 , m 2 ,… m n
be their associated masses. If m is the sum of the masses, the center of gravity
 C is calculated as

 C =
1
m

(m1p1 + m2p2 + g + mnpn)

 Write a program that repeatedly inputs point-mass system data sets from an
input file until an input operation fails. For each data set, display the location
matrix, the mass vector, n , and the center of gravity.

 Each data set includes a location matrix (a matrix in which each row is a
point), a one-dimensional array of masses, and the number of point masses, n .

 Represent the (x , y) coordinates of the connected points as two arrays of
at most 20 type double values. For one of your tests, use the following data
set, which defines a polygon whose area is 25.5 square units.

446 Chapter 7 • Arrays

Allow n to vary from 3 to 10.

 Sample Data File

 4
 5 -4 3 2
 4 3 -2 5
 -4 -3 -1 2
 -9 8 6 1

 This sample should be stored as:

 location 5 -4 3
 4 3 -2
 -4 -3 -1
 -9 8 6
 mass 2
 5
 2
 1
 n 4

 Your main function should repeatedly input and process data sets from an
input file until end of file is encountered. For each point-mass system data
set, display the location matrix, the mass vector, n , and the center of gravity.
Implement at least the following functions:

 fget_point_mass : Takes an open input file and a maximum value for n as
parameters and fills a two-dimensional array output parameter with a
location matrix and a one-dimensional array output parameter with a mass
vector from the data file. Returns as function value the actual value of n .

 center_grav : Takes a location matrix, mass vector, and n value as param-
eters, and calculates and returns as the function value the center of gravity
of the system.

 fwrite_point_mass : Takes an open output file and the location matrix, mass
vector, and n value of a point-mass system as parameters and writes the
system to the file with meaningful labels.

 4. Write a program to take two numerical lists of the same length ended by a sen-
tinel value and store the lists in arrays x and y , each of which has 20 elements.
Let n be the actual number of data values in each list. Store the product of
corresponding elements of x and y in a third array, z , also of size 20. Display
the arrays x , y , and z in a three-column table. Then compute and display the
square root of the sum of the items in z . Make up your own data, and be sure
to test your program on at least one data set with number lists of exactly 20
items. One data set should have lists of 21 numbers, and one set should have
significantly shorter lists.

447Programming Projects

 5. A barcode scanner for Universal Product Codes (UPCs) verifies the 12-digit
code scanned by comparing the code’s last digit (called a check digit) to its
own computation of the check digit from the first 11 digits as follows:
 1. Calculate the sum of the digits in the odd-numbered positions (the first,

third, …, eleventh digits) and multiply this sum by 3.
 2. Calculate the sum of the digits in the even-numbered positions (the second,

fourth, …, tenth digits) and add this to the previous result.
 3. If the last digit of the result from step 2 is 0, then 0 is the check digit.

Otherwise, subtract the last digit from 10 to calculate the check digit.
 4. If the check digit matches the final digit of the 12-digit UPC, the UPC is

assumed correct.
 Write a program that prompts the user to enter the 12 digits of a barcode

separated by spaces. The program should store the digits in an integer array,
calculate the check digit, and compare it to the final barcode digit. If the
digits match, output the barcode with the message “validated.” If not, output
the barcode with the message “error in barcode.” Also, output with labels the
results from steps 1 and 2 of the check-digit calculations. Note that the “first”
digit of the barcode will be stored in element 0 of the array. Try your program
on the following barcodes, three of which are valid. For the first barcode, the
result from step 2 is 79 (0 � 9 � 0 � 8 � 4 � 0) * 3 � (7 � 4 � 0 � 0 � 5).

 0 7 9 4 0 0 8 0 4 5 0 1
 0 2 4 0 0 0 1 6 2 8 6 0
 0 1 1 1 1 0 8 5 6 8 0 7
 0 5 1 0 0 0 1 3 8 1 0 1

 6. Each year the Department of Traffic Accidents receives accident count reports
from a number of cities and towns across the country. To summarize these
reports, the department provides a frequency distribution printout that gives
the number of cities reporting accident counts in the following ranges: 0–99,
100–199, 200–299, 300–399, 400–499, and 500 or above. The department needs
a computer program to take the number of accidents for each reporting city or
town and add one to the count for the appropriate accident range. After all the
data have been processed, the resulting frequency counts are to be displayed.

 7. A normalized vector X is defined as

xi =
vi ; i = 1, 2, . . . , n

Σ
n

i = 1

v 2
i

 Each element of the normalized vector X is computed by dividing the corre-
sponding element (v i) of the original vector by the square root of the sum of
the squares of all the original vector’s elements. Design and test a program

448 Chapter 7 • Arrays

that repeatedly scans and normalizes vectors of different lengths. Define
functions scan_vector , normalize_vector , and print_vector .

 8. Generate a table that indicates the rainfall for the city of Plainview and com-
pares the current year’s rainfall for the city with the rainfall from the previous
year. Display some summary statistics that will indicate both the annual rainfall
for each year and the average monthly rainfall for each year. The input data will
consist of 12 pairs of numbers. The first number in each pair will be the current
year’s rainfall for a month, and the second number will be what fell during the
same month the previous year. The first data pair will represent January, the
second will be February, and so forth. If you assume the data begin

 3.2 4 (for January)
 2.2 1.6 (for February)

 the output should resemble the following:

 Table of monthly rainfall
 January February March . . .
 This year 3.2 2.2
 Last year 4.0 1.6
 Total rainfall this year: 35.7
 Total rainfall last year: 42.8
 Average monthly rainfall for this year: 3.6
 Average monthly rainfall for last year: 4.0

 9. Write an interactive program that plays a game of hangman. Store the word to
be guessed in successive elements of an array of individual characters called
 word . The player must guess the letters belonging to word . The program
should terminate when either all letters have been guessed correctly (the player
wins) or a specified number of incorrect guesses have been made (the compu-
ter wins). Hint: Use another array, guessed , to keep track of the solution so far.
Initialize all elements of guessed to the '*' symbol. Each time a letter in word
is guessed, replace the corresponding '*' in guessed with that letter.

 10. The results from the mayor’s race have been reported by each precinct as follows:

 Precinct
 Candidate

A
 Candidate

B
 Candidate

C
 Candidate

D

 1 192 48 206 37

 2 147 90 312 21

 3 186 12 121 38

 4 114 21 408 39

 5 267 13 382 29

 Write a program to do the following:
 a. Display the table with appropriate labels for the rows and columns.

449Programming Projects

 b. Compute and display the total number of votes received by each candi-
date and the percentage of the total votes cast.

 c. If any one candidate received over 50 percent of the votes, the program
should display a message declaring that candidate the winner.

 d. If no candidate received 50 percent of the votes, the program should dis-
play a message declaring a runoff between the two candidates receiving
the highest number of votes; the two candidates should be identified by
their letter names.

 e. Run the program once with the data shown and once with candidate C
receiving only 108 votes in Precinct 4.

 11. Write a function that will merge the contents of two sorted (ascending order)
arrays of type double values, storing the result in an array output parameter
(still in ascending order). The function should not assume that both its input
parameter arrays are the same length but can assume that one array does not
contain two copies of the same value. The result array should also contain no
duplicate values.

First array

–10.5 –1.8 3.5 6.3 7.2

–1.8 3.1 6.3

Result array

–10.5 –1.8 3.1 3.5 6.3 7.2

Second array

0 1 2 3 4

 Hint: When one of the input arrays has been exhausted, do not forget to copy
the remaining data in the other array into the result array. Test your function
with cases in which (1) the first array is exhausted first, (2) the second array
is exhausted first, and (3) the two arrays are exhausted at the same time (i.e.,
they end with the same value). Remember that the arrays input to this func-
tion must already be sorted .

 12. The binary search algorithm that follows may be used to search an array
when the elements are in order. This algorithm is analogous to the following
approach for finding a name in a telephone book.
 a. Open the book in the middle, and look at the middle name on the page.
 b. If the middle name isn’t the one you’re looking for, decide whether it

comes before or after the name you want.

450 Chapter 7 • Arrays

 c. Take the appropriate half of the section of the book you were looking in
and repeat these steps until you land on the name.

 ALGORITHM FOR BINARY SEARCH

 1. Let bottom be the subscript of the initial array element.
 2. Let top be the subscript of the last array element.
 3. Let found be false.
 4. Repeat as long as bottom isn’t greater than top and the target has not been found

 5. Let middle be the subscript of the element halfway between bottom and
 top.

 6. if the element at middle is the target
 7. Set found to true and index to middle.

 else if the element at middle is larger than the target
 8. Let top be middle − 1.

 else
 9. Let bottom be middle + 1.

 Write and test a function binary_srch that implements this algorithm for an
array of integers. When there is a large number of array elements, which function
do you think is faster: binary_srch or the linear search function of Fig. 7.14 ?

 13. The bubble sort is another technique for sorting an array. A bubble sort com-
pares adjacent array elements and exchanges their values if they are out of
order. In this way, the smaller values “bubble” to the top of the array (toward
element 0), while the larger values sink to the bottom of the array. After the
first pass of a bubble sort, the last array element is in the correct position; after
the second pass the last two elements are correct, and so on. Thus, after each
pass, the unsorted portion of the array contains one less element. Write and
test a function that implements this sorting method.

 14. A C program can represent a real polynomial p (x) of degree n as an array of
the real coefficients a 0 , a 1 , … , a n (a n ≠ 0).

 p(x) = a0 + a1x + a2 x2 + . . .+ anxn

 Write a program that inputs a polynomial of maximum degree 8 and then
evaluates the polynomial at various values of x . Include a function get_poly
that fills the array of coefficients and sets the degree of the polynomial, and
a function eval_poly that evaluates a polynomial at a given value of x . Use
these function prototypes:

 void get_poly(double coeff[], int* degreep);
 double eval_poly(const double coeff[], int degree,
 double x);

 15. Peabody Public Utilities tracks the status of its power service throughout the
city with a 3 � 4 grid in which each cell represents power service in one sector.

451Programming Projects

When power is available everywhere, all grid values are 1. A grid value of 0
indicates an outage somewhere in the sector.

 Write a program that inputs a grid from a file and displays the grid. If all
grid values are 1, display the message

 Power is on throughout grid.

 Otherwise, list the sectors that have outages:

 Power is off in sectors:
 (0,0)
 (1,2)

 Include in your program functions get_grid , display_grid , power_ok , and
 where_off . Function power_ok returns true (1) if power is on in all sectors,
false (0) otherwise. Function where_off should display the message regarding
sectors experiencing outages.

 16. Use matrix subtraction to calculate how much longer was the life expectancy of
black and white women than men of the same races in each decade from year
1950 to year 2000. There is no need to store the year data in your matrices—just
provide the years in the output. Input each matrix from a separate data file, cal-
culate the matrix difference by calling a function you write called matrix_diff
that will subtract any two 6-by-2 matrices, producing a third 6-by-2 matrix.
Display all three matrices with appropriate labels. Your function should calcu-
late the matrix difference by subtracting each element of the second matrix from
the corresponding element of the first.

 United States Life Expectancy at Birth by Sex and Race

 Female Male

 Year Black White Year Black White

 1950 62.9 72.2 1950 59.1 66.5

 1960 66.3 74.1 1960 61.1 67.4

 1970 68.3 75.6 1970 60.0 68.0

 1980 72.5 78.1 1980 63.8 70.7

 1990 73.6 79.4 1990 64.5 72.7

 2000 75.2 80.1 2000 68.3 74.9

 Source: National Center for Health Statistics

This page intentionally left blank

 Strings

 CHAPTER OBJECTIVES
 • To understand how a string constant is stored in an array

of characters

 • To learn about the placeholder %s and how it is used in
 printf and scanf operations

 • To learn some of the operations that can be performed
on strings such as copying strings, extracting substrings,
and joining strings using functions from the library
 string

 • To understand how C compares two strings to determine
their relative order

 • To learn some of the operations that can be performed on
individual characters using functions from the library ctype

 • To see how to write your own functions that perform
some of the basic operations of a text editor program

 C H A P T E R

8

 S o far, we have seen limited use of character data because most applications that
process character data deal with a grouping of characters, a data structure called a
 string . Because C implements the string data structure using arrays of type char ,
we could not explore strings until we had a foundational understanding of arrays.

 Strings are important in computer science because many computer applications
are concerned with the manipulation of textual data rather than numerical data.
Computer-based word processing systems enable a user to compose letters, term
papers, newspaper articles, and even books at a computer terminal instead of at a
typewriter. Storing the text in the computer’s memory allows us to modify the text,
check the spelling electronically, move whole paragraphs, and then print a fresh
copy without mistakes or erasures.

 Strings play an important role in science as well. The chemist works with
elements and compounds whose names often combine alphabetic and numeric
characters (e.g., C 12 H 22 O 11)—data easily represented by a string. Molecular biolo-
gists identify amino acids by name and map our DNA with strings of amino acid
abbreviations. Many mathematicians, physicists, and engineers spend more time
modeling our world with equations (strings of character and numeric data) than they
do crunching numbers. In subsequent chapters, we will meet other representations
of some of these concepts that are more easily manipulated than the string model;
however, we will still need strings as the vehicle for communication between the
computer system and the human user.

 In the sections that follow, we will introduce some fundamental operations that
can be performed on character data. We will investigate selected functions from the
standard string and ctype libraries that provide most of C’s facilities for working with
character strings.

 8.1 String Basics
 We have already used string constants extensively in our earlier work. Indeed, every
one of our calls to scanf or printf used a string constant as the first argument.
Consider this call:

 printf("Average = %.2f", avg);

 The first argument is the string constant "Average = %.2f", a string of 14 char-
acters. Notice that the blanks in the string are characters just as valid as those
requiring ink! Like other constant values, a string constant can be associated with a
symbolic name using the #define directive.

8.1 • String Basics 455

 #define ERR_PREFIX "*****Error - "
 #define INSUFF_DATA "Insufficient Data"

 Declaring and Initializing String Variables

 As we mentioned earlier, a string in C is implemented as an array, so declaring a
string variable is the same as declaring an array of type char . In

 char string_var[30];

 the variable string_var will hold strings from 0 to 29 characters long. It is C’s han-
dling of this varying length characteristic that distinguishes the string data structure
from other arrays. C permits initialization of string variables using a string constant
as shown in the following declaration of str .

 char str[20] = "Initial value";

 Let’s look at str in memory after this declaration with initialization.

I

[0]

n i t i a l v a l u e \0 ? ? ? ? ? ?

[4] [9] [14] [19]

 Notice that str[13] contains the character '\0' , the null character that marks
the end of a string. Using this marker allows the string’s length within the character
array to vary from 0 to one less than the array’s declared size. All of C’s string-
handling functions simply ignore whatever is stored in the cells following the null
character. The following diagram shows str holding a string that is the longest it
can represent—19 characters plus the null character.

n

[0]

u m b e r s a n d s t r i n g s \0

[4] [9] [14] [19]

 Arrays of Strings

 Because one string is an array of characters, an array of strings is a two-dimensional
array of characters in which each row is one string. The following are statements to
declare an array to store up to 30 names, each of which is less than 25 characters long.

 #define NUM_PEOPLE 30
 #define NAME_LEN 25
 . . .
 char names[NUM_PEOPLE][NAME_LEN];

 null character
character '\0' that
marks the end of a
string in C

456 Chapter 8 • Strings

 We can initialize an array of strings at declaration in the following manner:

 char month[12][10] = {"January", "February", "March", "April",
 "May", "June", "July", "August",
 "September", "October", "November",
 "December"};

 Input/Output with printf and scanf

 Both printf and scanf can handle string arguments as long as the placeholder %s
is used in the format string:

 printf("Topic: %s\n", string_var);

 The printf function, like other standard library functions that take string argu-
ments, depends on finding a null character in the character array to mark the end
of the string. If printf were passed a character array that contained no '\0' , the
function would first interpret the contents of each array element as a character and
display it. Then printf would continue to display as characters the contents of
memory locations following the array argument until it encountered a null character
or until it attempted to access a memory cell that was not assigned to the program,
causing a run-time error. When we write our own string-building functions, we must
be sure that a null character is inserted at the end of every string. This inclusion of
the null character is automatic for constant strings.

 The %s placeholder in a printf format string can be used with a minimum field
width as shown.

 printf ("***%8s***%3s***\n", "Short", "Strings");

 The first string is displayed right-justified in a field of eight columns. The second
string is longer than the specified field width, so the field is expanded to accom-
modate it exactly with no padding. We are more accustomed to seeing lists of
strings printed left-justified rather than right-justified. Consider the two lists in
 Fig. 8.1 .

 Placing a minus sign prefix on a placeholder’s field width causes left justification
of the value displayed. If president is a string variable, repeated execution of this
call to printf will produce a left-justified list.

 printf("%-20s\n", president);

 The scanf function can be used for input of a string. However, when we call
 scanf with a string variable as an argument, we must remember that array output
arguments are always passed to functions by sending the address of the initial array
element. Therefore, we do not apply the address-of operator to a string argument
passed to scanf or to any other function. In Fig. 8.2 , we see a brief main function
performing string I/O with scanf and printf . In this program, the user is expected
to type in a string representing an academic department, an integer course code, a

8.1 • String Basics 457

 FIGURE 8.1

 Right and Left
Justification of
Strings

 Right-Justified Left-Justified

 George Washington George Washington

 John Adams John Adams

 Thomas Jefferson Thomas Jefferson

 James Madison James Madison

string abbreviation for the days of the week the course meets, and an integer that
gives the meeting time of the class.

 The approach scanf takes to string input is very similar to its processing of
numeric input. As shown in Fig. 8.3 , when it scans a string, scanf skips leading
whitespace characters such as blanks, newlines, and tabs. Starting with the first
nonwhitespace character, scanf copies the characters it encounters into successive
memory cells of its character array argument. When it comes across a whitespace

 FIGURE 8.2 String Input/Output with scanf and printf

 1. #include <stdio.h>
 2.
 3. #define STRING_LEN 10
 4.
 5. int
 6. main(void)
 7. {
 8. char dept[STRING_LEN];
 9. int course_num;
 10. char days[STRING_LEN];
 11. int time;
 12.
 13. printf("Enter department code, course number, days and ");
 14. printf("time like this:\n> COSC 2060 MWF 1410\n> ");
 15. scanf("%s%d%s%d", dept, &course_num, days, &time);
 16. printf("%s %d meets %s at %d\n", dept, course_num, days, time);
 17.
 18. return (0);
 19. }

 Enter department code, course number, days and time like this:
 > COSC 2060 MWF 1410
 > MATH 1270 TR 800
 MATH 1270 meets TR at 800

458 Chapter 8 • Strings

character, scanning stops, and scanf places the null character at the end of the
string in its array argument.

 Because of the way scanf treats whitespace, the values could be spaced on
the data lines in many ways that would result in variables dept , course_num , days ,
and time receiving correct values upon execution of the scanf call in Fig. 8.2 .
For example, the data could have been entered one value per line with extra
whitespace:

 > MATH
 1270
 TR
 1800

 or two values per line:

 > MATH 1270
 TR 1800

 Function scanf would have difficulty if some essential whitespace between values
were omitted or if a nonwhitespace separator were substituted. For example, if the
data were entered as

 > MATH1270 TR 1800

 scanf would store the eight-character string "MATH1270" in dept and would then
be unable to convert T to an integer for storage using the next parameter. The
 situation would be worse if the data were entered as

 > MATH,1270,TR,1800

 Then the scanf function would store the entire 17-character string plus '\0' in the
 dept array, causing characters to be stored in eight locations not allocated to dept ,
as shown in Fig. 8.4 .

 For easy input of predictable-length strings that have no internal blanks, scanf
with the %s placeholder works well. However, in an environment in which the
proper data entry format may not be observed or where even an occasional program

⎧⎪⎨⎪⎩

M

[0]

A T H \0 ? ? ? ??

[1] [2] [3] [4] [5] [6] [7] [8] [9]

data entered›
skipped

MATH ...

of '\0'
triggers storage

}

if present

dept FIGURE 8.3

 Execution of scanf
("%s", dept);

8.1 • String Basics 459

fault is critical, a more robust string input function should be used. We will write
one such function in Section 8.3 .

 EXAMPLE 8.1 Earlier in this chapter, we declared an array of strings suitable for holding 30 names
(a two-dimensional array of type char values). Let’s see how to use scanf and
 printf to fill this array and echo print it.

 You will recall from our study of arrays that no address-of operator is needed when
an array is passed as an output argument. Because each element names[i] of an
array of strings represents a kind of array, it is passed as an output argument without
using the & operator. The following code segment fills parallel arrays names and
 ages with data. In the call to scanf , note the contrasting application of the & opera-
tor to elements of the ages array since these elements are simple output arguments
of type int .

 #define NUM_PEOPLE 30
 #define NAME_LEN 25
 . . .
 char names[NUM_PEOPLE][NAME_LEN];

 for (i = 0; i < NUM_PEOPLE; ++i) {
 scanf("%s%d", names[i], &ages[i]);
 printf("%-35s %3d\n", names[i], ages[i]);
 }

 EXERCISES FOR SECTION 8.1

 Self-Check

 1. When the scanf function is scanning a string, if there is more input data
(with no blanks) than will fit in the array output argument, scanf
(choose one).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M

[0]

A T H , 1 2 0 , T , 1 8 0 0 \0

[4] [9] space not allocated for dept

7 R

dept

 FIGURE 8.4 Execution of scanf("%s%d%s%d", dept, &course_num, days, &time); on Entry of
Invalid Data

460 Chapter 8 • Strings

 a. copies in only the characters that will fit and ignores the rest.
 b. copies in the whole string overflowing the output argument because

 scanf has no way of knowing the array’s declared size.
 c. scans all the characters but stores only the ones that fit, discarding the

rest.

 2. When printf is given a string argument to print using a %s placeholder, how
does it know how many characters to print?

 3. Declare a 30-character array, and initialize it at declaration to a string of 29
blanks.

 Programming

 1. Write a program that takes a word less than 25 characters long and prints a
statement like this:

 fractal starts with the letter f

 Have the program process words until it encounters a “word” beginning with
the character '9' .

 8.2 String Library Functions: Assignment and Substrings
 We have become accustomed to using the assignment operator = to copy data into a
variable. Although we do use the assignment symbol in a declaration of a string vari-
able with initialization, this context is the only one in which the operator means to
copy the string that is the right operand into the variable that is the left operand. We
have seen that an array name with no subscript represents the address of the initial
array element. This address is constant and cannot be changed through assignment,
so the following code fragment will cause a compiler error message such as Invalid
target of assignment :

 char one_str[20];
 one_str = "Test string"; /* Does not work */

 C provides the string assignment operation in the same way that it provides
square root and absolute value operations—through library functions. Along with
assignment functions, the library string.h provides functions for substring, con-
catenation, string length, string comparison, and whole line input operations, to
name a few. Table 8.1 summarizes selected functions from string.h , and Appendix
 B presents the complete library. Notice that the data type of the value returned by
each string-building function is the pointer type char * . As always, an array is being
represented by the address of its initial value.

 TABLE 8.1 Some String Library Functions from string.h

 Function Purpose: Example Parameters Result Type

 strcpy Makes a copy of source , a string, in the character
array accessed by dest :
 strcpy(s1, "hello");

 char *dest
 const char *source

 char *

 strncpy Makes a copy of up to n characters from source
in dest : strncpy(s2, "inevitable", 5)
stores the first five characters of the source in s1 and
does NOT add a null character.

 char *dest
 const char *source
 size_t † n

 char *

 strcat Appends source to the end of dest :
 strcat(s1, "and more");

 char *dest
 const char *source

 char *

 strncat Appends up to n characters of source to the end of
 dest , adding the null character if necessary:
 strncat(s1, "and more", 5);

 char *dest
 const char *source
 size_t † n

 char *

 strcmp Compares s1 and s2 alphabetically; returns a negative
value if s1 should precede s2 , a zero if the strings are
equal, and a positive value if s2 should precede s1 in
an alphabetized list:
 if (strcmp(name1, name2) == 0). . .

 const char *s1
 const char *s2

 int

 strncmp Compares the first n characters of s1 and s2 returning
positive, zero, and negative values as does strcmp :
 if (strncmp(n1, n2, 12) == 0) . . .

 const char *s1
 const char *s2
 size_t † n

 int

 strlen Returns the number of characters in s , not counting
the terminating null:
 strlen("What") returns 4 .

 const char *s size_t

 strtok Breaks parameter string source into tokens by find-
ing groups of characters separated by any of the
delimiter characters in delim. First call must provide
both source and delim. Subsequent calls using NULL
as the source string find additional tokens in original
source. Alters source by replacing first delimiter fol-
lowing a token by ‘\0’. When no more delimiters
remain, returns rest of source. For example, if s1 is
 "Jan . 12, . 1842" , strtok(s1, . " . ,") returns
 "Jan" , then strtok (NULL, . " . ,") returns "12"
and strtok(NULL, . ", . ") returns "1842" . The
memory in the right column shows the altered s1 after
the three calls to strtok . Return values are pointers
to substrings of s1 rather than copies.

 const char *source
 const char *delim

 char *

 size_t is an unsigned integer

. . .h e l l o \0 ? ?

. . .i n e v i ? ?

h e l l o a n d m o r e \0
h e l l o a n d m \0 ?

J a n \0 1 2 \0 1 8 4 2 \0

462 Chapter 8 • Strings

 String Assignment

 Function strcpy copies the string that is its second argument into its first argu-
ment. To carry out the desired assignment shown in our faulty code above, we
would write

 strcpy(one_str, "Test String");

 Like a call to scanf with a %s placeholder, a call to strcpy can easily overflow
the space allocated for the destination variable (one_str in the example given).
Variable one_str has room for up to 19 characters plus the null character. This call
to strcpy

 strcpy(one_str, "A very long test string");

 would overflow one_str , storing the final characters 'i' , 'n' , 'g' , and '\0' in
memory allocated for other variables. The values of these other variables would
seem to change spontaneously. On rare occasions, such overflow would generate a
run-time error message.

 The string library provides another string-copying function named strncpy that
takes an argument specifying the number of characters to copy (call this number n).
If the string to be copied (the source string) is shorter than n characters, the remain-
ing characters stored are null. For example,

 strncpy(one_str, "Test string", 20);

 would give one_str the value:

T

[0]

e s t s t i n g \0

[4] [9] [14] [19]

\0\0\0\0\0\0\0r \0

 The net effect is the same as the call

 strcpy(one_str, "Test string");

 since any characters after the first null are ignored. However, when the source
string is longer than n characters, only the first n characters are copied.

 strncpy(one_str, “A very long test string”, 20);

A

[0]

v e r y o n g t e s t s t r

[4] [9] [14] [19]

l

 Notice that although this call to strncpy has prevented overflow of destination
string one_str , it has not stored a valid string in one_str : There is no terminating

8.2 • String Library Functions: Assignment and Substrings 463

 '\0' . In general, one can assign as much as will fit of a source string (source) to a
destination (dest) of length dest_len by using these two statements:

 strncpy(dest, source, dest_len - 1);
 dest[dest_len - 1] = '\0';

 Both strcpy and strncpy mimic the assignment operator in that the value they
return is the string assigned (specifically, the copy that is in the destination vari-
able). The calling function actually has two ways of referencing the results: It can
either use the first argument from the call or use the function result. This character-
istic is typical of string-building functions in the string library.

 Substrings

 We frequently need to reference a substring of a longer character string. For exam-
ple, we might want to examine the "Cl" in the string "NaCl" , or the "30" in the
string "Jan. 30, 1996" . We have already seen that function strncpy can be used
to extract the first n characters of a string. Considering how strncpy works will give
us insight into how we could also use this function to copy a middle or an ending
portion of a string. Assuming that the prototype of strncpy is

 char *strncpy(char *dest, const char *source, size_t n);

 Fig. 8.5 depicts the data areas of strncpy and the calling function just before the
return from the call to strncpy in this code fragment:

 char result[10], s1[15] = "Jan. 30, 1996";
 strncpy(result, s1, 9);
 result[9] = '\0';

 substring a fragment
of a longer string

Data area for strncpyData area for calling function

dest

source

n

9

result

s1

J a n . 3 0 , 1 9 9 6 \0 ?

J a n . 3 0 , ?

 FIGURE 8.5

 Execution of
 strncpy(result,
s1, 9);

464 Chapter 8 • Strings

 This figure reminds us that an array reference with no subscript (such as result
and s1) actually represents the address of the initial array element. If we wish to use
strncpy to extract a middle substring, we must call the function with the address of
the first character to copy. For example, given the same value of s1, this code frag-
ment would extract the substring "30"

 strncpy(result, &s1[5], 2);
 result[2] = '\0';

 as shown in Fig. 8.6 .
 To extract the final characters of a source string, we can use strcpy as in this

call to copy the 1996 at the end of s1 .

 strcpy(result, &s1[9]);

 Function strcpy always copies characters beginning with the initial charac-
ter of a source string and continuing until a '\0' has been encountered (and
 copied).

 EXAMPLE 8.2 Here are two approaches to extracting three substrings of the string stored in
 pres . In the first version we use string library copy functions. Notice the only
case in which a programmer need not explicitly assign a '\0' to end a substring
is when the substring extracted includes the end of the source string. We see this
case in the extraction of "Quincy" . Of course, if the space allocated for middle
were insufficient to accommodate the copied substring, strcpy would overflow
 middle .

Data area for strncpyData area for calling function

dest

source

n

2

result

s1

J a n . 3 0 , 1 9 9 6 \0 ?

3 0 ? ? ? ? ? ? ? ?

 FIGURE 8.6

 Execution of
 strncpy(result,
&s1[5], 2);

8.2 • String Library Functions: Assignment and Substrings 465

strcpy (middle, &pres [12]);

char last [20], first [20], middle [20];

char pres[20] = "

strncpy (last, pres, 5);
last [5] = '\0';

strncpy (first, &pres[7], 4);
first[4] = '\0';

Quincy, JohnAdams ";

 In our second version, we view Adams, John, and Quincy as tokens separated by
delimiters comma and blank. We extract the three substrings by calls to string
library function strtok . (See Table 8.1 .) In the first call we provide both the
source string pres_copy and the string of delimiters ", " . Since the first argu-
ment in the second and third calls to strtok is NULL , strtok continues to search
and change pres_copy . In this version, first , middle , and last are pointers to
pieces of the original string in pres_copy rather than new copies. The fact that
 strtok alters its source string is the reason we copy pres into pres_copy before
extracting the tokens.

 char *last, *first, *middle;
 char pres[20] = "Adams, John Quincy";
 char pres_copy[20];
 strcpy(pres_copy, pres);

last first middle

pres_copy

A mad s \0 J o h n \0 Q u i n c y \0

 last = strtok(pres_copy, ", ");
 first = strtok(NULL, ", ");
 middle = strtok(NULL, ", ");

 EXAMPLE 8.3 The program in Fig. 8.7 breaks compounds into their elemental components,
assuming that each element name begins with a capital letter and that our imple-
mentation is using the ASCII character set. For example, this program would break
 "NaCl" into "Na" and "Cl" . The if statement in the for loop tests whether the
character at position next is uppercase. If so, strncpy copies into elem all char-
acters from the last capital letter (at position first) up to (but not including) the
capital letter at position next .

466 Chapter 8 • Strings

 FIGURE 8.7 Program Using strncpy and strcpy Functions to Separate Compounds into
Elemental Components

 1. /*
 2. * Displays each elemental component of a compound
 3. */
 4.
 5. #include <stdio.h>
 6. #include <string.h>
 7.
 8. #define CMP_LEN 30 /* size of string to hold a compound */
 9. #define ELEM_LEN 10 /* size of string to hold a component */
 10.
 11. int
 12. main(void)
 13. {
 14. char compound[CMP_LEN]; /* string representing a compound */
 15. char elem[ELEM_LEN]; /* one elemental component */
 16. int first, next;
 17.
 18. /* Gets data string representing compound */
 19. printf("Enter a compound> ");
 20. scanf("%s", compound);
 21.
 22. /* Displays each elemental component. These are identified
 23. by an initial capital letter. */
 24. first = 0;
 25. for (next = 1; next < strlen(compound); ++next)
 26. if (compound[next] >= 'A' && compound[next] <= 'Z') {
 27. strncpy(elem, &compound[first], next - first);
 28. elem[next - first] = '\0';
 29. printf("%s\n", elem);
 30. first = next;
 31. }
 32.
 33. /* Displays the last component */
 34. printf("%s\n", strcpy(elem, &compound[first]));
 35.
 36. return (0);
 37. }

 Enter a compound> H2SO4
 H2
 S
 O4

8.2 • String Library Functions: Assignment and Substrings 467

 The statement

 printf("%s\n", strcpy(elem, &compound[first]));

 following the loop is used to display the last component. Notice that this final call to
 printf takes advantage of the fact that strcpy returns as its value the starting address
of the string it has just stored in elem . Because this final call to strcpy has extracted
a complete string (i.e., a string ending in '\0'), we can avoid writing two statements
 strcpy(elem, &compound[first]);
 printf("%s\n", elem);

 by simply calling strcpy right at the spot where the value it computes is needed,
that is, in the argument list for printf .

 Also, check carefully the use of CMP_LEN and strlen(compound) . In this program,
we see again the use of part of an array. As we studied in Chapter 7 , in situations
like this, the declared size of the array is no longer the effective size once data have
been stored in the array. The string length as found by the strlen function is
the number of characters in the string up to (but not including) the null character.
This length may be less or greater than the array’s declared size, but the only valid
lengths are from 0 to one less than the declared size. We call a string of length
zero the empty string . The type of the value returned by strlen is size_t , an
unsigned integer type.

 EXERCISES FOR SECTION 8.2

 Self-Check

 1. Given the string variables pres , first , and last as defined in EXAMPLE
8.2, show what would be displayed by this code fragment.

 strncpy(first, pres, 2);
 first[2] = '\0';
 printf("%s", first);
 printf(" %s", strcpy(last, &pres[7]));

 strncpy(first, &pres[7], 2);
 first[2] = '\0';
 strncpy(last, &pres[14], 2);
 last[2] = '\0';
 printf(" %s%s\n", first, last);

 2. Given these declarations,

 char socsec[12] = "123-45-6789";
 char ssnshort[7], ssn1[4], ssn2[3], ssn3[5];

 string length in a
character array, the
number of characters
before the first null
character

 empty string a string
of length zero: the first
character of the string
is the null character

468 Chapter 8 • Strings

 write statements to accomplish the following:

 a. Store in ssnshort as much of socsec as will fit.
 b. Store in ssn1 the first three characters of socsec .
 c. Store in ssn2 the middle two-digit portion of socsec .
 d. Store in ssn3 the final four digits of socsec .

 Be sure your statements store valid strings in each variable.

 Programming

 1. Write a program to take a product code from Millie’s Mail-Order Catalog
(MMOC) and separate it into its component parts. An MMOC product code
begins with one or more letters identifying the warehouse where the product
is stored. Next come the one or more digits that are the product ID. The final
field of the string starts with a capital letter and represents qualifiers such as
size, color, and so on. For example, ATL1203S14 stands for product 1203,
size 14, in the Atlanta warehouse. Write a program that takes a code, finds the
position of the first digit and of the first letter after the digits, and uses strcpy
and strncpy to display a report such as the following:

 Warehouse: ATL
 Product: 1203
 Qualifiers: S14

 2. Complete function trim_blanks whose purpose is to take a single string input
parameter (to_trim) and return a copy of the string with leading and trailing
blanks removed. Use strncpy in trim_blanks .

a p h r s e \0

a_string (before)

a

a p h r s e \0

n_string (after the call: trim_blanks(n_string, a_string);)

a

 char *
 trim_blanks(char *trimmed, /* output */
 const char *to_trim) /* input */
 {
 /* Find subscript of first nonblank in to_trim */

 /* Find subscript of last nonblank in to_trim */

 /* Use strncpy to store trimmed string in trimmed */
 }

8.3 • Longer Strings: Concatenation and Whole-Line Input 469

 8.3 Longer Strings: Concatenation and Whole-Line Input
 In this section we will study two library functions that let us join (concatenate) two
strings to form a longer string. We also present functions that allow us to scan a full
line of character data from the keyboard or from a file.

 Concatenation

 String library functions strcat and strncat modify their first string argument by
adding all or part of their second string argument at the end of the first argument.
Both functions assume that sufficient space is allocated for the first argument to
allow addition of the extra characters.

 EXAMPLE 8.4 Consider this code fragment:

 #define STRSIZ 15
 char f1[STRSIZ] = "John ", f2[STRSIZ] = "Jacqueline ",
 last[STRSIZ] = "Kennedy";

 strcat(f1, last);
 strcat(f2, last); /* invalid overflow of f2 */

 The first call to strcat copies the string "Kennedy" at the end of f1 , creating the
string "John Kennedy" , which has 12 characters plus the null character, a string
that fits in the 15-character array f1 . However, the second call to strcat creates
the 19-character (including '\0') string "Jacqueline Kennedy" , a string that
overflows f2 and could have the side effect of changing last if last is allocated
immediately after f2 . As an alternative to the second call to strcat , we could
write

 strncat(f2, last, 3);

 This statement adds onto "Jacqueline" the portion of "Kennedy" that will fit at
the end of f2 without overflow, creating the string "Jacqueline Ken" .

 When writing a string-manipulating program, one usually does not know in advance
the sizes of the strings used as data. Fortunately, the string library provides function
 strlen , which returns the length of the value of its string argument, not counting
the '\0' character. For example, this code fragment displays the numbers 8 and 16
followed by the phrase Jupiter Symphony .

 concatenation
joining of two strings

470 Chapter 8 • Strings

 #define STRSIZ 20
 char s1[STRSIZ] = "Jupiter ",
 s2[STRSIZ] = "Symphony";
 printf("%d %d\n", strlen(s1), strlen(strcat(s1, s2)));
 printf("%s\n", s1);

 Notice that the blank at the end of the initial value of s1 is counted in s1’s length.
Also, take note that the call to strcat modifies the value of s1 even when embed-
ded in other function calls. Both strcat and strncat return as the function value
the modified first argument. If s1 and s2 are both character strings declared to
hold STRSIZ characters, the following decision statement would concatenate the
full strings, if possible without overflow, and would concatenate only as much of the
second string as would fit otherwise.

 if (strlen(s1) + strlen(s2) < STRSIZ) {
 strcat(s1, s2);
 } else {
 strncat(s1, s2, STRSIZ - strlen(s1) - 1);
 s1[STRSIZ - 1] = '\0';
 }

 The condition correctly verifies that the sum of the lengths of s1 and s2 is strictly
 less than STRSIZ ; if the sum equaled STRSIZ , then the '\0' that strcat places at
the end of its result would overflow s1 .

 You can see from our examples of the use of strcpy , strncpy , strcat , and
 strncat that there are two critical questions that must always be in the mind of a C
programmer who is manipulating strings:

 ■ Is there enough space in the output parameter for the entire string being
created?

 ■ Does the created string end in '\0' ?

 Distinction Between Characters and Strings

 When using strcat , one may be tempted to supply a single character as one of the
two strings to join. A type char value is not a valid argument for a function with a
corresponding parameter of type char * . Note the difference internally between the
representations of the character 'Q' and the string "Q" .

Q Q ? ? ?

character 'Q'

\0 ? ? ? . . .

string "Q" (represented by its initial address)

8.3 • Longer Strings: Concatenation and Whole-Line Input 471

 If you wish to add a single character at the end of a string, you should view the
string as an array and use assignment to subscripted elements for access. Be sure to
include the null character at the end of the string.

 Scanning a Full Line

 Although blanks are natural separators to place between numeric data values, view-
ing them as delimiters (as do functions scanf and fscanf) when processing strings
may not make sense since a blank is a perfectly valid character element of a string.
For interactive input of one complete line of data, the stdio library provides the
function gets . Consider this code fragment:

 char line[80];
 printf("Type in a line of data.\n> ");
 gets(line);

 If the user responds to the prompt as follows,

 Type in a line of data.
 > Here is a short sentence.

 the value stored in line would be

H e r e i s a s h o r t s e n t e n c e\0

 The \n character representing the <return> or <enter> key pressed at the end of
the sentence is not stored. Like scanf , gets can overflow its string argument if the
user enters a longer data line than will fit.

 The stdio library’s file version of gets , fgets , behaves somewhat differently.
Function fgets takes three arguments—the output parameter string, a maxi-
mum number of characters to store (n), and the file pointer to the data source.
Function fgets will never store more than n − 1 characters from the data file,
and the final character stored will always be '\0' . However, the next to last char-
acter may or may not be '\n' . If fgets has room to store the entire line of data,
it will include '\n' before '\0' . If the line is truncated, no '\n' is stored. Like
other string-building functions we have studied, fgets stores the string created
in its first argument and returns this string argument (i.e., its address) as its value.
When a call to fgets encounters the end of file, the value returned is the address
0, which is considered the null pointer. Figure 8.8 shows a program that scans a
data file one line at a time and creates a new double-spaced version with the lines
numbered.

472 Chapter 8 • Strings

 FIGURE 8.8 Demonstration of Whole-Line Input

 1. /*
 2. * Numbers and double spaces lines of a document. Lines longer than
 3. * LINE_LEN - 1 characters are split on two lines.
 4. */
 5.
 6. #include <stdio.h>
 7. #include <string.h>
 8.
 9. #define LINE_LEN 80
 10. #define NAME_LEN 40
 11.
 12. int
 13. main(void)
 14. {
 15. char line[LINE_LEN], inname[NAME_LEN], outname[NAME_LEN];
 16. FILE *inp, *outp;
 17. char *status;
 18. int i = 0;
 19.
 20. printf("Name of input file> ");
 21. scanf("%s", inname);
 22. printf("Name of output file> ");
 23. scanf("%s", outname);
 24.
 25. inp = fopen(inname, "r");
 26. outp = fopen(outname, "w");
 27.
 28. for (status = fgets(line, LINE_LEN, inp);
 29. status != 0;
 30. status = fgets(line, LINE_LEN, inp)) {
 31. if (line[strlen(line) - 1] == '\n')
 32. line[strlen(line) - 1] = '\0';
 33. fprintf(outp, "%3d>> %s\n\n", ++i, line);
 34. }
 35. return (0);
 36. }

 File used as input

 In the early 1960s, designers and implementers of operating
 systems were faced with a significant dilemma. As people's (continued)

8.3 • Longer Strings: Concatenation and Whole-Line Input 473

 EXERCISES FOR SECTION 8.3

 Self-Check

 1. Given the string pres (value is "Adams, John Quincy") and the 40-character
temporary variables tmp1 and tmp2 , what string is displayed by the following
code fragment?

 strncpy(tmp1, &pres[7], 4);
 tmp1[4] = '\0';
 strcat(tmp1, " ");
 strncpy(tmp2, pres, 5);
 tmp2[5] = '\0';
 printf("%s\n", strcat(tmp1, tmp2));

 2. There is an error in the last line of the following code fragment. What is
the error? Why is it wrong? How would you correctly achieve the intent of
this call?

 strcpy(tmp1, &pres[12]);
 strcat(tmp1, " ");
 strcat(tmp1, pres[7]);

 expectations of modern operating systems escalated, so did
 the complexity of the systems themselves. Like other
 programmers solving difficult problems, the systems
 programmers desperately needed the readability and
 modularity of a powerful high-level programming language.

 Output file
 1>> In the early 1960s, designers and implementers of operating

 2>> systems were faced with a significant dilemma. As people's

 3>> expectations of modern operating systems escalated, so did

 4>> the complexity of the systems themselves. Like other

 5>> programmers solving difficult problems, the systems

 6>> programmers desperately needed the readability and

 7>> modularity of a powerful high-level programming language.

FIGURE 8.8 (continued)

474 Chapter 8 • Strings

 Programming

 1. Write a function bracket_by_len that takes a word as an input argument
and returns the word bracketed to indicate its length. Words less than five
characters long are bracketed with << >> , words five to ten letters long are
bracketed with (* *) , and words over ten characters long are bracketed
with /+ +/ . Your function should require the calling function to provide
as the first argument, space for the result, and as the third argument, the
amount of space available. Consider the expected results of these calls to
the function.

 bracket_by_len(tmp, "insufficiently", 20) ➝
 "/+insufficiently+/"
 bracket_by_len(tmp, "the", 20) ➝ "<<the>>"

 8.4 String Comparison
 In earlier chapters, we studied the fact that characters are represented by numeric
codes, and we used relational and equality operators to compare characters. For
example, the conditions

 crsr_or_frgt == 'C'

 and

 ch1 < ch2

 were used to test character variables in decision statements. Unfortunately, these
operators cannot be used for comparison of strings because of C’s representation of
strings as arrays.

 Because an array name used with no subscript represents the address of the
initial array element, if str1 and str2 are string variables, the condition

 str1 < str2

 is not checking whether str1 precedes str2 alphabetically. However, the compari-
son is legal, for it determines whether the place in memory where storage of str1
begins precedes the place in memory where str2 begins.

 The standard string library provides the int function strcmp for comparison
of two strings that we will refer to as str1 and str2 . Function strcmp separates its
argument pairs into three categories as shown in Table 8.2 .

 In this table, we are using the expression “less than” as a string generalization of
the “less than” comparison of characters. We have seen that for character variables
 ch1 and ch2 , ch1 < ch2 is true if the numeric character code value of ch1 is less
than the code in ch2 . ANSI C extends this concept to strings by stating the following
two conditions to define “less than:”

8.4 • String Comparison 475

 1. If the first n characters of str1 and str2 match and str1[n] , str2[n] are
the first nonmatching corresponding characters, str1 is less than str2 if
 str1[n] < str2[n] .

 str1 t h r i l l str1 e n e r g y
 str2 t h r o w str2 f o r c e
 * *
 First 3 letters match. First 0 letters match.
 str1[3] < str2[3] str1[0] < str2[0]
 'i' < 'o' 'e' < 'f'

 2. If str1 is shorter than str2 and all the characters of str1 match the
 corresponding characters of str2 , str1 is less than str2 .

 str1 j o y
 str2 j o y o u s

 The string library also provides an analogous function strncmp that bases its
comparison on only the first n characters of the two strings, where n is the third
argument. For example, if str1 is "joyful" and str2 is "joyous" , the function
calls strncmp(str1, str2, 1) , strncmp(str1, str2, 2) , and strncmp(str1,
str2, 3) all return the value 0 because "j" matches "j" , "jo" matches "jo" , and
 "joy" matches "joy" . However, strncmp(str1, str2, 4) would return a negative
integer, indicating that "joyf" precedes "joyo" alphabetically.

 EXAMPLE 8.5 String comparisons are essential when alphabetizing a list. To alphabetize a list
of words made up of either all uppercase or all lowercase letters, we could use
the selection sort algorithm we developed in Section 7.6 . Figure 8.9 compares
the numeric and string versions of code that compares list elements in the search
for the index of the smallest (or alphabetically first). It also shows the numeric and
string versions of a code fragment that exchanges two array elements. In the string
versions we see the use of the string library functions strcmp and strcpy . The
string exchange code assumes that temp is a local string variable with sufficient
space to hold a copy of any string in list .

 TABLE 8.2 Possible Results of strcmp(str1, str2)

 Relationship Value Returned Example

 str1 is less than str2 negative integer str1 is "marigold"
 str2 is "tulip"

 str1 equals str2 zero str1 and str2 are
both "end"

 str1 is greater than str2 positive integer str1 is "shrimp"
 str2 is "crab"

476 Chapter 8 • Strings

 EXAMPLE 8.6 When we process a list of string data interactively, we often do not know in advance
how much data will be entered. In this situation, we can use a sentinel-controlled
loop, prompting the user to type in the sentinel value when entry of the data is
complete. Figure 8.10 outlines such a loop, using strcmp to check for entry of the
sentinel (represented by the constant macro SENT).

 EXERCISES FOR SECTION 8.4

 Self-Check

 1. Write C code to accomplish each of the following goals.

 a. Write a message indicating whether name1 and name2 match.
 b. Store in the string variable word the value either of w1 or of w2 . Choose

the value that comes first alphabetically.

 FIGURE 8.9 Numeric and String Versions of Portions of Selection Sort That Compare and
Exchange Elements

 Comparison (in function that finds index of "smallest" remaining element)
 Numeric String
 if (list[i] < list[first]) if (strcmp(list[i], list[first]) < 0)
 first = i; first = i;

 Exchange of elements
 temp = list[index_of_min]; strcpy(temp, list[index_of_min]);
 list[index_of_min] = list[fill]; strcpy(list[index_of_min], list[fill]);
 list[fill] = temp; strcpy(list[fill], temp);

 FIGURE 8.10 Sentinel-Controlled Loop for String Input

 1. printf("Enter list of words on as many lines as you like.\n");
 2. printf("Separate words by at least one blank.\n");
 3. printf("When done, enter %s to quit.\n", SENT);
 4.
 5. for (scanf("%s", word);
 6. strcmp(word, SENT) != 0;
 7. scanf("%s", word)) {
 8. /* process word */
 9. . . .
 10. }

8.5 • Arrays of Pointers 477

 c. Store in mtch matching initial portions of s1 and s2 . For example, if s1 is
 "placozoa" and s2 is "placement" , mtch becomes "plac" . If s1 is "joy"
and s2 is "sorrow" , mtch becomes the empty string.

 Programming

 1. Write the string selection sort function described in Example 8.5.

 8.5 Arrays of Pointers
 In Section 8.4 , we discussed how we might modify our numeric selection sort code
to create a program that would alphabetize a list of strings composed of uppercase
or lowercase letters. Let’s look closely at the code that exchanges two strings in
 Fig. 8.11 .

 Figure 8.12 pictures the data area of strcpy and the data area of the calling
function as the second call to strcpy begins. This figure reminds us that C repre-
sents every array by its starting address. Since each element of list is a reference
to an array of characters, it is passed to a function as a pointer, that is, as the address
of the array’s element 0 . When we consider sorting a list of strings, we see a lot of
copying of characters from one memory cell to another. We have three operations
that copy an entire string for every exchange that the sort requires, and when the
sort is complete, our original list is lost.

 In fact, C’s use of pointers to represent arrays presents us with an opportunity
to develop an alternate approach to our sorting problem. Study the two arrays in
 Fig. 8.13 .

 Listing the values of the elements of alphap

 alphap[0] address of "daisy"
 alphap[1] address of "marigold"
 alphap[2] address of "petunia"
 alphap[3] address of "rose"
 alphap[4] address of "tulip"

 calls to our attention that daisy, marigold, petunia, rose, and tulip form an alphabet-
ized list. Therefore, if we were to execute this loop,

 for (i = 0; i < 5; ++i)
 printf("%s\n", alphap[i]);

 FIGURE 8.11 Exchanging String Elements of an Array

 1. strcpy(temp, list[index_of_min]);
 2. strcpy(list[index_of_min], list[fill]);
 3. strcpy(list[fill], temp);

478 Chapter 8 • Strings

list

fill

0

Partial data area of
alphabetizing program

dest

src

Data area of
function strcpy

index_of_min

temp

4

t u l i p \0

m a r i g o l d \0

p e t u n i a \0

r o s e \0

d a i s y \0

d a i s y \0

 FIGURE 8.12

 Executing
 strcpy (list
[index_of_min],
list[fill]);

original

t u l i p \0

m a r i g o l d \0

p e t u n i a \0

r o s e \0

d a i s y \0

alphap FIGURE 8.13

 An Array
of Pointers

 we would see displayed the contents of original in alphabetical order, just as if we
had copied the strings into a new array and sorted them. When printf sees a %s spec-
ifier, it always expects to receive the starting address of a string as the corresponding
input argument, so alphap[i] is just as legitimate an argument as original[i] .

 How would we declare the array of pointers alphap ? Each element is the address
of a character string, and there are five elements, so the appropriate declaration is

 char *alphap[5];

8.5 • Arrays of Pointers 479

 In our next example, we explore how to use an array of pointers to maintain two
orderings of a list of strings while keeping only one copy of each string.

 EXAMPLE 8.7 The Open School admits children to its kindergarten in the order in which they
apply. However, most of the staff’s use of the list of applicants is made easier if the
list is alphabetized. The program in Fig. 8.14 takes an input list of names reflect-
ing the order in which applications were received and creates an array of pointers
through which the list can be accessed in alphabetical order.

 FIGURE 8.14 Two Orderings of One List Using an Array of Pointers

 1. /*
 2. * Maintains two orderings of a list of applicants: the original
 3. * ordering of the data, and an alphabetical ordering accessed through an
 4. * array of pointers.
 5. */
 6.
 7. #include <stdio.h>
 8. #define STRSIZ 30 /* maximum string length */
 9. #define MAXAPP 50 /* maximum number of applications accepted */
 10.
 11. int alpha_first(char *list[], int min_sub, int max_sub);
 12. void select_sort_str(char *list[], int n);
 13.
 14. int
 15. main(void)
 16. {
 17. char applicants[MAXAPP][STRSIZ]; /* list of applicants in the
 18. order in which they applied */
 19. char *alpha[MAXAPP]; /* list of pointers to
 20. applicants */
 21. int num_app, /* actual number of applicants */
 22. i;
 23. char one_char;
 24.
 25. /* Gets applicant list */
 26. printf("Enter number of applicants (0 . . %d)\n> ", MAXAPP);
 27. scanf("%d", &num_app);
 28. do /* skips rest of line after number */
 29. scanf("%c", &one_char);
 30. while (one_char != '\n');
 31.

(continued)

480 Chapter 8 • Strings

 32. printf("Enter names of applicants on separate lines\n");
 33. printf("in the order in which they applied\n");
 34. for (i = 0; i < num_app; ++i)
 35. gets(applicants[i]);
 36.
 37. /* Fills array of pointers and sorts */
 38. for (i = 0; i < num_app; ++i)
 39. alpha[i] = applicants[i]; /* copies ONLY address */
 40. select_sort_str(alpha, num_app);
 41.
 42. /* Displays both lists */
 43. printf("\n\n%-30s%5c%-30s\n\n", "Application Order", ' ',
 44. "Alphabetical Order");
 45. for (i = 0; i < num_app; ++i)
 46. printf("%-30s%5c%-30s\n", applicants[i], ' ', alpha[i]);
 47.
 48. return(0);
 49. }
 50. /*
 51. * Finds the index of the string that comes first alphabetically in
 52. * elements min_sub..max_sub of list
 53. * Pre: list[min_sub] through list[max_sub] are of uniform case;
 54. * max_sub >= min_sub
 55. */
 56. int
 57. alpha_first(char *list[], /* input - array of pointers to strings */
 58. int min_sub, /* input - minimum and maximum subscripts */
 59. int max_sub) /* of portion of list to consider */
 60. {
 61. int first, i;
 62.
 63. first = min_sub;
 64. for (i = min_sub + 1; i <= max_sub; ++i)
 65. if (strcmp(list[i], list[first]) < 0)
 66. first = i;
 67.
 68. return (first);
 69. }
 70.
 71. /*
 72. * Orders the pointers in array list so they access strings

FIGURE 8.14 (continued)

(continued)

8.5 • Arrays of Pointers 481

 73. * in alphabetical order
 74. * Pre: first n elements of list reference strings of uniform case;
 75. * n >= 0
 76. */
 77. void
 78. select_sort_str(char *list[], /* input/output - array of pointers being
 79. ordered to access strings alphabetically */
 80. int n) /* input - number of elements to sort */
 81. {
 82.
 83. int fill, /* index of element to contain next string in order */
 84. index_of_min; /* index of next string in order */
 85. char *temp;
 86.
 87. for (fill = 0; fill < n - 1; ++fill) {
 88. index_of_min = alpha_first(list, fill, n - 1);
 89.
 90. if (index_of_min != fill) {
 91. temp = list[index_of_min];
 92. list[index_of_min] = list[fill];
 93. list[fill] = temp;
 94. }
 95. }
 96. }

 Enter number of applicants (0 . . 50)
 > 5
 Enter names of applicants on separate lines
 in the order in which they applied
 SADDLER, MARGARET
 INGRAM, RICHARD
 FAATZ, SUSAN
 GONZALES, LORI
 KEITH, CHARLES

 Application Order Alphabetical Order

 SADDLER, MARGARET FAATZ, SUSAN
 INGRAM, RICHARD GONZALES, LORI
 FAATZ, SUSAN INGRAM, RICHARD
 GONZALES, LORI KEITH, CHARLES
 KEITH, CHARLES SADDLER, MARGARET

FIGURE 8.14 (continued)

482 Chapter 8 • Strings

 The array of pointers is initialized by assigning to each element the starting address
of one of the strings in the applicants array. Then a selection sort is applied to the
array of pointers. Although strcmp looks at the actual strings whose starting addresses
are in the array of pointers, the element exchange code moves only the pointers.

 Using an array of pointers to represent a second, or third, or fourth ordering of a
list of strings has several benefits. First, a pointer (an integer address) requires less stor-
age space than a full copy of a character string. Second, our sorting function executes
faster when it copies only pointers and not complete arrays of characters. Finally,
because the strings themselves are stored only once, a spelling correction made in the
original list would automatically be reflected in the other orderings as well.

 Arrays of String Constants

 C also permits the use of an array of pointers to represent a list of string con-
stants. Two alternatives for representing the list of month names we saw in
 Section 8.1 follow.

 char month[12][10] = {"January", "February", "March", "April",
 "May", "June", "July", "August", "September",
 "October", "November", "December"};
 char *month[12] = {"January", "February", "March", "April", "May",
 "June", "July", "August", "September",
 "October", "November", "December"};

 Actually, the number of rows (12) is optional in both of these declarations since the
initialization list also implies this value.

 EXERCISES FOR SECTION 8.5

 Self-Check

 1. Write two prototypes for a function that orders a list of strings according to
string length—shortest to longest. In the first, the function should expect an
input/output argument that is a two-dimensional array of characters in which
strings have at most STRSIZ characters. In the second, the function should
expect an input/output argument that is an array of pointers.

 2. Consider the following valid call to printf . Is strs a two-dimensional array
of characters or an array of pointers to strings?

 printf("%s\n", strs[4]);

 Programming

 1. Write the function described in Exercise 1 using an array of pointers.

8.6 • Character Operations 483

 8.6 Character Operations
 When we develop programs that involve string processing, often we must work
with the individual characters that make up the string. C provides character input/
output routines as part of the stdio library, and an extensive collection of facilities
for character analysis and conversion is available in the library we #include as
 <ctype.h> .

 Character Input/Output

 The stdio library includes a routine named getchar that is used to get the next
character from the standard input source, the same input source that scanf uses.
Unlike scanf , getchar does not expect the calling module to pass as an argument
the address of a variable in which to store the input character. Rather, getchar
takes no arguments and returns the character as its result. Either of the following
two expressions can be used to store the next available input character in ch .

 scanf("%c", &ch) ch = getchar()

 There is, however, a difference between the two fragments, because the values of
the expressions themselves are different. You will recall that scanf returns as its
value an integer representing the number of values it took from the input stream for
storage through its output parameters. When scanf encounters the end of the input
file, it returns the value associated with EOF . In the expression that calls getchar ,
we have an assignment operator, so the value of the expression is the value assigned,
namely the character that getchar found in standard input. What if there were no
characters for getchar to take? What if getchar came across the end of the data?
When we look up a full description of the getchar facility, we discover that the type
of the value it returns is not char but int . This should not surprise us because we
have already seen that in a computer, characters are represented by integer codes,
and we can cast a char to an int .

 Although character codes are, in fact, integers, in most C implementations
the char data type is allotted only enough space to store the range of integers
actually used by the implementation’s character set. This range does not include
the negative value associated with the name EOF . The data type int must be able
to represent a much larger range of integers that includes both the full range of
character codes and the EOF value. For this reason, we use a type int variable to
store the result of a call to getchar , at least until we verify that getchar did not
return EOF .

 To get a single character from a file, use the facility getc . The call

 getc(inp)

 is comparable to a call to getchar , except that the character returned is obtained
from the file accessed by file pointer inp .

484 Chapter 8 • Strings

 EXAMPLE 8.8 In Fig. 8.15 , we write a scanline function that uses getchar . Like the library func-
tion gets , our scanline function takes as its first argument the string variable in
which to store the input line. Unlike gets , scanline also takes a second argument
indicating the amount of space available. It stores in the output argument either
the full input line or as much as will fit. Then it discards any characters remaining
on the line until '\n' or EOF is encountered. We could declare scanline ’s first
parameter as

 char dest[]

 since dest is an array of characters. We have chosen the notation shown so as to be
consistent with declarations in the C standard string library.

 FIGURE 8.15 Implementation of scanline Function Using getchar

 1. /*
 2. * Gets one line of data from standard input. Returns an empty string on
 3. * end of file. If data line will not fit in allotted space, stores
 4. * portion that does fit and discards rest of input line.
 5. */
 6. char *
 7. scanline(char *dest, /* output - destination string */
 8. int dest_len) /* input - space available in dest */
 9. {
 10. int i, ch;
 11.
 12. /* Gets next line one character at a time. */
 13. i = 0;
 14. for (ch = getchar();
 15. ch != '\n' && ch != EOF && i < dest_len - 1;
 16. ch = getchar())
 17. dest[i++] = ch;
 18. dest[i] = '\0';
 19.
 20. /* Discards any characters that remain on input line */
 21. while (ch != '\n' && ch != EOF)
 22. ch = getchar();
 23.
 24. return (dest);
 25. }

8.6 • Character Operations 485

 The standard library’s single-character output facilities are putchar (for display on
the standard output device) and putc (for files). Both take as their first argument
a type int character code. Because type char can always be converted to type int
with no loss of information, we frequently call putchar and putc with arguments
of type char :

 putchar('a'); putc('a', outp);

 Character Analysis and Conversion

 In many string-processing applications, we need to know if a character belongs to
a particular subset of the overall character set. Is this character a letter? a digit? a
punctuation mark? The library we #include as <ctype.h> defines facilities for
answering questions like these and also provides routines to do common character
conversions like uppercase to lowercase or lowercase to uppercase. Table 8.3 lists
a number of these routines; each takes a single type int argument representing a

 TABLE 8.3 Character Classification and Conversion Facilities in ctype Library

 Facility Checks Example

 isalpha if argument is a letter
of the alphabet

 if (isalpha(ch))
 printf("%c is a letter\n", ch);

 isdigit if argument is one of the
ten decimal digits

 dec_digit = isdigit(ch);

 islower
(isupper)

 if argument is a lowercase (or
uppercase) letter of the alphabet

 if (islower(fst_let)) {
 printf("\nError: sentence ");
 printf("should begin with a ");
 printf("capital letter.\n");
 }

 ispunct if argument is a punctuation character,
that is, a noncontrol character that is
not a space, a letter of the alphabet, or
a digit

 if (ispunct(ch))
 printf("Punctuation mark: %c\n",
 ch);

 isspace if argument is a whitespace character
such as a space, a newline, or a tab

 c = getchar();
 while (isspace(c) && c != EOF)
 c = getchar();

 Facility Converts Example

 tolower
(toupper)

 its lowercase (or uppercase) letter
argument to the uppercase (or lower-
case) equivalent and returns this
equivalent as the value of the call

 if (islower(ch))
 printf("Capital %c = %c\n",
 ch, toupper(ch));

486 Chapter 8 • Strings

character code. The classification routines (those whose names begin with "is")
return a nonzero value (not necessarily 1) if the condition checked is true. The
example given for the isspace routine is a loop that can be used to advance to the
next nonblank input character.

 EXAMPLE 8.9 When we alphabetize a list of strings, we must frequently deal with words contain-
ing a mixture of uppercase and lowercase letters. In this situation, we cannot rely on
 strcmp to give useful results. This call to strcmp

 strcmp("Ziegler", "aardvark")

 will return a negative value indicating that "Ziegler" is less than "aardvark" if
our system is using the ASCII character codes, since all capital letters have lower
ASCII character codes than the lowercase letters have. On computers that use the
EBCDIC character set, we also have difficulty handling a mixture of uppercase
and lowercase letters because all lowercase letters have smaller character codes
than uppercase letters (see Appendix D). Figure 8.16 shows a function string_
greater that could be used to find out-of-order elements when alphabetizing
a list of strings in a situation in which the case of the letters should be ignored.
The function converts each of its arguments to all capital letters using string_
toupper before comparing them. Since str1 and str2 are strictly input parameters
of string_greater , their values must not be changed. However, string_toupper
does change its parameter, so we first make copies of str1 and str2 in s1 and s2
and then send these copies to string_toupper .

 FIGURE 8.16 String Function for a Greater-Than Operator That Ignores Case

 1. #include <string.h>
 2. #include <ctype.h>
 3.
 4. #define STRSIZ 80
 5.
 6. /*
 7. * Converts the lowercase letters of its string argument to uppercase
 8. * leaving other characters unchanged.
 9. */
 10. char *
 11. string_toupper(char *str) /* input/output - string whose lowercase
 12. letters are to be replaced by uppercase */
 13. {

(continued)

8.6 • Character Operations 487

 EXERCISES FOR SECTION 8.6

 Self-Check

 1. What is wrong with the following statement? How would you rewrite it to
accomplish its apparent purpose?

 if (isupper(strncpy(tmp, str, 1)))
 printf("%s begins with a capital letter\n", str);

 Programming

 1. Write a function scanstring that works basically like scanf with a %s
 placeholder—that is, it skips leading whitespace and then copies a string up to
the next whitespace character—except that it uses getchar and takes an extra
argument stating the amount of space available in the first argument. Unlike
 scanf , function scanstring should prevent overflow of its string argument.

 14. int i;
 15. for (i = 0; i < strlen(str); ++i)
 16. if (islower(str[i]))
 17. str[i] = toupper(str[i]);
 18.
 19. return (str);
 20. }
 21.
 22. /*
 23. * Compares two strings of up to STRSIZ characters ignoring the case of
 24. * the letters. Returns the value 1 if str1 should follow str2 in an
 25. * alphabetized list; otherwise returns 0
 26. */
 27. int
 28. string_greater(const char *str1, /* input - */
 29. const char *str2) /* strings to compare */
 30. {
 31. char s1[STRSIZ], s2[STRSIZ];
 32.
 33. /* Copies str1 and str2 so string_toupper can modify copies */
 34. strcpy(s1, str1);
 35. strcpy(s2, str2);
 36.
 37. return (strcmp(string_toupper(s1), string_toupper(s2)) > 0);
 38. }

FIGURE 8.16 (continued)

488 Chapter 8 • Strings

 2. Write a batch program that takes and echoes input data one character at a
time until EOF is encountered and then prints a summary such as

 The 14 lines of text processed contained 20 capital
 letters, 607 lowercase letters, and 32 punctuation marks.

 8.7 String-to-Number and Number-to-String Conversions
 Some of the most common operations in a computer program are the conversion
of a string like "3.14159" to the type double numeric value it represents and
the conversion of a number like −36 from its internal representation in computer
memory to the three-character string "−36" that is our usual picture of this number.
Such conversions are constantly being carried out by the library functions scanf
and printf . Tables 8.4 and 8.5 review some of the format string placeholders that
we have used in earlier chapters to guide the conversion process. The characters
that were scanned are in color. Table 8.5 also presents some new placeholders.
The last example in Table 8.5 shows the use of a maximum field width. The %3.3s
placeholder indicates output of a string using a minimum field width of 3 (3.3) and
a maximum field width of 3 (3.3). As a result, only the first three characters of the
string are printed.

 TABLE 8.4 Review of Use of scanf

 Declaration Statement
 Data (❚
means blank) Value Stored

 char t scanf("%c", &t); ❚ g

 \n \n
 A A

 int n scanf("%d", &n); ❚ 32 ❚ 32
 ❚❚− 8.6 − 8

 ❚ +19 ❚ 19

 double x scanf("%lf", &x); ❚❚❚ 4.32 ❚ 4.32
 ❚− 8❚ − 8.0

 ❚ 1.76e-3 ❚ .00176

 char str[10] scanf("%s", str); ❚❚ hello\n hello\0
 overlengthy ❚ overlengthy\0

 (overruns length of str)

8.7 • String-to-Number and Number-to-String Conversions 489

 The functions printf and scanf are such powerful string manipulators that
sometimes we would like to directly control the strings on which they work. The
stdio library gives us this ability through similar functions named sprintf and
 sscanf . The sprintf function requires space for a string as its first argument.
Consider this call to sprintf ; assume that s has been declared as char s[100] , and
the values of type int variables mon , day , and year are as shown.

8

sprintf(s, "%d/%d/%d", mon, day, year);

mon

23

day

1914

year

 Function sprintf substitutes values for placeholders just as printf does, but
instead of printing the result, sprintf stores it in the character array accessed by
its initial argument.

 TABLE 8.5 Placeholders Used with printf

 Value Placeholder Output (❚ means blank)

 'a' %c a

 %3c ❚❚ a

 %-3c a ❚❚

 −10 %d −10

 %2d −10

 %4d ❚ −10

 %−5d −10 ❚❚

 49.76 %.3f 49.760

 %.1f 49.8

 %10.2f ❚❚❚❚❚ 49.76

 %10.3e ❚ 4.976e+01

 "fantastic" %s fantastic

 %6s fantastic

 %12s ❚❚❚ fantastic

 %-12s fantastic ❚❚❚

 %3.3s fan

490 Chapter 8 • Strings

8 / 2 3 / 1 9 1 4 \0

s

 The sscanf function works exactly like scanf except that instead of taking the
data values for its output parameters from the standard input device, it takes data
from the string that is its first argument. For example, the illustration that follows
shows how

 sscanf(" 85 96.2 hello", "%d%lf%s", &num, &val, word);

 stores values from the first string.

85

num

96.2

val

h e l l o \0

word

 EXAMPLE 8.10 Because sscanf is available, we have the option of taking an entire data line as
input and verifying that it conforms to the expected format before attempting to
convert and store the line’s values in memory. For example, if one line of data is
expected to contain two nonnegative integers and then a string of up to 15 char-
acters, one could write a validation function that would take the entire data line
as an input argument and check the line one character at a time. The validation
routine would look for optional whitespace characters followed by a group of digits,
more whitespace, another group of digits, more whitespace, and then up to 15 non-
whitespace characters. If the validation function discovered an error, it could print
a message and return the position of the character where the error was detected.
Otherwise, it could return a negative value. Figure 8.17 shows a program segment
that assumes the availability of such a validation function and also of the scanline
function defined in Fig. 8.15 .

 In our next example, we combine the power of sprintf/sscanf with the
ability to directly access an array element to produce convenient functions for the
conversion of one representation of a date to another.

 EXAMPLE 8.11 The conversion of a date from a representation including a month name to a list
of three numbers (12 January 1941 ➝ 1 12 1941) and the reverse conversion are
very common in everyday life. The program in Fig. 8.18 shows functions for both
conversions and a driver program to test them. Arrays of pointers to strings are
extremely useful for storing the constants needed in this type of conversion. Note

8.7 • String-to-Number and Number-to-String Conversions 491

that we could change the representation of the date string to use an abbreviation
(12 JAN 1941) or a different language (12 janvier 1941) merely by using a different
initialization of our array. The conversion from a string including the month name to
a group of three numbers involves a search of the list of month names using a func-
tion that is a string adaptation of the numeric linear search function we developed
in Chapter 7 .

 FIGURE 8.17 Program Segment That Validates Input Line Before Storing Data Values

 1. char data_line[STRSIZ], str[STRSIZ];
 2. int n1, n2, error_mark, i;
 3.
 4. scanline(data_line, STRSIZ);
 5. error_mark = validate(data_line);
 6.
 7. if (error_mark < 0) {
 8. /* Stores in memory values from correct data line */
 9. sscanf(data_line, "%d%d%s", &n1, &n2, str);
 10. } else {
 11. /* Displays line and marks spot where error detected */
 12. printf("\n%s\n", data_line);
 13. for (i = 0; i < error_mark; ++i)
 14. putchar(' ');
 15. putchar('/');
 16. }

 FIGURE 8.18 Functions That Convert Representations of Dates

 1. /*
 2. * Functions to change the representation of a date from a string containing
 3. * day, month name and year to three integers (month day year) and vice versa
 4. */
 5.
 6. #include <stdio.h>
 7. #include <string.h>
 8.
 9. #define STRSIZ 40
 10. char *nums_to_string_date(char *date_string, int month, int day,
 11. int year, const char *month_names[]);

(continued)

492 Chapter 8 • Strings

 12. int search(const char *arr[], const char *target, int n);
 13. void string_date_to_nums(const char *date_string, int *monthp,
 14. int *dayp, int *yearp, const char *month_names[]);
 15.
 16. /* Tests date conversion functions */
 17. int
 18. main(void)
 19. {
 20. char *month_names[12] = {"January", "February", "March", "April", "May",
 21. "June", "July", "August", "September", "October",
 22. "November", "December"};
 23. int m, y, mon, day, year;
 24. char date_string[STRSIZ];
 25. for (y = 1993; y < 2010; y += 10)
 26. for (m = 1; m <= 12; ++m) {
 27. printf("%s", nums_to_string_date(date_string,
 28. m, 15, y, month_names));
 29. string_date_to_nums(date_string, &mon, &day, &year, month_names);
 30. printf(" = %d/%d/%d\n", mon, day, year);
 31. }
 32.
 33. return (0);
 34. }
 35.
 36. /*
 37. * Takes integers representing a month, day and year and produces a
 38. * string representation of the same date.
 39. */
 40. char *
 41. nums_to_string_date(char *date_string, /* output - string
 42. representation */
 43. int month, /* input - */
 44. int day, /* representation */
 45. int year, /* as three numbers */
 46. const char *month_names[]) /* input - string representa-
 47. tions of months */
 48. {
 49. sprintf(date_string, "%d %s %d", day, month_names[month - 1], year);
 50. return (date_string);
 51. }
 52.

FIGURE 8.18 (continued)

(continued)

8.7 • String-to-Number and Number-to-String Conversions 493

 53. #define NOT_FOUND -1 /* Value returned by search function if target
 54. not found */
 55.
 56. /*
 57. * Searches for target item in first n elements of array arr
 58. * Returns index of target or NOT_FOUND
 59. * Pre: target and first n elements of array arr are defined and n>0
 60. */
 61. int
 62. search(const char *arr[], /* array to search */
 63. const char *target, /* value searched for */
 64. int n) /* number of array elements to search */
 65. {
 66. int i,
 67. found = 0, /* whether or not target has been found */
 68. where; /* index where target found or NOT_FOUND */
 69.
 70. /* Compares each element to target */
 71. i = 0;
 72. while (!found && i < n) {
 73. if (strcmp(arr[i], target) == 0)
 74. found = 1;
 75. else
 76. ++i;
 77. }
 78.
 79. /* Returns index of element matching target or NOT_FOUND */
 80. if (found)
 81. where = i;
 82. else
 83. where = NOT_FOUND;
 84. return (where);
 85. }
 86.
 87. /*
 88. * Converts date represented as a string containing a month name to
 89. * three integers representing month, day, and year
 90. */
 91. void

FIGURE 8.18 (continued)

(continued)

494 Chapter 8 • Strings

 92. string_date_to_nums(const char *date_string, /* input - date to convert */
 93. int *monthp, /* output - month number */
 94. int *dayp, /* output - day number */
 95. int *yearp, /* output - year number */
 96. const char *month_names[]) /* input - names used in
 97. date string */
 98. {
 99. char mth_nam[STRSIZ];
 100. int month_index;
 101.
 102. sscanf(date_string, "%d%s%d", dayp, mth_nam, yearp);
 103.
 104. /* Finds array index (range 0..11) of month name. */
 105. month_index = search(month_names, mth_nam, 12);
 106. *monthp = month_index + 1;
 107. }

 15 January 1993 = 1/15/1993
 15 February 1993 = 2/15/1993
 . . .
 15 December 2003 = 12/15/2003

FIGURE 8.18 (continued)

 This date conversion application is one instance where C’s required use of zero
as the subscript of an initial array element is rather annoying. If we could have an
array with row subscripts 1 . . . 12 , the conversion from month number to name
would be more direct. We have chosen to use a 12-string array and to correct the
off-by-one error in the conversion functions. In nums_to_string_date we have

 sprintf(date_string, "%d %s %d", day,
 month_names[month - 1], year);

 and in string_date_to_nums we find the reference

 *monthp = month_index + 1;

 EXERCISES FOR SECTION 8.7

 Self-Check

 1. Consider the following call to sscanf from the string_date_to_nums function.

 sscanf(date_string, "%d%s%d", dayp, mth_name, yearp);

 Why is the address-of operator not applied to any of the arguments?

8.8 • String Processing Illustrated 495

 2. Write a code segment that uses an array of pointers to strings and sprintf
to convert a type double monetary value less than 10.00 to a string for use
on a check. For example, 4.83 would be converted to "Four and 83/100
dollars" .

 Programming

 1. Write a type int function strtoint and a type double function strtodouble
that convert string representations of numbers to their numeric equivalents.

 strtoint("-8") ➝ −8
 strtodouble("-75.812") ➝ −75.812

 8.8 String Processing Illustrated
 You have been using a text editor to create and edit C programs. This is probably a
fairly sophisticated program that uses special commands to move the cursor around
the screen and to specify edit operations. Although you cannot develop such an
editor yet, you can write a less sophisticated one that processes a single line of text.

 CASE STUDY Text Editor

 PROBLEM

 Design and implement a program to perform editing operations on a line of text.
Your editor should be able to locate a specified target substring, delete a substring,
and insert a substring at a specified location. The editor should expect source strings
of less than 80 characters.

 ANALYSIS

 The editor’s main function must get the source line to edit and then repeatedly scan
and process editor commands until it receives the Q (Quit) command. We will allow
strings of up to 99 characters, but we will not check for overflow.

 DATA REQUIREMENTS

 Problem Constant
 MAX_LEN 100 /* maximum size of a string */

496 Chapter 8 • Strings

 Problem Inputs
 char source[MAX_LEN] /* source string */
 char command /* edit command */

 Problem Output
 char source[MAX_LEN] /* modified source string */

 DESIGN

 INITIAL ALGORITHM

 1. Scan the string to be edited into source.
 2. Get an edit command.
 3. while command isn’t Q

 4. Perform edit operation.
 5. Get an edit command.

 REFINEMENTS AND PROGRAM STRUCTURE

 Step 4 is performed by function do_edit . A structure chart for the text editor
is shown in Fig. 8.19 ; the local variables and algorithms for function do_edit
 follow.

 Local Variables
 char str[MAX_LEN] /* string to find, delete, or insert */
 int index /* position in source */

 ALGORITHM FOR DO_EDIT

 1. switch command

 'D': 2. Get the substring to be deleted (str).
 3. Find the position of str in source .
 4. if str is found, delete it.
 'I': 5. Get the substring to insert (str).
 6. Get position of insertion (index).
 7. Perform insertion of str at index position of source .
 'F': 8. Get the substring to search for (str).
 9. Find the position of str in source .
 10. Report position.

 Otherwise:
 11. Display error message.

Get string
to look for

Find position
of string

Display
position

Get source
string

Get
command

Edit source as
indicated by
command

Get string
to delete

Find position
of string

Delete some
characters

Get string
to insert

Get position
of insertion

Perform
insertion

Edit a string

Delete a
string

Find a
string

Insert a
string

gets get_command do_edit

source command

command

source

source sourcesource

str
source
str sourceindex

index
n

gets pos delete gets pos printf

str index index

str sourceindex
index
str

gets scanf insert

sour
str

source

 FIGURE 8.19 Structure Chart for Text Editor Program

497

498 Chapter 8 • Strings

 Function do_edit uses a function that finds the position of one string in another
(pos) for steps 3 and 9, a function that deletes a certain number of characters from a
string (delete) for step 4, and a function that inserts one string in another (insert)
for step 7.

 IMPLEMENTATION

 Figure 8.20 shows a complete implementation of the text editor, and Fig. 8.21
shows a sample run. Read the helper functions pos , insert , and delete carefully
as examples of functions that use C string library functions.

 FIGURE 8.20 Text Editor Program

 1. /*
 2. * Performs text editing operations on a source string
 3. */
 4.
 5. #include <stdio.h>
 6. #include <string.h>
 7. #include <ctype.h>
 8.
 9. #define MAX_LEN 100
 10. #define NOT_FOUND -1
 11.
 12. char *delete(char *source, int index, int n);
 13. char *do_edit(char *source, char command);
 14. char get_command(void);
 15. char *insert(char *source, const char *to_insert, int index);
 16. int pos(const char *source, const char *to_find);
 17.
 18. int
 19. main(void)
 20. {
 21. char source[MAX_LEN], command;
 22. printf("Enter the source string:\n> ");
 23. gets(source);
 24.
 25. for (command = get_command();
 26. command != 'Q';
 27. command = get_command()) {
 28. do_edit(source, command);
 29. printf("New source: %s\n\n", source); (continued)

8.8 • String Processing Illustrated 499

FIGURE 8.20 (continued)

 30. }
 31.
 32. printf("String after editing: %s\n", source);
 33. return (0);
 34. }
 35.
 36. /*
 37. * Returns source after deleting n characters beginning with source[index].
 38. * If source is too short for full deletion, as many characters are
 39. * deleted as possible.
 40. * Pre: All parameters are defined and
 41. * strlen(source) - index - n < MAX_LEN
 42. * Post: source is modified and returned
 43. */
 44. char *
 45. delete(char *source, /* input/output - string from which to delete part */
 46. int index, /* input - index of first char to delete */
 47. int n) /* input - number of chars to delete */
 48. {
 49. char rest_str[MAX_LEN]; /* copy of source substring following
 50. characters to delete */
 51.
 52. /* If there are no characters in source following portion to
 53. delete, delete rest of string */
 54. if (strlen(source) <= index + n) {
 55. source[index] = '\0';
 56.
 57. /* Otherwise, copy the portion following the portion to delete
 58. and place it in source beginning at the index position */
 59. } else {
 60. strcpy(rest_str, &source[index + n]);
 61. strcpy(&source[index], rest_str);
 62. }
 63.
 64. return (source);
 65. }
 66.
 67. /*
 68. * Performs the edit operation specified by command
 69. * Pre: command and source are defined.

(continued)

500 Chapter 8 • Strings

FIGURE 8.20 (continued)

 70. * Post: After scanning additional information needed, performs a
 71. * deletion (command = 'D') or insertion (command = 'I') or
 72. * finds a substring ('F') and displays result; returns
 73. * (possibly modified) source.
 74. */
 75. char *
 76. do_edit(char *source, /* input/output - string to modify or search */
 77. char command) /* input - character indicating operation */
 78. {
 79. char str[MAX_LEN]; /* work string */
 80. int index;
 81.
 82. switch (command) {
 83. case 'D':
 84. printf("String to delete> ");
 85. gets(str);
 86. index = pos(source, str);
 87. if (index == NOT_FOUND)
 88. printf("'%s' not found\n", str);
 89. else
 90. delete(source, index, strlen(str));
 91. break;
 92.
 93. case 'I':
 94. printf("String to insert> ");
 95. gets(str);
 96. printf("Position of insertion> ");
 97. scanf("%d", &index);
 98. insert(source, str, index);
 99. break;
 100.
 101. case 'F':
 102. printf("String to find> ");
 103. gets(str);
 104. index = pos(source, str);
 105. if (index == NOT_FOUND)
 106. printf("'%s' not found\n", str);
 107. else
 108. printf("'%s' found at position %d\n", str, index);
 109. break;

(continued)

8.8 • String Processing Illustrated 501

FIGURE 8.20 (continued)

 110.
 111. default:
 112. printf("Invalid edit command '%c'\n", command);
 113. }
 114.
 115. return (source);
 116. }
 117.
 118. /*
 119. * Prompt for and get a character representing an edit command and
 120. * convert it to uppercase. Return the uppercase character and ignore
 121. * rest of input line.
 122. */
 123. char
 124. get_command(void)
 125. {
 126. char command, ignore;
 127.
 128. printf("Enter D(Delete), I(Insert), F(Find), or Q(Quit)> ");
 129. scanf(" %c", &command);
 130.
 131. do
 132. ignore = getchar();
 133. while (ignore != '\n');
 134.
 135. return (toupper(command));
 136. }
 137.
 138. /*
 139. * Returns source after inserting to_insert at position index of
 140. * source. If source[index] doesn't exist, adds to_insert at end of
 141. * source.
 142. * Pre: all parameters are defined, space available for source is
 143. * enough to accommodate insertion, and
 144. * strlen(source) - index - n < MAX_LEN
 145. * Post: source is modified and returned
 146. */
 147. char *
 148. insert(char *source, /* input/output - target of insertion */
 149. const char *to_insert, /* input - string to insert */

(continued)

502 Chapter 8 • Strings

FIGURE 8.20 (continued)

 150. int index) /* input - position where to_insert
 151. is to be inserted */
 152. {
 153. char rest_str[MAX_LEN]; /* copy of rest of source beginning
 154. with source[index] */
 155.
 156. if (strlen(source) <= index) {
 157. strcat(source, to_insert);
 158. } else {
 160. strcpy(rest_str, &source[index]);
 161. strcpy(&source[index], to_insert);
 162. strcat(source, rest_str);
 163. }
 164.
 165. return (source);
 166. }
 167.
 168. /*
 169. * Returns index of first occurrence of to_find in source or
 170. * value of NOT_FOUND if to_find is not in source.
 171. * Pre: both parameters are defined
 172. */
 173. int
 174. pos(const char *source, /* input - string in which to look for to_find */
 175. const char *to_find) /* input - string to find */
 176.
 177. {
 178. int i = 0, find_len, found = 0, position;
 179. char substring[MAX_LEN];
 180.
 181. find_len = strlen(to_find);
 182. while (!found && i <= strlen(source) - find_len) {
 183. strncpy(substring, &source[i], find_len);
 184. substring[find_len] = '\0';
 185.
 186. if (strcmp(substring, to_find) == 0)
 197. found = 1;
 188. else
 189. ++i;
 190. }
 191.

(continued)

8.8 • String Processing Illustrated 503

FIGURE 8.20 (continued)

 192. if (found)
 193. position = i;
 194. else
 195. position = NOT_FOUND;
 196.
 197. return (position);
 198. }

 FIGURE 8.21 Sample Run of Text Editor Program

 Enter the source string:
 > Internet use is growing rapidly.
 Enter D(Delete), I(Insert), F(Find), or Q(Quit)> d
 String to delete> growing ❚
 New source: Internet use is rapidly.

 Enter D(Delete), I(Insert), F(Find), or Q(Quit)> F
 String to find> .
 '.' found at position 23
 New source: Internet use is rapidly.

 Enter D(Delete), I(Insert), F(Find), or Q(Quit)> I
 String to insert> ❚ expanding
 Position of insertion> 23

 New source: Internet use is rapidly expanding.

 Enter D(Delete), I(Insert), F(Find), or Q(Quit)> q
 String after editing: Internet use is rapidly expanding.

 TESTING

 Choose test cases that check various boundary conditions as well as middle-of-the-road
data. For example, to check the Delete command, try to delete the first few characters
of source , the last few, and a substring in the middle of source . Also, try a substring
that appears more than once to verify that only the first occurrence is deleted. Attempt
two impossible deletions, one of a substring that does not resemble any part of source ,
and one of a substring that matches a part of source except for its last character. Also,
test insertions at the beginning of source , exactly at the end of source , at a position
several characters beyond the end of source , and in the middle of source . Use the
Find command to look for all of source , single-letter pieces of source from the begin-
ning, middle, and end, and multiple-character substrings from the beginning, middle,
and end of the source string. Be sure to look for a substring not present in source , too.

504 Chapter 8 • Strings

 8.9 Common Programming Errors
 When manipulating string variables, the programmer must use great care in the allo-
cation and management of memory. When we work with numeric values or single
characters, we commonly compute a value of interest in a function, storing the result
value temporarily in a local variable of the function until it is returned to the calling
module using the return statement. One cannot use this approach in string func-
tions, for such functions do not actually return a string value in the same way that an
 int function returns an integer value. Rather a string function returns the address of
the initial character of a string. If we were to use the same strategy in a string func-
tion as we do in many numeric functions, we would build our result string in a local
variable and return the address of the new string as the function value. The problem
with this approach is that the function’s data area is deallocated as soon as the return
statement is executed, so it is not valid to access from the calling module the string

 FIGURE 8.22 Flawed scanline Returns Address of Deallocated Space

 1. /*
 2. * Gets one line of data from standard input. Returns an empty string on end
 3. * of file. If data line will not fit in allotted space, stores portion that
 4. * does fit and discards rest of input line.
 5. **** Error: returns address of space that is immediately deallocated.
 6. */
 7. char *
 8. scanline(void)
 9. {
 10. char dest[MAX_STR_LEN];
 11. int i, ch;
 12.
 13. /* Get next line one character at a time. */
 14. i = 0;
 15. for (ch = getchar();
 16. ch != '\n' && ch != EOF && i < MAX_STR_LEN - 1;
 17. ch = getchar())
 18. dest[i++] = ch;
 19. dest[i] = '\0';
 20.
 21. /* Discard any characters that remain on input line */
 22. while (ch != '\n" && ch != EOF)
 23. ch = getchar();
 24.
 25. return (dest);
 26. }

8.9 • Common Programming Errors 505

the function constructed in its own local variable. Figure 8.22 shows a poor rewrite
of the scanline function from Fig. 8.15 . Rather than requiring the calling function
to provide space in which to construct the function result as the earlier scanline did
(and as is the practice of the functions in the C string library), this faulty scanline
returns a string built in local storage. As a consequence, the string that the printf
function tries to print is in a section of memory that neither main nor printf has any
legitimate right to access and that may be overwritten with new values at any moment.
What makes this type of error particularly grievous is that on some C implementations
it will compile and pass unit testing without creating any error in the output.

 To avoid creation of such “time-bomb” functions that do not “blow up” until
system integration tests, follow the pattern of the C string library and have any
string functions you write require the calling module to provide as the first argu-
ment a variable in which to build the string result. Some ANSI C compilers will flag
the error illustrated in Fig. 8.22 .

 A second error that creeps into C programs with string use is the misuse or
neglect of the & operator. The fact that this operator is not applied to strings or to
any other whole arrays used as output arguments often leads beginning users of C
to forget that the address-of operator must still be used on simple output arguments
such as variables of type int , char , or double , as well as on single array elements of
these types when used as output arguments.

 Another problem that is common with string use is the overflow of character
arrays allocated for strings. Since many string library functions just assume that the
calling module has provided adequate space for whatever may need to be stored,
calling these functions with inadequate storage causes errors that are really difficult
to find. In Fig. 8.4 , which is repeated here, we see such a situation.

Execution of scanf("%s%d%s%d", dept, &course_num, days, &time);
on Entry of Invalid Data

M

[0]

A T H , 1 2 0 , T , 1 8 0 0 \0

[4] space not allocated for dept

7 R

dept

[9]

 Whatever was stored in the cells following array dept has just been overwritten. If
that memory was being used for other program variables, their values will appear to
change spontaneously.

 The scanline function that we wrote as an example protects the calling function
from string overflow by requiring an input argument telling how much space is available
for the string result. This function takes care to prevent storage of a string that is too
long. We encourage you to use protective functions like this in your string programs.

 A relatively minor error that can lead to difficult bugs is forgetting that all
strings end with the null character. The programmer must remember the null
character both when allocating space for a string and when building a string one
character at a time.

506 Chapter 8 • Strings

 It is easy to slip and use equality or relational operators when comparing strings
or the assignment operator for copying them. Remember to use strcmp or strncmp
for comparisons and library functions such as strcpy or strncpy for copying strings.

 ■ Chapter Review

 1. Strings in C are arrays of characters ended by the null character '\0' .
 2. String input is done using scanf and fscanf with %s descriptors for strings

separated by whitespace, using gets and fgets for input of whole lines, and
using getchar and getc for single character input.

 3. String output is done using printf and fprintf with %s descriptors; putchar
and putc do single-character output.

 4. The string library provides functions for string assignment and extraction of
substrings (strcpy and strncpy), for string length (strlen), for concatenation
(strcat and strncat), and for alphabetic comparison (strcmp and strncmp).

 5. The standard I/O library includes functions for string-to-number (sscanf) and
number-to-string (sprintf) conversion.

 6. String-building functions typically require the calling module to provide space
for the new string as an output parameter, and they return the address of this
parameter as the function result.

 7. String manipulation in C requires the programmer to take great care to avoid
overflow of string variables and creation of strings not ending in '\0' .

 8. Multiple orderings of a list of strings can be maintained by storing the strings
once and creating arrays of pointers for additional orderings.

 9. The ctype library provides functions for classification and conversion of
single characters.

 NEW C CONSTRUCTS

 Statement Effect

 Declarations

 char str[100]; Allocates space for a string of up to 99 characters plus the null character.

 char str[11] = " "; Allocates space for a string of up to ten characters plus the null and
initializes it to all blanks.

 char *abbrevs[10];
 const char *arg1
 or
 const char arg1[]

 Declares an array of ten pointers to character strings.
Declares a string input parameter.

 char *out
 or
 char out[]

 Declares a string output or input/output parameter.

(continued)

507Chapter Review

 Statement Effect

 char names[10][20]; Allocates space for an array of ten strings, each of which has up to
19 characters plus the null character.

 char *weekdays[] =
 {"Mon", "Tue", "Wed",
 "Thu", "Fri"};

 Declares and initializes an array of pointers to five strings.

 char list[][20] Declares a function parameter that is an array of strings in which each string
has up to 19 characters plus the null.

 char *strs[] Declares a function parameter that is an array of pointers to strings.

 Calls to I/O and Conversion Functions

 gets(str1); Gets a line of data from the keyboard and stores it as a string in str1
(without '\n').

 c1 = getchar(); Gets a character from the keyboard and stores its int character code in
 c1 , or stores EOF in c1 on end of file.

 putchar(c1); Displays character value of c1 .

 sprintf(s, "%d + %d = %d", x,
 y, x + y);

 If x is 3 and y is 4 , builds and returns the string "3 + 4 = 7" .

 sscanf("14.3 -5", "%lf%d",
 &p, &n);

 Stores 14.3 in p and −5 in n .

 Calls to Character Functions

 if (islower(c1))
 c1 = toupper(c1);

 If c1 ’s value is 'q' , stores 'Q' in c1 .

 isdigit(c2) Returns 1 (true) if c2 is one of the characters '0' , '1' , '2' , '3' , '4' ,
 '5' , '6' , '7' , '8' , '9' .

 Calls to String Library

 strlen(a_string) Returns the number of characters in the string a_string up to but not
including the null character.

 strcmp(str1, str2) Returns a negative integer if str1 precedes str2 alphabetically, a positive
integer if str2 precedes str1 , and zero if str1 and str2 are equal.

 strncmp(str1, str2, 4) Compares first four characters of str1 to first four characters of str2 ,
returning a negative integer if the str1 substring precedes the str2
substring alphabetically, a positive integer if it follows, and zero if the
substrings are equal.

 strcpy(str_result, str_src) Copies all the characters of str_src including the null character into
 str_result . Assumption is that str_result has enough room for all
these characters.

 strncpy(str_result,
 str_src, 10)

 Copies first ten characters of str_src into str_result . Assumption is
that str_result has room for all ten. Characters stored include '\0'
 only if strlen(str_src) < 10 .

(continued)

NEW C CONSTRUCTS (continued)

508 Chapter 8 • Strings

 ■ Quick-Check Exercises

 1. For each of the following functions, explain its purpose, the type(s) of its out-
put parameters, and the type(s) of its input parameter(s). Also, indicate if it is
user-defined or if it is from the string library or from the ctype library.

 strcpy strncpy strncat
 islower strcat scanline
 isalpha strlen strcmp

 2. Look at Appendix D , which lists three character sets. Which of the following
expressions may yield different results on different computers?

 a. (char)45
 b. 'a' < 'A'
 c. 'A' < 'Z'
 d. ('A' <= ch && ch <= 'Z') && isalpha(ch)
 e. (int)'A'
 f. (int)'B' - (int)'A'

 3. Which of the following strings could represent space allocated for a local
 variable? Which could represent a formal parameter of any length?

 char str1[50] char str2[]

 4. A program you have written is producing incorrect results on your second data
set, although it runs fine on the first. As you debug, you discover that the value
of one of your strings is spontaneously changing from "blue" to "al" in the
following code segment. What could be wrong?

 . . .
 printf("%s\n", s1); /* displays "blue" */
 scanf("%s", s2);
 printf("%s\n", s1); /* displays "al" */
 . . .

 Statement Effect

 Calls to String Library

 strcat(str_result, new) Concatenates the complete value of new on the end of str_result .
Assumption is that str_result has room enough for its own current
value plus the added characters of new .

 strncat(str_result, new, 10) Concatenates the value of new at the end of str_result providing
 new ’s length (not counting the null character) is less than or equal to ten.
Otherwise, it concatenates the first ten characters of new on the end of
 str_result . It always adds a null character at the end, so at most 11
characters are added to str_result .

NEW C CONSTRUCTS (continued)

509Answers to Quick-Check Exercises

 5. Declare a variable str with as little space as would be reasonable given that
 str will hold each of the values below in turn.

 carbon uranium tungsten bauxite

 6. What is the value of t1 after execution of these statements if the value of t2 is
 "Merry Christmas" ?

 strncpy(t1, &t2[3], 5); t1[5] = '\0';

 7. The action of joining two strings is called ______________.
 8. Write a statement that assigns to s1 the end of the string value of s2 starting

with the fourth character (i.e., s2[3]).
 9. Write statements that take a whole data line as input and display all the upper-

case letters in the line.
 10. What is the value of the following expression?

 isdigit(9)

 11. What does this program fragment display?

 char city[20] = "Washington DC 20059";
 char *one, *two, *three;
 one = strtok(city, " ");
 two = strtok(NULL, " ");
 three = strtok(NULL, " ");
 printf("%s\n%s\n%s\n", one, two, three);

 12. After execution of the fragment in Exercise 11, is the value of city still
“ Washington DC 20059 ”?

 ■ Answers to Quick-Check Exercises
 1.

 Function’s Purpose

 Output
Parameter
Types

 Input
Parameter
Types

 Where
Defined

 strcpy copies one string
into another.

 char *
(string result)

 const char *
(input string)

 string

 islower checks whether
its argument is the character
code for a lowercase
character.

 none int ctype

 isalpha determines if its
argument is the character code
for a letter of the alphabet.

 none int ctype

(continued)

510 Chapter 8 • Strings

 Function’s Purpose

 Output
Parameter
Types

 Input
Parameter
Types

 Where
Defined

 strncpy copies n characters
of one string into another.

 char *
(string result)

 const char *
(source string) int

 string

 strcat concatenates one
string on the end of another.

 char *
(input/output
argument — first
source string and
string result)

 const char *
(second source string)

 string

 strlen finds the length of
its argument, counting the
letters that precede the null
character.

 none const char *
(source string)

 string

 strncat concatenates two
arguments by adding up to n
characters from the second
argument to the end of the
first argument.

 char *
(input/output
argument — first
source string and
string result)

 const char *
(second source
string)
 int (maximum number
of characters to copy
from second string)

 string

 scanline takes one line
of input as a string, stores as
much as will fit in its output
argument, and discards the
rest.

 char *
(string result)

 int (space available in
result string)

 user

 strcmp compares arguments
and returns a negative integer
if first is less than second,
zero if they are equal, and
apositive integer otherwise.

 none const char *
(2 input strings)

 string

 2. Results differ for a, b, e.
 3. local variable: str1; parameter: str2
 4. The call to scanf may be getting a string too long to fit in s2 , and the extra

characters could be overwriting memory allocated to s1 .
 5. char str[9] . The longest value ("tungsten") has eight characters, and one

more is needed for the null character.
 6. "ry Ch"
 7. concatenation
 8. strcpy(s1, &s2[3]);
 9. gets(line);
 for (i = 0; i < strlen(line); ++i)
 if (isupper(line[i]))
 putchar(line[i]);

511Review Questions

 10. 0 (false). However, isdigit('9') would be true.
 11. Washington
 DC
 20059
 12. No.

 ■ Review Questions
 Refer to these declarations when determining the effect of the statements in
Questions 1–4.

 char s5[5], s10[10], s20[20];
 char aday[7] = "Sunday";
 char another[9] = "Saturday";

 1. strncpy(s5, another, 4); s5[4] = '\0';
 2. strcpy(s10, &aday[3]);
 3. strlen(another)
 4. strcpy(s20, aday); strcat(s20, another);
 5. Write a function that pads a variable-length string with blanks to its maximum

size. For example, if s10 is a ten-character array currently holding the string
 "screen" , blank_pad would add three blanks (one of which would overwrite
the null character) and finish the string with the null character. Be sure your
function would work if no blank padding were necessary.

 6. Write a function that would return a copy of its string argument with the first
occurrence of a specified letter deleted.

 7. Write functions isvowel and isconsonant that return true if their type int
argument is the character code for a vowel (or consonant). Hint: Use a switch
statement in isvowel .

 8. Which one of the following would call somefun only if the string values of
character arrays a and b were equal?

 a. if (strcmp(a, b))
 somefun();

 b. if (strcmp(a, b) == 0)
 somefun();

 c. if (a == b)
 somefun();

 d. if (a[] == b[])
 somefun();

512 Chapter 8 • Strings

 9. What does this program fragment display?

 char x[80] = "gorilla";
 char y[80] = "giraffe";
 strcpy(x, y);
 printf("%s %s\n", x, y);

 a. gorilla giraffe
 b. giraffegorilla gorilla
 c. gorilla gorilla
 d. giraffe giraffe

 10. What does this program fragment display?

 char x[80] = "gorilla";
 char y[80] = "giraffe";
 strcat(x, y);
 printf("%s %s\n", x, y);

 a. gorillagiraffe giraffe
 b. giraffegorilla gorilla
 c. gorilla gorilla
 d. giraffe giraffe

 ■ Programming Projects

 1. Write and test a function deblank that takes a string output and a string
input argument and returns a copy of the input argument with all blanks
removed.

 2. A resistor is a circuit device designed to have a specific resistance value
between its ends. Resistance values are expressed in ohms () or kilo-ohms
(k). Resistors are frequently marked with colored bands that encode their
resistance values, as shown in Fig. 8.23 . The first two bands are digits, and the
third is a power-of-ten multiplier.

First digit

Second digit Multiplier FIGURE 8.23

 Bands Encoding
the Resistance
Value of a Resistor

513Programming Projects

 The table below shows the meanings of each band color. For example, if the
first band is green, the second is black, and the third is orange, the resistor has a
value of 50 × 10 3 	 or 50 k	. The information in the table can be stored in a C++
program as an array of strings.

 char COLOR_CODES[10][7] = {"black", "brown", "red",
 "orange", "yellow", "green", "blue", "violet", "gray",
 "white"};

 Notice that “ red ” is COLOR_CODES[2] and has a digit value of 2 and a multiplier
value of 10 2 . In general, COLOR_CODES[n] has digit value n and multiplier value 10 n .

 Write a program that prompts for the colors of Band 1, Band 2, and Band 3,
and then displays the resistance in kilo-ohms. Include a helper function search
that takes three parameters—the list of strings, the size of the list, and a target
string, and returns the subscript of the list element that matches the target or
returns –1 if the target is not in the list. Here is a short sample run:

 Enter the colors of the resistor's three bands, beginning with
 the band nearest the end. Type the colors in lowercase letters
 only, NO CAPS.

 Color Codes for Resistors *

 Color Value as Digit Value as Multiplier

 Black 0 1

 Brown 1 10

 Red 2 10 2

 Orange 3 10 3

 Yellow 4 10 4

 Green 5 10 5

 Blue 6 10 6

 Violet 7 10 7

 Gray 8 10 8

 White 9 10 9

 * Adapted from Sears and Zemansky’s University Physics , 10th edited by Hugh D. Young and Roger A.
Freedman (Boston: Addison-Wesley, 2000), p. 807 .

 Band 1 => green
 Band 2 => black
 Band 3 => yellow
 Resistance value: 500 kilo-ohms
 Do you want to decode another resistor?
 => y

514 Chapter 8 • Strings

 Enter the colors of the resistor's three bands, beginning with
the band nearest the end. Type the colors in lowercase letters
only, NO CAPS.
 Band 1 => brown
 Band 2 => vilet
 Band 3 => gray
 Invalid color: vilet
 Do you want to decode another resistor?
 => n

 3. Write a function fact_calc that takes a string output argument and an inte-
ger input argument n and returns a string showing the calculation of n! . For
example, if the value supplied for n were 6, the string returned would be
“6! � 6 � 5 � 4 � 3 � 2 � 1 � 720”. Write a program that repeatedly
prompts the user for an integer between 0 and 9, calls fact_calc and out-
puts the resulting string in a box of asterisks of the right size to surround the
result. If the user inputs an invalid value, the program should display an error
 message and reprompt for valid input. Input of the sentinel -1 should cause
the input loop to exit. Sample run:

 Enter an integer between 0 and 9 or -1 to quit => 6

 * 6! = 6 x 5 x 4 x 3 x 2 x 1 = 720 *

 Enter an integer between 0 and 9 or -1 to quit => 12
 Invalid entry

 Enter an integer between 0 and 9 or -1 to quit => 0

 * 0! = 1 *

 Enter an integer between 0 and 9 or -1 to quit => -1

 4. Write and test a function hydroxide that returns a 1 for true if its string
 argument ends in the substring OH .

 Try the function hydroxide on the following data:

 KOH H2O2 NaCl NaOH C9H8O4 MgOH

 5. Write a program that takes nouns and forms their plurals on the basis of
these rules:

 a. If noun ends in “y”, remove the “y” and add “ies”.
 b. If noun ends in “s”, “ch”, or “sh”, add “es”.
 c. In all other cases, just add “s”.

515Programming Projects

 Print each noun and its plural. Try the following data:

 chair dairy boss circus fly dog church clue dish

 6. Write a program that stores lists of names (the last name first) and ages in
 parallel arrays and sorts the names into alphabetical order keeping the ages
with the correct names. Sample output:

 Original list

 Ryan, Elizabeth 62

 McIntyre, Osborne 84

 DuMond, Kristin 18

 Larson, Lois 42

 Thorpe, Trinity 15

 Ruiz, Pedro 35

 Alphabetized list

 DuMond, Kristin 18

 Larson, Lois 42

 McIntyre, Osborne 84

 Ruiz, Pedro 35

 Ryan, Elizabeth 62

 Thorpe, Trinity 15

 7. Write a program that takes data a line at a time and reverses the words of the
line. For example,

 Input: birds and bees
 Reversed: bees and birds

 The data should have one blank between each pair of words.

 8. Write and test a function that finds and returns through an output parameter
the longest common suffix of two words (e.g., the longest common suffix of
“procrastination” and “destination” is “stination”, of “globally” and “internally”
is “ally”, and of “gloves” and “dove” is the empty string).

 9. Write a program that processes a data file of names in which each name is on a
separate line of at most 80 characters. Here are two sample names:

 Hartman-Montgomery, Jane R.
 Doe, J. D.

516 Chapter 8 • Strings

 On each line the surname is followed by a comma and a space. Next comes
the first name or initial, then a space and the middle initial. Your program
should scan the names into three arrays— surname , first , and middle_init .
If the surname is longer than 15 characters, store only the first 15. Similarly,
limit the first name to ten characters. Do not store periods in the first and
 middle_init arrays. Write the array’s contents to a file, aligning the contents
of each column:

 Hartman-Montgom Jane R
 Doe J D

 Recursion

 CHAPTER OBJECTIVES
 • To understand how recursion is used as a problem

 solving tool

 • To learn how to write and trace recursive functions

 • To see how to implement mathematical functions with
recursive definitions as C functions

 • To learn how to use recursion to solve problems
involving arrays and strings

 • To learn how to write a recursive sort function

 • To understand a recursive solution to the Towers of
Hanoi Problem

 C H A P T E R

9

 A function that calls itself is said to be recursive . A function f1 is also recursive
if it calls a function f2 , which under some circumstances calls f1 , creating a cycle
in the sequence of calls. The ability to invoke itself enables a recursive function to
be repeated with different parameter values. You can use recursion as an alterna-
tive to iteration (looping). Generally, a recursive solution is less efficient than an
iterative solution in terms of computer time due to the overhead for the extra func-
tion calls; however, in many instances, the use of recursion enables us to specify
a very natural, simple solution to a problem that would otherwise be very difficult
to solve. For this reason, recursion is an important and powerful tool in problem
solving and programming.

 9.1 The Nature of Recursion
 Problems that lend themselves to a recursive solution have the following character-
istics:

 ■ One or more simple cases of the problem have a straightforward, nonrecur-
sive solution.

 ■ The other cases can be redefined in terms of problems that are closer to the
simple cases.

 ■ By applying this redefinition process every time the recursive function is
called, eventually the problem is reduced entirely to simple cases, which are
relatively easy to solve.

 The recursive algorithms that we write will generally consist of an if statement with
the following form:

 if this is a simple case
 solve it

 else
 redefine the problem using recursion

 Figure 9.1 illustrates this approach. Let’s assume that for a particular problem
of size n, we can split the problem into a problem of size 1, which we can solve (a
simple case), and a problem of size n � 1. We can split the problem of size n � 1
into another problem of size 1 and a problem of size n � 2, which we can split fur-
ther. If we split the problem n � 1 times, we will end up with n problems of size 1,
all of which we can solve.

 recursive function
 function that calls itself
or that is part of a cycle
in the sequence of
function calls

 simple case problem
case for which a
straightforward solution
is known

9.1 • The Nature of Recursion 519

 EXAMPLE 9.1 As a simple example of this approach, let’s consider how we might solve the prob-
lem of multiplying 6 by 3, assuming we know our addition tables but not our multi-
plication tables. We do know, however, that any number multiplied by 1 gives us the
original number, so if we ever come across this simple case, we’ll just solve it. The
problem of multiplying 6 by 3 can be split into the two problems:

 1. Multiply 6 by 2.
 2. Add 6 to the result of problem 1.

 Because we know our addition tables, we can solve problem 2 but not problem 1.
However, problem 1 is closer to the simple case than the original problem was. We
can split problem 1 into the following two problems, 1.1 and 1.2, leaving us three
problems to solve, two of which are additions.

 1. Multiply 6 by 2.
 1.1 Multiply 6 by 1.
 1.2 Add 6 to the result of problem 1.1.

 2. Add 6 to the result of problem 1.

 Problem 1.1 is one of the simple cases we were looking for. By solving problem 1.1
(the answer is 6) and problem 1.2, we get the solution to problem 1 (the answer is
12). Solving problem 2 gives us the final answer (18).

 Figure 9.2 implements this approach to doing multiplication as the recursive C
function multiply that returns the product m × n of its two arguments. The body
of function multiply implements the general form of a recursive algorithm shown
earlier. The simplest case is reached when the condition n == 1 is true. In this case,
the statement

 ans = m; /* simple case */

 executes, so the answer is m . If n is greater than 1, the statement

 ans = m + multiply(m, n - 1); /* recursive step */

size n – 1
problem

size n – 2
problem

...
size 2

problem
size 1

problem

size 1
problem

size 1
problem

size 1
problem

size 1
problem

size n
problem

 FIGURE 9.1 Splitting a Problem into Smaller Problems

520 Chapter 9 • Recursion

 executes, splitting the original problem into the two simpler problems:

 ■ multiply m by n-1
 ■ add m to the result

 The first of these problems is solved by calling multiply again with n-1 as its
second argument. If the new second argument is greater than 1 , there will be addi-
tional calls to function multiply .

 At first, it may seem odd that we must rely on the function multiply before we
have even finished writing it! However, this approach is the key to developing
recursive algorithms. In order to solve a problem recursively, first we must trust our
function to solve a simpler version of the problem. Then we build the solution to the
whole problem on the result from the simpler version.

 For now, you will have to take our word that function multiply performs as
desired. We will see how to trace the execution of a recursive function in the
next section.

 One group of problems for which recursive solutions seem very natural are
problems involving varying-length lists. Since a string is a varying-length list of
characters, this chapter contains numerous examples of recursive functions that
process strings.

 FIGURE 9.2 Recursive Function multiply

 1. /*
 2. * Performs integer multiplication using + operator.
 3. * Pre: m and n are defined and n > 0
 4. * Post: returns m * n
 5. */
 6. int
 7. multiply(int m, int n)
 8. {
 9. int ans;
 10.
 11. if (n == 1)
 12. ans = m; /* simple case */
 13. else
 14. ans = m + multiply(m, n - 1); /* recursive step */
 15.
 16. return (ans);
 17. }

9.1 • The Nature of Recursion 521

 EXAMPLE 9.2 We need to develop a function to count the number of times a particular character
appears in a string. For example,

 count('s', "Mississippi sassafrs")

 should return the value 8. Of course, we could set up a loop to count the s’s, but
instead we will look for a recursive solution. Since recursion requires breaking a
problem into a combination of simpler problems, our initial reaction to a problem
should be something like, “This whole problem is entirely too hard. Maybe I can do
a little bit of this problem, but I will definitely need help to do the whole problem.”
We then need to arrange things so the “help” needed is actually in solving a simpler
version of the same problem. When dealing with a list of elements as we are in this
problem, a recursive solution usually explicitly processes only the first list element.
The recursive problem solver’s thought process is illustrated in Fig. 9.3 .

 Looking back at the if statement that is our “generic” recursion algorithm,

 if this is a simple case
 solve it

 else
 redefine the problem using recursion

 we see that the thought process shown in Fig. 9.3 fits into our generic else
clause. We have redefined the problem “Count s ’s in Mississippi sassafras ”
as “Count s ’s in ississippi sassafras and add one more if the first letter
is an s .” Our redefinition of the general problem “Count a letter in a string” is
recursive, since part of the solution is still to count a letter in a string. What has
changed is that the new string is shorter. We still need to identify the simplest
case of the problem, which must involve a very short string. Although it would be
fairly easy to count a certain character in a string with only one character element,
we would still need to do a comparison. If the string had no characters at all, we
would know immediately that there were zero occurrences of the character being
counted. Now that we have a simple case and a way to redefine more complex
cases using recursion, we can write a recursive function count . Because the “rest
of the string” to be processed by the recursive call will be examined by count , but

M i s s i s s i p p i s a s s a f r a s

Counting occurrences of 's' in

If I could just get someone to
count the s's in this list

. . .then the number of s's is either that number
or 1 more, depending on whether the first
letter is an s.

 FIGURE 9.3

 Thought Process
of Recursive
Algorithm
Developer

522 Chapter 9 • Recursion

not modified by it, we do not even need to copy the substring containing all but
the first letter of str .

 Our implementation of function count at the bottom of Fig. 9.4 simply calls
 count with ch and &str[1] as its arguments. Therefore, the string processed in the
next call to function count will be the substring starting at position 1 of the string
in the previous call. Figure 9.4 shows a main function that calls count after reading
in a string to process and a target character to count. A sample run is also shown.

 In our first example, we saw how a recursive multiply function broke a size n
multiplication problem into n size 1 addition problems. Similarly, the effect of our
recursive count function is to split the problem of analyzing a length n string into n
problems of comparing single characters.

 FIGURE 9.4 Counting Occurrences of a Character in a String

 1. /*
 2. * Counting occurrences of a letter in a string.
 3. */
 4 .
 5. #include <stdio.h>
 6 .
 7. int count(char ch, const char *str);
 8 .
 9. int
 10. main(void)
 11. {
 12. char str[80]; /* string to be processed */
 13. char target; /* character counted */
 14. int my_count;
 15.
 16. printf("Enter up to 79 characters.\n");
 17. gets(str); /* read in the string */
 18.
 19. printf("Enter the character you want to count: ");
 20. scanf("%c", &target);
 21.
 22. my_count = count(target, str);
 23. printf("The number of occurrences of %c in\n\"%s\"\nis %d\n",
 24. target, str, my_count);
 25.

(continued)

9.1 • The Nature of Recursion 523

 EXERCISES FOR SECTION 9.1

 Self-Check

 1. Using diagrams similar to those in Fig. 9.1 , show the specific problems that
are generated by the following calls.

 a. multiply(5, 4)
 b. count('d', "dad")

 FIGURE 9.4 (continued)

 26. return (0);
 27. }
 28 .
 29. /*
 30. * Counts the number of times ch occurs in string str.
 31. * Pre: Letter ch and string str are defined.
 32. */
 33. int
 34. count(char ch, const char *str)
 35. {
 36. int ans;
 37.
 38. if (str[0] == '\0') /* simple case */
 39. ans = 0;
 40. else /* redefine problem using recursion */
 41. if (ch == str[0]) /* first character must be counted */
 42. ans = 1 + count(ch, &str[1]);
 43. else /* first character is not counted */
 44. ans = count(ch, &str[1]);
 45.
 46. return (ans);
 47. }
 48.
 Enter up to 79 characters.
 this is the string I am testing
 Enter the character you want to count: t
 The number of occurrences of t in
 "this is the string I am testing" is 5

524 Chapter 9 • Recursion

 Programming

 1. Write a recursive function count_digits that counts all the digits in a string.
 2. Write a recursive function add that computes the sum of its two integer

parameters. Assume add does not know general addition tables but does know
how to add or subtract 1.

 9.2 Tracing a Recursive Function
 Hand tracing an algorithm’s execution provides us with valuable insight into how that
algorithm works. We can trace the execution of a recursive function, and now we will
illustrate how to do this by first studying the execution of a recursive function that
returns a value, and then studying the execution of a recursive void function.

 Tracing a Recursive Function That Returns a Value

 In Section 9.1 , we wrote the recursive function multiply (see Fig. 9.2). We can
trace the execution of the function call

 multiply(6, 3)

 by drawing an activation frame corresponding to each call of the function. An acti-
vation frame shows the parameter values for each call and summarizes the execution
of the call.

 The three activation frames generated to solve the problem of multiplying 6 by 3
are shown in Fig. 9.5 . The part of each activation frame that executes before the next
recursive call is in color; the part that executes after the return from the next call is in
gray. The darker the color of an activation frame, the greater the depth of recursion.

 The value returned from each call is shown alongside each black arrow. The
return arrow from each call points to the operator + because the addition is per-
formed just after the return.

 Figure 9.5 shows three calls to function multiply . Parameter m has the value
 6 for all three calls; parameter n has the values 3 , 2 , and, finally, 1 . Since n is 1 in
the third call, the value of m (6) is assigned to ans and is returned as the result of
the third and last call. After returning to the second activation frame, the value of m
is added to this result, and the sum (12) is returned as the result of the second call.
After returning to the first activation frame, the value of m is added to this result,
and the sum (18) is returned as the result of the original call to function multiply .

 Tracing a void Function That Is Recursive

 Hand tracing a void function is somewhat simpler than tracing a function that returns a
value. For both types of functions, we use activation frames to track each function call.

 activation frame
 representation of one
call to a function

9.2 • Tracing a Recursive Function 525

 EXAMPLE 9.3 Function reverse_input_words in Fig. 9.6 is a recursive module that takes n
words of input and prints them in reverse order. If this function call statement

 reverse_input_words(5)

 is executed, the five words entered at the keyboard are printed in reverse order. If
the words entered are

 the
 course
 of
 human
 events

 the program output will be

 events
 human
 of
 course
 the

multiply(6, 3)

18

12

6 m is 6
n is 1
1 == 1 is true
ans is 6
return (ans)

3 == 1 is false
ans is 6 + multiply(6, 2)
return (ans)

m is 6
n is 3

m is 6
n is 2
2 == 1 is false
ans is 6 + multiply(6, 1)
return (ans)

 FIGURE 9.5

 Trace of Function
multiply

526 Chapter 9 • Recursion

 Like most recursive modules, the body of function reverse_input_words consists
of an if statement that evaluates a terminating condition , n <= 1. When the ter-
minating condition is true, the function is dealing with one of the problem’s simple
cases—printing in reverse order a list of just one word. Since reversing word order
has no effect on a single-word list, for the simple case when n is less than or equal to
one, we just get the word using scanf and print it.

 If the terminating condition is false (n > 1), the recursive step (following else) is
executed. This group of statements transfers the current input word into memory,
gets “someone” (i.e., reverse_input_words) to take and reverse print the remain-
ing n - 1 words of interest, and then prints the current word.

 Figure 9.7 shows a trace of the function call
 reverse_input_words(3)

 assuming that the words "bits" "and" "bytes" are entered as data. The trace shows
three separate activation frames for function reverse_input_words. Each activation

 FIGURE 9.6 Function reverse_input_words

 1. /*
 2. * Take n words as input and print them in reverse order on separate lines.
 3. * Pre: n > 0
 4. */
 5. void
 6. reverse_input_words(int n)
 7. {
 8. char word[WORDSIZ]; /* local variable for storing one word */
 9.
 10. if (n <= 1) { /* simple case: just one word to get and print */
 11.
 12. scanf("%s", word);
 13. printf("%s\n", word);
 14.
 15. } else { /* get this word; get and print the rest of the words in
 16. reverse order; then print this word */
 17.
 18. scanf("%s", word);
 19. reverse_input_words(n - 1);
 20. printf("%s\n", word);
 21. }
 22. }

 terminating
condition a condition
that is true when a
recursive algorithm is
processing a simple
case

9.2 • Tracing a Recursive Function 527

frame begins with a list of the initial values of n and word for that frame. The value
of n is passed into the function when it is called; the value of the local variable word
is initially undefined.

 The statements that are executed for each frame are shown next. The statements
in color in the activation frames are recursive function calls and result in new acti-
vation frames, as indicated by the colored arrows. A void function’s return occurs
when the closing brace of the function body is encountered, indicated by the word
 return and a black arrow that points to the statement in the calling frame to
which the function returns. Tracing the colored arrows and then the black arrows
in Fig. 9.7 gives us the sequence of events listed in Fig. 9.8 . To help you under-
stand this list, all the statements for a particular activation frame are indented to
the same column.

reverse_input_words(3)

n is 2
word is undefined
2 <= 1 is false
scan "and" into word
reverse_input_words(1)

display
return

n is 1
word is undefined
1 <= 1 is true
scan "bytes" into
 word

display "bytes"
return

n is 3
word is undefined
3 <= 1 is false
scan "bits" into word
reverse_input_words(2)

display "bits" "and"
return

 FIGURE 9.7 Trace of reverse_input_words(3) When the Words Entered are "bits" "and" "bytes"

 FIGURE 9.8

 Sequence of
Events for Trace
of reverse_input_
words(3)

 Call reverse_input_words with n equal to 3 .
 Scan the first word ("bits") into word .
 Call reverse_input_words with n equal to 2 .
 Scan the second word ("and") into word .
 Call reverse_input_words with n equal to 1 .
 Scan the third word ("bytes") into word .
 Display the third word ("bytes").
 Return from third call.
 Display the second word ("and").
 Return from second call.
 Display the first word ("bits").
 Return from original call.

528 Chapter 9 • Recursion

 As shown, there are three calls to function reverse_input_words , each with a
different parameter value. The function returns always occur in the reverse order
of the function calls—that is, we return from the last call first, then we return
from the next to last call, and so on. After we return from a particular execution
of the function, we display the string that was stored in word just prior to that
function call.

 Parameter and Local Variable Stacks

 You may be wondering how C keeps track of the values of n and word at any given
point. C uses the stack data structure that we implemented with an array in Section
 9.5 (see Fig. 9.14). In this data structure, we add data items (the push operation)
and remove them (the pop operation) from the same end of the list, so the last item
stored is the first processed.

 When executing a call to reverse_input_words , the system pushes the
parameter value associated with the call on top of the parameter stack, and
pushes a new undefined cell on top of the stack maintained for the local variable
 word . A return from reverse_input_words pops each stack, removing the top
value.

 As an example, let’s look at the two stacks as they appear right after the first call
to reverse_input_words . One cell is on each stack, as shown.

 stack a data structure
in which the last data
item added is the first
data item processed

After first call to reverse_input_words

n

3

word

?

 The word "bits" is stored in word just before the second call to reverse_input_
words .

n

3

word

bits

 After the second call to reverse_input_words , the number 2 is pushed on the
stack for n , and the top of the stack for word becomes undefined again, as shown
next. The value in color is at the top of each stack.

9.2 • Tracing a Recursive Function 529

n

2
3

word

?
bits

After second call to reverse_input_words

 The word "and" is scanned and stored in word just before the third call to
 reverse_input_words .

n

2
3

word

and
bits

 However, word becomes undefined again right after the third call.

 During this execution of the function, the word "bytes" is scanned and stored in
 word , and "bytes" is echo printed immediately because n is 1 (a simple case).

 The function return pops both stacks, as shown next.

n

1
2
3

word

?
and
bits

After third call to reverse_input_words

n

1
2
3

word

bytes
and
bits

n

2
3

word

and
bits

After first return

530 Chapter 9 • Recursion

 Again, control is returned to a printf statement, and the value of word ("bits") at
the top of the stack is displayed. The third and last return exits the original function
call, so there is no longer any memory allocated for n and word .

 A stack is a data structure that you can implement and manipulate yourself
using arrays. However, C automatically handles all the stack manipulation associated
with function calls, so we can write recursive functions without needing to worry
about the stacks.

 Implementation of Parameter Stacks in C

 For illustrative purposes, we have used separate stacks for each parameter in our
discussion; however, the compiler actually maintains a single system stack . Each
time a call to a function occurs, all its parameters and local variables are pushed
onto the stack along with the memory address of the calling statement. This address
gives the computer the return point after execution of the function. Although mul-
tiple copies of a function’s parameters may be saved on the stack, only one copy of
the function body is in memory.

 When and How to Trace Recursive Functions

 Doing a trace by hand of multiple calls to a recursive function is helpful in under-
standing how recursion works but less useful when trying to develop a recursive
algorithm. During algorithm development, it is best to trace a specific case simply
by trusting any recursive call to return a correct value based on the function pur-
pose. Then the hand trace can check whether this value is manipulated properly to
produce a correct function result for the case under consideration.

 However, if a recursive function’s implementation is flawed, tracing its execu-
tion is an essential part of identifying the error. The function can be made to trace
itself by inserting debugging print statements showing entry to and exit from the
function. Figure 9.9 shows a self-tracing version of function multiply as well as
output generated by the call

 multiply(8, 3)

 system stack area
of memory where
parameters and local
variables are allocated
when a function is
called and deallocated
when the function
returns

After second return

n

3

word

bits

 Because control is returned to a printf call, the value of word ("and") at the top of
the stack is then displayed. Another return occurs, popping the stacks again.

9.2 • Tracing a Recursive Function 531

 EXERCISES FOR SECTION 9.2

 Self-Check

 1. Trace the contents of stack representations of m , n , and ans for the evaluation
of multiply(6,3) whose activation frames are shown in Fig. 9.5 .

 2. Draw activation frames showing the evaluation of count('B',"BOB") ,
assuming that count is defined as shown in Fig. 9.4 .

 FIGURE 9.9 Recursive Function multiply with Print Statements to Create Trace and Output
from multiply(8, 3)

 1. /*
 2. * *** Includes calls to printf to trace execution ***
 3. * Performs integer multiplication using + operator.
 4. * Pre: m and n are defined and n > 0
 5. * Post: returns m * n
 6. */
 7. int
 8. multiply(int m, int n)
 9. {
 10. int ans;
 11.
 12. printf("Entering multiply with m = %d, n = %d\n", m, n);
 13.
 14. if (n == 1)
 15. ans = m; /* simple case */
 16. else
 17. ans = m + multiply(m, n - 1); /* recursive step */
 18. printf("multiply(%d, %d) returning %d\n", m, n, ans);
 19.
 20. return (ans);
 21. }
 22.
 23. Entering multiply with m = 8, n = 3
 24. Entering multiply with m = 8, n = 2
 25. Entering multiply with m = 8, n = 1
 26. multiply(8, 1) returning 8
 27. multiply(8, 2) returning 16
 28. multiply(8, 3) returning 24

532 Chapter 9 • Recursion

 Programming

 1. Rewrite function count from Fig. 9.4 , adding calls to printf to make count
self-tracing. Then show the output produced by the call count('l', "lull") .

 9.3 Recursive Mathematical Functions
 Many mathematical functions can be defined recursively. An example is the factorial
of a number n (n !) , a function that we defined iteratively in Chapter 5 .

 ■ 0! is 1
 ■ n ! is n � (n − 1)!, for n > 0

 Thus 4! is 4 � 3!, which means 4 � 3 � 2 � 1, or 24. Implementing this definition
as a recursive function in C is quite straightforward.

 EXAMPLE 9.4 Function factorial in Fig. 9.10 computes the factorial of its argument n . The
recursive step

 ans = n * factorial(n - 1);

 implements the second line of the factorial definition just shown. Thus, the result of
the current call (argument n) is computed by multiplying by n the result of the call
factorial(n - 1).

 FIGURE 9.10 Recursive factorial Function

 1. /*
 2. * Compute n! using a recursive definition
 3. * Pre: n >= 0
 4. */
 5. int
 6. factorial(int n)
 7. {
 8. int ans;
 9.
 10. if (n == 0)
 11. ans = 1;
 12. else
 13. ans = n * factorial(n - 1);
 14.
 15. return (ans);
 16. }

9.3 • Recursive Mathematical Functions 533

 A trace of

 fact = factorial(3);

 is shown in Fig. 9.11 . The value returned from the original call, factorial(3) , is
6, and this value is assigned to fact. Be careful when using the factorial function,
as its value increases very rapidly and could lead to an integer overflow error (e.g., 8!
is 40,320).
 Although the recursive implementation of function factorial follows naturally
from its definition, we saw in Chapter 5 that this function can also be implemented
easily using iteration. The iterative version we developed in that chapter is shown
in Fig. 9.12 .

 Note that the iterative version contains a loop as its major control structure, whereas
the recursive version contains an if statement. In the iterative version, the variable
 product is the target of repeated assignments, each of which brings its value closer
to the result value. Compare this use of product to the purpose of the local variable
 ans in the recursive version. Variable ans holds the answer to the subproblem that
is the reason for the current call to the function.

1

1

fact = factorial(3) ;

6

2

n is 3

ans is 3 * factorial(2)
return (ans)

n is 0
ans is 1
return (ans)

n is 2

ans is 2 * factorial(1)
return (ans)

n is 1

ans is 1 * factorial(0)
return (ans)

 FIGURE 9.11

 Trace of fact =
factorial(3);

534 Chapter 9 • Recursion

 EXAMPLE 9.5 The Fibonacci numbers are a sequence of numbers that have many varied uses.
They were originally intended to model the growth of a rabbit colony. Although
we will not go into the details of the model here, the Fibonacci sequence 1, 1, 2,
3, 5, 8, 13, 21, 34, . . . certainly seems to increase rapidly enough. The fifteenth
number in the sequence is 610 (that’s a lot of rabbits!). The Fibonacci sequence
is defined as

 ■ Fibonacci 1 is 1
 ■ Fibonacci 2 is 1
 ■ Fibonacci n is Fibonacci n −2 + Fibonacci n −1 , for n > 2

 Verify for yourself that the sequence of numbers just shown is correct.

 A recursive function that computes the n th Fibonacci number is shown in Fig.
 9.13 . Although easy to write, this version of fibonacci is not very efficient because
each recursive step generates two calls to function fibonacci , and these calls
duplicate many computations. Programming Exercise 2 at the end of this section
describes an efficient (though more complicated) recursive algorithm for comput-
ing Fibonacci numbers.

 FIGURE 9.12 Iterative Function factorial

 1. /*
 2. * Computes n!
 3. * Pre: n is greater than or equal to zero
 4. * /
 5. int
 6. factorial(int n)
 7. {
 8. int i, /* local variables */
 9. product = 1;
 10.
 11. /* Compute the product n x (n-1) x (n-2) x . . . x 2 x 1 */
 12. for (i = n; i > 1; --i) {
 13. product = product * i;
 14. }
 15.
 16. /* Return function result */
 17. return (product);
 18. }

9.3 • Recursive Mathematical Functions 535

 EXAMPLE 9.6 In a programming exercise for Section 6.5, we presented an iterative algorithm
for finding the greatest common divisor of two integers. Euclid’s algorithm
for finding the gcd can be defined recursively as shown. You recall that the
 greatest common divisor of two integers is the largest integer that divides them
both evenly.

 ■ gcd(m , n) is n if n divides m evenly
 ■ gcd(m , n) is gcd(n , remainder of m divided by n) otherwise

 This algorithm states that the gcd is n if n divides m evenly. If n does not divide
 m with a zero remainder, the answer is obtained by finding the gcd of n and the
remainder of m divided by n . One of the elegant features of this definition is that
it does not matter whether m or n is the larger number. If m is greater than n,
the computation seems to proceed more directly to a solution; if it is not, the
first application of the recursive step has the effect of exchanging m and n . This
exchange is a result of the fact that when m is less than n, the remainder of m
divided by n is m . The declaration and use of a recursive gcd function is shown
in Fig. 9.14 .

 FIGURE 9.13 Recursive Function fibonacci

 1. /*
 2. * Computes the nth Fibonacci number
 3. * Pre: n > 0
 4. */
 5. int
 6. fibonacci(int n)
 7. {
 8. int ans;
 9.
 10. if (n == 1 || n == 2)
 11. ans = 1;
 12. else
 13. ans = fibonacci(n - 2) + fibonacci(n - 1);
 14.
 15. return (ans);
 16. }

536 Chapter 9 • Recursion

 FIGURE 9.14 Program Using Recursive Function gcd

 1. /*
 2. * Displays the greatest common divisor of two integers
 3. */
 4.
 5. #include <stdio.h>
 6.
 7. /*
 8. * Finds the greatest common divisor of m and n
 9. * Pre: m and n are both > 0
 10. */
 11. int
 12. gcd(int m, int n)
 13. {
 14. int ans;
 15.
 16. if (m % n == 0)
 17. ans = n;
 18. else
 19. ans = gcd(n, m % n);
 20.
 21. return (ans);
 22. }
 23. int
 24. main(void)
 25. {
 26. int n1, n2;
 27.
 28. printf("Enter two positive integers separated by a space> ");
 29. scanf("%d%d", &n1, &n2);
 30. printf("Their greatest common divisor is %d\n", gcd(n1, n2));
 31.
 32. return (0);
 33. }
 34.
 35. Enter two positive integers separated by a space> 24 84
 36. Their greatest common divisor is 12

9.3 • Recursive Mathematical Functions 537

 EXERCISES FOR SECTION 9.3

 Self-Check

 1. Complete the following recursive function that calculates the value of a
number (base) raised to a power. Assume that power is a nonnegative integer.

 int
 power_raiser(int base, int power)
 {
 int ans;

 if (power == ______)
 ans = ______;
 else
 ans = ______ * ____________;

 return (ans);
 }

 2. What is the output of the following program? What does function strange
compute when called with a positive integer?

 #include <stdio.h>

 int strange(int n);
 int
 main(void)
 {
 printf("%d\n", strange(7));
 }
 int
 strange(int n)
 {
 int ans;

 if (n == 1)
 ans = 0;
 else
 ans = 1 + strange(n / 2);

 return (ans);
 }

 3. Explain what would happen if the terminating condition for function fibonacci
were just (n == 1).

 Programming

 1. Write a recursive function find_sum that calculates the sum of successive integers
starting at 1 and ending at n (i.e., find_sum(n) = (1 � 2 � . . . � (n − 1) � n).

538 Chapter 9 • Recursion

 2. Write a recursive function fast_fib to compute a pair of Fibonacci numbers,
F(n + 1) and F(n). Function fast_fib should make only one recursive call.

 Algorithm

 if n is 1
 The pair to send back is 1, 1.
 else
 Use fast_fib to compute F(n) and F(n − 1).
 The pair to send back is [F(n) + F(n − 1)], F(n).

 9.4 Recursive Functions with Array and String Parameters
 In this section, we will examine two problems and will implement recursive func-
tions to solve them. Both problems involve processing of some type of array.

 CASE STUDY Finding Capital Letters in a String

 PROBLEM

 Form a string containing all the capital letters found in another string.

 ANALYSIS

 Just as in the problem of counting occurrences of a particular letter in a string, recur-
sion will allow us to solve this problem by simply working out what to do with the
string’s first letter and then combining this processing with a recursive call handling
the rest of the string. For instance, if the string in question were "Franklin Delano
Roosevelt" , finding capital letters in "ranklin Delano Roosevelt" would give us
the string "DR" . It is a simple matter to combine this string with the capital 'F' to form
the full result. Of course, the simplest string in which to look for anything is the empty
string, so checking for this simple case gives us the necessary terminating condition.

 DATA REQUIREMENTS

 Problem Input
 char *str /* a string from which to extract capital letters */

 Problem Output
 char *caps /* the capital letters from str */

9.4 • Recursive Functions with Array and String Parameters 539

 DESIGN

 Algorithm
 1. if str is the empty string
 2. Store empty string in caps (a string with no letters has no capitals).
 else
 3. if initial letter of str is a capital letter
 4. Store in caps this letter and the capital letters from the rest of str .
 else
 5. Store in caps the capital letters from the rest of str .

 Function find_caps in Fig. 9.15 implements the recursive algorithm.

 TESTING

 Given this #define directive and declaration,

 #define STRSIZ 50
 . . .
 char caps[STRSIZ];

 FIGURE 9.15 Recursive Function to Extract Capital Letters from a String

 1. /*
 2. * Forms a string containing all the capital letters found in the input
 3. * parameter str.
 4. * Pre: caps has sufficient space to store all caps in str plus the null
 5. */
 6. char *
 7. find_caps(char *caps, /* output - string of all caps found in str */
 8. const char *str) /* input - string from which to extract caps */
 9. {
 10. char restcaps[STRSIZ]; /* caps from reststr */
 11.
 12. if (str[0] == '\0')
 13. caps[0] = '\0'; /* no letters in str => no caps in str */
 14. else
 15. if (isupper(str[0]))
 16. sprintf(caps, "%c%s", str[0], find_caps(restcaps, &str[1]));
 17. else
 18. find_caps(caps, &str[1]);
 19.
 20. return (caps);
 21. }

540 Chapter 9 • Recursion

 and the statement

 printf("Capital letters in JoJo are %s\n",
 find_caps(caps, "JoJo"));

 five calls to find_caps will be executed, as shown in Fig. 9.16 . The string sent back
from each function call is shown to the left of the arrow coming from the return
statement.

printf(. . . find_caps(caps, "JoJo"));

"JJ"

"J"

"J"

""

""
str is ""
caps is ""
return(caps)

str is "JoJo"
'J' is uppercase
sprintf(caps, "%c%s", 'J',
 find_caps(restcaps, "oJo"));
return(caps)

str is "Jo"
'J' is uppercase
sprintf(caps, "%c%s", 'J',
 find_caps(restcaps, "o"));
return(caps)

str is "o"
'o' is not uppercase
find_caps(caps, "");
return(caps)

str is "oJo"
'o' is not uppercase
find_caps(caps, "Jo");
return(caps)

 FIGURE 9.16 Trace of Call to Recursive Function find_caps

9.4 • Recursive Functions with Array and String Parameters 541

 Figure 9.17 shows the sequence of events that results from following first the
colored arrows and then the black arrows of Fig. 9.16 . There are five calls to func-
tion find_caps , each with a different input argument. The desired string of capital
letters is constructed one character at a time as the function returns cause the recur-
sion to unwind.

 FIGURE 9.17 Sequence of Events for Trace of Call to find_caps from printf Statements

 Call find_caps with input argument "JoJo" to determine value to print.
 Since 'J' is a capital letter,
 prepare to use sprintf to build a string with 'J'
 and the result of calling find_caps with input argument "oJo" .
 Since 'o' is not a capital letter,
 call find_caps with input argument "Jo" .
 Since 'J' is a capital letter,
 prepare to use sprintf to build a string with 'J'
 and the result of calling find_caps with input argument "o" .
 Since 'o' is not a capital letter,
 cal find_caps with input argument "" .
 Return "" from fifth call.
 Return "" from fourth call.
 Complete execution of sprintf combining 'J' and "" .
 Return "J" from third call.
 Return "J" from second call.
 Complete execution of sprintf combining 'J' and "J" .
 Return "JJ" from original call.
 Complete call to printf to print Capital letters in JoJo are JJ.

 CASE STUDY Recursive Selection Sort

 In Chapters 7 and 8 , we studied an iterative selection sort algorithm. In this sec-
tion we develop a recursive version of the algorithm that fills the array from the
bottom up.

 PROBLEM

 Sort an array in ascending order using a selection sort.

542 Chapter 9 • Recursion

 ANALYSIS

 To perform a selection sort of an array with n elements (subscripts 0 . . . n � 1),
we locate the largest element in the array and then switch the largest element with
the element at subscript n � 1, thereby placing the largest element in the final
array position. We then locate the largest element remaining in the subarray with
subscripts 0 . . . n � 2, and switch it with the element at subscript n � 2, thereby
placing the second largest element in the next to last position n � 2. We continue
this process until the whole array is sorted.

 Figure 9.18 traces the operation of this version of the selection sort algorithm.
The diagram on the left shows the original array. Each subsequent diagram shows
the array after the next largest element is moved to its final position in the array.
The subarray in the darker color represents the portion of the array that is sorted
after each exchange occurs. Note that it will require, at most, n � 1 exchanges to
sort an array with n elements.

 DESIGN

 Because the selection sort can be viewed as a sort accomplished by first placing
one element and then sorting a subarray, it is a good candidate for a recursive
solution.

 Recursive Algorithm for Selection Sort

 1. if n is 1
 2. The array is sorted.
 else
 3. Place the largest array value in last array element.
 4. Sort the subarray which excludes the last array element

(array[0] . . array[n-2]).

n is 4

n = size of unsorted subarray

final sorted
array

unsorted
array

34
45
23
15

Switch
45, 15

34
45
23
15

n is 3

34
15
23
45

Switch
34, 23

n is 2

23
15
34
45

Switch
15, 23

15
23
34
45

 FIGURE 9.18

 Trace of Selection
Sort

9.4 • Recursive Functions with Array and String Parameters 543

 IMPLEMENTATION

 Figure 9.19 shows an implementation of our recursive algorithm that uses a function
 place_largest to perform step 3 and a recursive function select_sort that car-
ries out the overall procedure. The recursive function is slightly simpler to under-
stand than the original iterative version because it contains a single if statement
rather than a loop. The recursive function typically executes more slowly, however,
because of the extra overhead due to the recursive function calls.

 FIGURE 9.19 Recursive Selection Sort

 1. /*
 2. * Finds the largest value in list array[0]..array[n-1] and exchanges it
 3. * with the value at array[n-1]
 4. * Pre: n > 0 and first n elements of array are defined
 5. * Post: array[n-1] contains largest value
 6. */
 7. void
 8. place_largest(int array[], /* input/output - array in which to place largest */
 9. int n) /* input - number of array elements to
 10. consider */
 11. {
 12. int temp, /* temporary variable for exchange */
 13. j, /* array subscript and loop control */
 14. max_index; /* index of largest so far */
 15.
 16. /* Save subscript of largest array value in max_index */
 17. max_index = n - 1; /* assume last value is largest */
 18. for (j = n - 2; j >= 0; --j)
 19. if (array[j] > array[max_index])
 20. max_index = j;
 21.
 22. /* Unless largest value is already in last element, exchange
 23. largest and last elements */
 24. if (max_index != n - 1) {
 25. temp = array[n - 1];
 26. array[n - 1] = array[max_index];
 27. array[max_index] = temp;
 28. }
 29. }

(continued)

544 Chapter 9 • Recursion

 FIGURE 9.19 (continued)

 30.
 31. /*
 32. * Sorts n elements of an array of integers
 33. * Pre: n > 0 and first n elements of array are defined
 34. * Post: array elements are in ascending order
 35. */
 36. void
 37. select_sort(int array[], /* input/output - array to sort */
 38. int n) /* input - number of array elements to sort */
 39. {
 40.
 41. if (n > 1) {
 42. place_largest(array, n);
 43. select_sort(array, n - 1);
 44. }
 }

 Notice that the logic of the select_sort function does not exactly match our
original algorithm or our generic recursive algorithm. If you look back at the initial
algorithm, you will see that if we are at the simplest case (an array of one element),
no action is necessary. Rather than explicitly making the test for the simple case and
having an empty true branch, we have chosen to negate the test for the simplest
case so that all the actions are on the true branch of the decision. Notice that if
 n == 1 , the selection sort function returns without doing anything. This behavior is
correct because a one-element array is always sorted.

 EXERCISES FOR SECTION 9.4

 Self-Check

 1. Using activation frames, hand trace the execution of the find_caps function
on the string "DoD" .

 2. Trace the execution of the recursive select_sort function on an array that
has the integers 2, 12, 15, 1 stored in consecutive elements.

 Programming

 1. Modify the find_caps function to create a find_digits function that returns
a string consisting of all digit characters in the source string.

5459.5 • Problem Solving with Recursion

 9.5 Problem Solving with Recursion
 Since C does not have a built-in representation of a set data structure, we would
like to develop an implementation of a group of set operations using strings as
our sets.

 CASE STUDY Operations on Sets

 PROBLEM

 Develop a group of functions to perform the � (is an element of), � (is a subset of),
and ´ (union) operations on sets of characters. Also, develop functions to check that
a certain set is valid (that is, it contains no duplicate characters), to check for the
empty set, and to print a set in standard set notation.

 ANALYSIS

 Character strings provide a fairly natural representation of sets of characters. Like
sets, strings can be of varying sizes and can be empty. If a character array that is to
hold a set is declared to have one more than the number of characters in the uni-
versal set (to allow room for the null character), then set operations should never
produce a string that will overflow the array.

 DESIGN

 This problem is naturally divided into subproblems, each of which corresponds to
a single function. Since these functions are all basic set utilities, their individual
algorithms are quite straightforward. We will develop pseudocode for the simplest
functions first and will refer to these functions in the more complex solutions. Since
one goal of this case study is to demonstrate the use of recursion, we will ignore the
existence of looping constructs for the time being.

 Algorithm for is_empty(set)
 1. Is initial character '\0'?

 Algorithm for is_element(ele, set)
 1. if is_empty(set) /* simple case 1 */
 2. Answer is false.
 else if initial character of set matches ele /* simple case 2 */
 3. Answer is true.
 else
 4. Answer depends on whether ele
 is in the rest of set. /* recursive step */

546 Chapter 9 • Recursion

 Algorithm for is_set(set)
 1. if is_empty(set) /* simple case 1 */
 2. Answer is true.
 else if is_element(initial set character,
 rest of set) /* simple case 2 */
 3. Answer is false.
 else
 4. Answer depends on whether rest of set is a
 valid set. /* recursive step */

 Algorithm for is_subset(sub, set)
 1. if is_empty(sub) /* simple case 1 */
 2. Answer is true.
 else if initial character of sub is not an element of set /* simple case 2 */
 3. Answer is false.
 else
 4. Answer depends on whether rest of sub is a
 subset of set. /* recursive step */

 Algorithm for union of set1 and set2
 1. if is_empty(set1) /* simple case */
 2. Result is set2.
 else if initial character of set1 is also an element
 of set2 /* recursive steps */
 3. Result is the union of the rest of set1 with
 set2. /* case 1 */
 else /* case 2 */
 4. Result includes initial character of set1 and the union of the rest of
 set1 with set2.

 Algorithm for print_set(set)
 1. Output a {.
 2. if set is not empty, print elements separated by commas.
 3. Output a }.

 Algorithm for print_with_commas(set)
 1. if set has exactly one element
 2. Print it.
 else
 3. Print initial element and a comma.
 4. print_with_commas the rest of set.

5479.5 • Problem Solving with Recursion

 IMPLEMENTATION

 Every recursive function in the collection of functions we have designed references
“the rest of the set” for some set, that is, all but the first letter of the set. In all of
these functions, this “rest of the set” is passed as an input argument only—the func-
tion called looks at it, but does not modify it. Since this particular substring includes
all the characters of the original string from the substring’s starting point right
through the original string’s null character, we can use &set[1] to reference the
rest of the set. Figure 9.20 shows our implementation of all the set operations along
with a main program that demonstrates the functions.

 You will notice that the name of our function that forms the union of two sets is
 set_union . We could not use the name union because this is a reserved word in C.
In the implementation of set_union , we could not use the variable result as the
output argument for both the call to set_union and the call to sprintf because
 sprintf does not guarantee correct results if there is overlap between its input and
output arguments.

 FIGURE 9.20 Recursive Set Operations on Sets Represented as Character Strings

 1. /*
 2. * Functions to perform basic operations on sets of characters
 3. * represented as strings. Note: "Rest of set" is represented as
 4. * &set[1], which is indeed the address of the rest of the set excluding
 5. * the first element. This efficient representation, which does not
 6. * recopy the rest of the set, is an acceptable substring reference in
 7. * these functions only because the "rest of the set" is always passed
 8. * strictly as an input argument.
 9. */
 10.
 11. #include <stdio.h>
 12. #include <string.h>
 13. #include <ctype.h>
 14.
 15. #define SETSIZ 65 /* 52 uppercase and lowercase letters, 10 digits,
 16. {, }, and '\0' */
 17. #define TRUE 1
 18. #define FALSE 0
 19.
 20. int is_empty(const char *set);
 21. int is_element(char ele, const char *set);

(continued)

548 Chapter 9 • Recursion

 FIGURE 9.20 (continued)

 22. int is_set(const char *set);
 23. int is_subset(const char *sub, const char *set);
 24. char *set_union(char *result, const char *set1, const char *set2);
 25. void print_with_commas(const char *str);
 26. void print_set(const char *set);
 27. char *get_set(char *set);
 28. /*
 29. * Tries out set operation functions.
 30. */
 31. int
 32. main(void)
 33. {
 34. char ele, set_one[SETSIZ], set_two[SETSIZ], set_three[SETSIZ];
 35.
 36. printf("A set is entered as a string of up to %d letters\n",
 37. SETSIZ - 3);
 38. printf("and digits enclosed in {} ");
 39. printf("(no duplicate characters)\n");
 40. printf("For example, {a, b, c} is entered as {abc}\n");
 41.
 42. printf("Enter a set to test validation function> ");
 43. get_set(set_one);
 44. putchar('\n');
 45. print_set(set_one);
 46. if (is_set(set_one))
 47. printf(" is a valid set\n");
 48. else
 49. printf(" is invalid\n");
 50.
 51. printf("Enter a single character, a space, and a set> ");
 52. while(isspace(ele = getchar())); /* gets first character after
 53. whitespace */
 54. get_set(set_one);
 55. printf("\n%c ", ele);
 56. if (is_element(ele, set_one))
 57. printf("is an element of ");
 58. else
 59. printf("is not an element of ");
 60. print_set(set_one);
 61.

(continued)

5499.5 • Problem Solving with Recursion

 FIGURE 9.20 (continued)

 62. printf("\nEnter two sets to test set_union> ");
 63. get_set(set_one);
 64. get_set(set_two);
 65. printf("\nThe union of ");
 66. print_set(set_one);
 67. printf(" and ");
 68. print_set(set_two);
 69. printf(" is ");
 70. print_set(set_union(set_three, set_one, set_two));
 71. putchar('\n');
 72.
 73. return (0);
 74. }
 75.
 76. /*
 77. * Determines if set is empty. If so, returns 1; if not, returns 0.
 78. */
 79. int
 80. is_empty(const char *set)
 81. {
 82. return (set[0] == '\0');
 83. }
 84.
 85. /*
 86. * Determines if ele is an element of set.
 87. */
 88. int
 89. is_element(char ele, /* input - element to look for in set */
 90. const char *set) /* input - set in which to look for ele */
 91. {
 92. int ans;
 93.
 94. if (is_empty(set))
 95. ans = FALSE;
 96. else if (set[0] == ele)
 97. ans = TRUE;
 98. else
 99. ans = is_element(ele, &set[1]);
 100.
 101. return (ans);
 102. } (continued)

550 Chapter 9 • Recursion

 FIGURE 9.20 (continued)

 103.
 104. /*
 105. * Determines if string value of set represents a valid set (no duplicate
 106. * elements)
 107. */
 108. int
 109. is_set (const char *set)
 110. {
 111. int ans;
 112.
 113. if (is_empty(set))
 114. ans = TRUE;
 115. else if (is_element(set[0], &set[1]))
 116. ans = FALSE;
 117. else
 118. ans = is_set(&set[1]);
 119. return (ans);
 120. }
 121.
 122. /*
 123. * Determines if value of sub is a subset of value of set.
 124. */
 125. int
 126. is_subset(const char *sub, const char *set)
 127. {
 128. int ans;
 129.
 130. if (is_empty(sub))
 131. ans = TRUE;
 132. else if (!is_element(sub[0], set))
 133. ans = FALSE;
 134. else
 135. ans = is_subset(&sub[1], set);
 136.
 137. return (ans);
 138. }
 139.
 140. /*
 141. * Finds the union of set1 and set2.

(continued)

5519.5 • Problem Solving with Recursion

 FIGURE 9.20 (continued)

 142. * Pre: size of result array is at least SETSIZ;
 143. * set1 and set2 are valid sets of characters and digits
 144. */
 145. char *
 146. set_union(char *result, /* output - space in which to store
 147. string result */
 148. const char *set1, /* input - sets whose */
 149. const char *set2) /* union is being formed */
 150. {
 151. char temp[SETSIZ]; /* local variable to hold result of call
 152. to set_union embedded in sprintf call */
 153.
 154. if (is_empty(set1))
 155. strcpy(result, set2);
 156. else if (is_element(set1[0], set2))
 157. set_union(result, &set1[1], set2);
 158. else
 159. sprintf(result, "%c%s", set1[0],
 160. set_union(temp, &set1[1], set2));
 161.
 162. return (result);
 163. }
 164.
 165. /*
 166. * Displays a string so that each pair of characters is separated by a
 167. * comma and a space.
 168. */
 169. void
 170. print_with_commas(const char *str)
 171. {
 172. if (strlen(str) == 1) {
 173. putchar(str[0]);
 174. } else {
 175. printf("%c, ", str[0]);
 176. print_with_commas(&str[1]);
 177. }
 178. }
 179.
 180. /*
 181. * Displays a string in standard set notation.

(continued)

552 Chapter 9 • Recursion

 FIGURE 9.20 (continued)

 182. * e.g. print_set("abc") outputs {a, b, c}
 183. */
 184. void
 185. print_set(const char *set)
 186. {
 187. putchar('{');
 188. if (!is_empty(set))
 189. print_with_commas(set);
 190. putchar('}');
 191. }
 192.
 193. /*
 194. * Gets a set input as a string with brackets (e.g., {abc})
 195. * and strips off the brackets.
 196. */
 197. char *
 198. get_set(char *set) /* output - set string without brackets {} */
 199. {
 200. char inset[SETSIZ];
 201.
 202. scanf("%s", inset);
 203. strncpy(set, &inset[1], strlen(inset) - 2);
 204. set[strlen(inset) - 2] = '\0';
 205. return (set);
 206. }

 TESTING

 We have added one function to our group of set functions to make it easier to write a
driver function for testing. The function get_set takes an input string representing a
set and strips off the brackets {} that the driver program asks the user to place around
the set entered. These brackets make it easy for the user to enter the empty set.

 When testing this group of functions, choose data that check boundary conditions.
For instance, test is_set with valid sets, including the empty set, and with invalid
sets that have duplicate letters in various parts of the set string. For is_element , test
an element found at the beginning of the set string, an element in the middle, an ele-
ment at the end, and an element not in the string. Also, try the empty set as the second
argument. With is_subset , test using empty sets for sub and/or set , and try various
orderings of letters in sub . Try a case where the sets are equal as well. When testing
 set_union , test equal sets, disjoint sets, and partially overlapping sets with various
orderings of the elements. In addition, try the empty set as the first argument, then as
the second; then call set_union using the empty set for both arguments.

9.6 • A Classic Case Study in Recursion: Towers of Hanoi 553

 EXERCISES FOR SECTION 9.5

 Self-Check

 1. Imagine that we add calls to printf of the type shown in Fig. 9.9 to functions
 is_element and is_subset . Show the tracing output that would be produced
for the function call is_subset("bc", "cebf") .

 Programming

 1. Define a recursive intersection function that computes set1 � set2 . Then,
define an iterative version of the same function.

 2. Define a very short set_equal function that calls the intersection function
from Programming Exercise 1.

 9.6 A Classic Case Study in Recursion: Towers of Hanoi
 The Towers of Hanoi problem involves moving a specified number of disks that are
all different sizes from one tower (or peg) to another. Legend has it that the world
will come to an end when the problem is solved for 64 disks.

 PROBLEM

 Move n disks from peg A to peg C using peg B as needed. The following conditions
apply:

 1. Only one disk at a time may be moved, and this disk must be the top disk on a
peg.

 2. A larger disk can never be placed on top of a smaller disk.

 ANALYSIS

 The version of the problem shown in Fig. 9.21 has five disks (numbered 1 through
5) and three towers or pegs (lettered A, B, and C). The goal is to move the five disks

A C

1
2

3
4

5

B FIGURE 9.21

 Towers of Hanoi

554 Chapter 9 • Recursion

from peg A to peg C. The simplest cases of the problem involve moving one disk
only (e.g., move disk 2 from peg A to peg C). A simpler problem than the original
would be to move four disks subject to the conditions given or three disks, and so
on. Therefore, we want to split the original five-disk problem into several simpler
problems, each of which involves fewer disks. Let’s consider splitting the original
problem into the following three problems:
 1. Move four disks from peg A to peg B.
 2. Move disk 5 from peg A to peg C.
 3. Move four disks from peg B to peg C.

 In step 1, we move all disks but the largest to peg B, an auxiliary peg not mentioned
in the original problem. In step 2, we move the largest disk to C, the goal peg. Then,
in step 3, we move the remaining disks from B to the goal peg, where they will be
placed on top of the largest disk. Let’s assume that we will be able to perform step
1 and step 2 (a simple case). Fig. 9.22 shows the status of the three pegs after com-
pleting these steps. At this point, it should be clear that we will indeed solve the
original five-disk problem if we can complete step 3.

 Unfortunately, we still don’t know how to perform step 1 or step 3. However,
both of these steps involve four disks instead of five, so they are easier than the
original problem. We should be able to split each of these steps into simpler prob-
lems in the same way that we split the original problem. Step 3 involves moving four
disks from peg B to peg C, so we can split this step into the following two three-disk
problems and one one-disk problem:

 3.1 Move three disks from peg B to peg A.
 3.2 Move disk 4 from peg B to peg C.
 3.3 Move three disks from peg A to peg C.

 Figure 9.23 shows the status of the pegs after completing step 3.1 and step 3.2.
We now have the two largest disks on peg C. Once we complete step 3.3, all five
disks will be on peg C as required.

 By splitting each n -disk problem into two problems involving n � 1 disks and a
third problem involving only one disk, we will eventually divide our original prob-
lem into many one-disk problems. These simple cases are ones we already know
how to solve.

A C

1
2

3
4

B

5

 FIGURE 9.22

 Towers of Hanoi
After Steps 1 and 2

9.6 • A Classic Case Study in Recursion: Towers of Hanoi 555

 The solution to the Towers of Hanoi problem consists of a printed list of indi-
vidual disk moves. We need a recursive function that can be used to print instruc-
tions for moving any number of disks from one peg to another using the third peg
as an auxiliary.

 DATA REQUIREMENTS

 Problem Inputs
 int n /* the number of disks to be moved */
 char from_peg /* the from peg */
 char to_peg /* the to peg */
 char aux_peg /* the auxiliary peg */

 Problem Outputs
 A list of individual disk moves.

 DESIGN

 Algorithm

 1. if n is 1 then
 2. Move disk 1 from the from peg to the to peg
 else
 3. Move n � 1 disks from the from peg to the auxiliary peg using the to

peg.
 4. Move disk n from the from peg to the to peg.
 5. Move n � 1 disks from the auxiliary peg to the to peg using the from

peg.

 If n is 1, we have a simple case that we can solve immediately. If n is greater
than 1, the recursive step (the step following else) splits the original problem
into three smaller subproblems, one of which is another simple case. Each sim-
ple case displays a move instruction. Verify that the recursive step generates the
three problems listed below in Fig. 9.22 , when n is 5, the from peg is A, and the
 to peg is C.

A C

1
2
3

4
5

B FIGURE 9.23

 Towers of Hanoi
After Steps 1, 2,
3.1, and 3.2

556 Chapter 9 • Recursion

 The implementation of this algorithm is shown as function tower in Fig. 9.24 .
Function tower has four input parameters. The function call statement

 tower('A', 'C', 'B', 5);

 solves the problem that was posed earlier of moving five disks from peg A to peg C
using B as an auxiliary (see Fig. 9.21).

 In Fig. 9.24 , when the terminating condition is true, a call to printf displays
an instruction regarding moving disk 1. Each recursive step consists of two recursive
calls to tower with a call to printf sandwiched between them. The first recursive
call solves the problem of moving n � 1 disks to the auxiliary peg. The call to printf
displays a message to move the remaining disk to the to peg. The second recursive call
solves the problem of moving the n � 1 disks from the auxiliary peg to the to peg.

 TESTING

 The function call statement

 tower('A', 'C', 'B', 3);

 solves a simpler three-disk problem: Move three disks from peg A to peg C. Its
execution is traced in Fig. 9.25 and the output generated is shown in Fig. 9.26 .
Verify for yourself that this list of steps does indeed solve the three-disk problem.

 FIGURE 9.24 Recursive Function tower

 1. /*
 2. * Displays instructions for moving n disks from from_peg to to_peg using
 3. * aux_peg as an auxiliary. Disks are numbered 1 to n (smallest to
 4. * largest). Instructions call for moving one disk at a time and never
 5. * require placing a larger disk on top of a smaller one.
 6. */
 7. void
 8. tower(char from_peg, /* input - characters naming */
 9. char to_peg, /* the problem's */
 10. char aux_peg, /* three pegs */
 11. int n) /* input - number of disks to move */
 12. {
 13. if (n == 1) {
 14. printf("Move disk 1 from peg %c to peg %c\n", from_peg, to_peg);
 15. } else {
 16. tower(from_peg, aux_peg, to_peg, n - 1);
 17. printf("Move disk %d from peg %c to peg %c\n", n, from_peg, to_peg);
 18. tower(aux_peg, to_peg, from_peg, n - 1);
 19. }
 20. }

9.6 • A Classic Case Study in Recursion: Towers of Hanoi 557

from_peg is 'A'
to_peg is 'C'
aux_peg is 'B'
n is 1
move 1 from A to C
return

from_peg is 'C'
to_peg is 'B'
aux_peg is 'A'
n is 1
move 1 from C to B
return

from_peg is 'B'
to_peg is 'A'
aux_peg is 'C'
b is 1
move 1 from B to A
return

from_peg is 'A'
to_peg is 'C'
aux_peg is 'C'
n is 1
move 1 from A to C
return

from_peg is 'B'
to_peg is 'C'
aux_peg is 'A'
n is 2
tower ('B', 'A', 'C', 1);
move 2 from B to C
tower ('B', 'A', 'C', 1);
return

from_peg is 'A'
to_peg is 'B'
aux_peg is 'C'
n is 2
tower ('B', 'A', 'C', 1);
move 2 from A to B
tower ('B', 'A', 'C', 1);
return

from_peg is 'A'
to_peg is 'C'
aux_peg is 'B'
n is 3
tower ('B', 'A', 'C', 2);
move 3 from A to C
tower ('B', 'A', 'C', 2);
return

tower('A', 'C', 'B', 3); FIGURE 9.25

 Trace of tower
('A', 'C', 'B', 3);

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

 FIGURE 9.26

 Output Generated
by tower
('A', 'C', 'B', 3);

558 Chapter 9 • Recursion

 Comparison of Iterative and Recursive Functions

 It is interesting to consider that function tower in Fig. 9.26 will solve the Towers
of Hanoi problem for any number of disks. The three-disk problem results in a
total of seven calls to function tower and is solved by seven disk moves. The five-
disk problem would result in a total of 31 calls to function tower and is solved in
31 moves. In general, the number of moves required to solve the n -disk problem
is 2 n � 1. Because each function call requires the allocation and initialization of
a local data area in memory and the computer time increases exponentially with
the problem size, be careful about running this program with a value of n that is
larger than 10.

 The dramatic increase in processing time for larger numbers of disks is a func-
tion of this problem, not a function of recursion. However, in general, if there are
recursive and iterative solutions to the same problem, the recursive solution will
require more time and space because of the extra function calls.

 Although recursion was not really needed to solve the simpler problems in this
section, it was extremely useful in formulating an algorithm for Towers of Hanoi.
For certain problems, recursion leads naturally to solutions that are much easier to
read and understand than their iterative counterparts. To researchers developing
solutions to the complex problems that are at the frontiers of their research areas,
the benefits gained from increased clarity far outweigh the extra cost in time and
memory of running a recursive program.

 EXERCISES FOR SECTION 9.6

 Self-Check

 1. How many moves are needed to solve the six-disk problem?
 2. Write a main function that takes a data value for n (the number of disks) and

calls function tower to move n disks from A to B.

 9.7 Common Programming Errors
 The most common problem with a recursive function is that it may not terminate
properly. For example, if the terminating condition is not correct or is incomplete,
the function may call itself indefinitely or until all available memory is used up.
Frequently, a run-time error message noting stack overflow or an access violation
is an indicator that a recursive function is not terminating. Make sure that you
identify all simple cases and provide a terminating condition for each one. Also, be
sure that each recursive step redefines the problem in terms of arguments that are

9.7 • Common Programming Errors 559

closer to simple cases so that repeated recursive calls will eventually lead to simple
cases only.

 In our examples of recursive functions that return a value, we have always used
a local variable (or, in the case of string functions, an output parameter) into which
the function result is placed by the function’s decision structure. Then we have
ended the function’s code with a return statement. Since C permits the use of the
 return statement anywhere in the function code, a module like is_set from Fig.
 9.20 could also have been written as follows.

 int
 is_set(const char *set)
 {
 if (is_empty(set))
 return (TRUE);
 else if (is_element(set[0], &set[1]))
 return (FALSE);
 else
 return (is_set(&set[1]));
 }

 You should be aware that it is critical that every path through a non void func-
tion leads to a return statement. In particular, the return statement to return the
value of the recursive call to is_set is just as important as the other two return
statements. However, it is easy to inadvertently omit one of these necessary return
statements when a multiple return style is adopted.

 The recopying of large arrays or other data structures can quickly consume all
available memory. Such copying should be done inside a recursive function only
when absolutely essential for data protection. If only a single copy is necessary, a
nonrecursive function can be created that makes the necessary copy, passes the
copy and the other arguments to the recursive function, and returns the result
computed.

 It is also a good idea to introduce a nonrecursive function to handle prelimi-
naries and call the recursive function when there is error checking. Checking for
errors inside a recursive function is extremely inefficient if the error is of the type
that would be detected on the very first call. In such a situation, repeated checks in
recursive calls are a waste of computer time.

 Sometimes, it is difficult to observe the output produced when running recur-
sive functions that you have made self-tracing as described in Section 9.2 . If each
recursive call generates two or more output lines and there are many recursive calls,
the output will scroll down the screen more quickly than it can be read. On most
systems, pressing a control character sequence (e.g., Control S) will temporarily stop
output to the screen. If this is not possible, you can stop your output temporarily
by printing a prompting message followed by a call to getchar . Your program will
resume execution when you enter a data character.

560 Chapter 9 • Recursion

 ■ Chapter Review

 1. A recursive function either calls itself or initiates a sequence of function calls
in which it may be called again.

 2. Designing a recursive solution involves identifying simple cases that have
straightforward solutions and then redefining more complex cases in terms of
problems that are closer to simple cases.

 3. Recursive functions depend on the fact that for each call to a function, space is
allocated on the stack for the function’s parameters and local variables.

 ■ Quick-Check Exercises
 1. Explain the use of a stack in recursion.
 2. Which is generally more efficient, recursion or iteration?
 3. Which control statement do you typically find in a recursive function?
 4. How would you improve the efficiency of the following factorial function?

 int
 fact(int n)
 {
 int ans;
 if (n < 0 || n > 10) {
 printf("\nInvalid argument to fact: %d\n", n);
 ans = n;
 } else if (n == 0) {
 ans = 1;
 } else {
 ans = n * fact(n - 1);
 }
 return (ans);
 }

 5. When might a programmer conceptualize a problem solution using recursion
but implement it using iteration?

 6. What problem do you notice in the following recursive function? Show two
possible ways to correct the problem.

 int
 silly(int n)
 {
 if (n <= 0)
 return (1);

561Answers to Quick-Check Exercises

 else if (n % 2 == 0)
 return (n);
 else
 silly(n - 3);
 }

 7. What is a common cause of a stack overflow error?
 8. What can you say about a recursive algorithm that has the following form?

 if condition
 Perform recursive step.

 ■ Answers to Quick-Check Exercises

 1. The stack is used to hold all parameter and local variable values along with the
return point for each execution of a recursive function.

 2. Iteration is generally more efficient than recursion.
 3. if statement
 4. Write as two functions so error checking occurs only once.

 int
 factorial(int n)
 {
 int ans;
 if (n == 0)
 ans = 1;
 else
 ans = n * factorial(n - 1);
 return (ans);
 }

 int
 fact(int n)
 {
 int ans;

 if (n < 0 || n > 10) {
 printf("\nInvalid argument to fact: %d\n", n);
 ans = n;
 } else {
 ans = factorial(n);
 }
 return (ans);
 }

562 Chapter 9 • Recursion

 5. When a problem’s solution is much easier to conceptualize using recursion but
a recursive implementation would be too inefficient.

 6. One path through the function does not encounter a return statement. Either
place a return statement in the final else

 return (silly(n - 3));

 or assign each result to a local variable, and place that variable in a return
statement at the end of the function.

 7. Too many recursive calls.
 8. Nothing is done when the simplest case is reached.

 ■ Review Questions
 1. Why does recursion make it easier to conceptualize a solution to a problem?
 2. Discuss the efficiency of recursive functions.
 3. Differentiate between a simple case and a terminating condition.
 4. Write a recursive C function that accumulates the sum of the values in an

 n -element array.
 5. Write a recursive C function that counts the number of vowels in a string. You

may wish to call the is_element function defined in Section 9.5 .
 6. The sequence 2, 6, 18, 54, 162, … is geometric because each term divided by

its predecessor yields the same result, 3. The number 3 is the common ratio
of the sequence. Write the recursive helper function check_geometric that
assists function main in carrying out its purpose.

 /*
 * Determines if an input list forms a geometric
 * sequence, a sequence in which each term is the
 * product of the previous term and the common
 * ratio. Displays the message "List forms a geometric
 * sequence" if this is the case. Otherwise, stops
 * input and prints the messages "Input halted at
 * <incorrect term value>. List does not form a
 * geometric sequence"
 */
 int
 main(void)
 {
 double term1, term2,
 ratio; /* common ratio of a geometric sequence
 whose first two terms are term1 and
 term2 */

563Programming Projects

 printf("Data: \n");
 scanf("%lf", &term1);
 printf("%.2f ", term1);
 scanf("%lf", &term2);
 printf("%.2f ", term2);

 ratio = term2 / term1;
 check_geometric(ratio, term2); /* gets and checks rest of
 input list, considering ratios equal if they differ
 by less than .001 */

 return (0);
 }

 7. Write a recursive function that returns the position of the last nonblank char-
acter of a string. You may assume that you are working with a disposable copy
of the string.

 ■ Programming Projects
 1. Develop a program to count pixels (picture elements) belonging to an object

in a photograph. The data are in a two-dimensional grid of cells, each of which
may be empty (value 0) or filled (value 1). The filled cells that are connected
form a blob (an object). Figure 9.27 shows a grid with three blobs. Include in
your program a function blob_check that takes as parameters the grid and the
 x - y coordinates of a cell and returns as its value the number of cells in the blob
to which the indicated cell belongs.

 Function blob_check must test whether the cell specified by its argu-
ments is filled. There are two simple cases: The cell (x, y) may not be on the

y

x

4

3

2

1

0

0 1 2 3 4

 FIGURE 9.27

 Grid with Three
Blobs

564 Chapter 9 • Recursion

grid, or the cell (x, y) may be empty. In either of these cases, the value returned
by blob_check is 0 . If the cell is on the grid and filled, then the value returned is
 1 plus the sizes of the blobs containing each of its eight neighbors. To avoid count-
ing a filled cell more than once, mark a cell as empty once you have counted it.

 2. A palindrome consists of a word or deblanked, unpunctuated phrase that is
spelled exactly the same when the letters are reversed. Write a recursive func-
tion that returns a value of 1 if its string argument is a palindrome. Notice that in
palindromes such as level, deed, sees, and Madam I’m Adam (madamimadam),
the first letter matches the last, the second matches the next-to-last, and so on.

 3. Write and test a recursive function that returns the value of the following
recursive definition:

 f (x) � 0 if x
 0
 f (x) � f (x �1) � 2 otherwise

 What set of numbers is generated by this definition?
 4. Write recursive functions that list all of the one-element, two-element, and

three-element subsets of a given set of letters. For example,

 one_ele_subs
("ACEG")

 two_ele_subs
("ACEG")

 three_ele_subs
("ACEG")

 {A} {A, C} {A, C, E}
 {C} {A, E} {A, C, G}
 {E} {A, G} {A, E, G}
 {G} {C, E} {C, E, G}

 {C, G}
 {E, G}

 5. Write a function that accepts an 8 by 8 array of characters that represents a maze.
Each position can contain either an X or a blank. Starting at position (0,1), list any
path through the maze to get to location (7,7). Only horizontal and vertical moves
are allowed. If no path exists, write a message indicating there is no path.

 Moves can be made only to locations that contain a blank. If an X is
encountered, that path is blocked and another must be chosen. Use recursion.

 6. In Programming Project 12 at the end of Chapter 7 , we described an itera-
tive algorithm for searching for a target value in a sorted list. Here again is the
introduction to that problem.

 The binary search algorithm that follows may be used to search an array
when the elements are in order. This algorithm is analogous to the following
approach to finding a name in a telephone book.

 a. Open the book in the middle and look at the middle name on the page.
 b. If the middle name isn’t the one you’re looking for, decide whether it

comes before or after the name you want.
 c. Take the appropriate half of the section of the book you were looking in,

and repeat these steps until you land on the name.

565Programming Projects

 ITERATIVE ALGORITHM FOR BINARY SEARCH

 1. Let bottom be the subscript of the initial array element.
 2. Let top be the subscript of the last array element.
 3. Let found be false.
 4. Repeat as long as bottom isn’t greater than top and the target has not

been found.
 5. Let middle be the subscript of the element halfway between bottom and

top.
 6. If the element at middle is the target

 7. Set found to true and index to middle.
 else if the element at middle is larger than the target

 8. Let top be middle � 1.
 else

 9. Let bottom be middle � 1.

 Develop a recursive binary search algorithm, and write and test a function
 binary_srch that implements the algorithm for an array of integers.
 7. Write a recursive function that displays all the binary (base 2) numbers repre-

sented by a string of x s, 0 s, and 1 s. The x s represent digits that can be either 0
or 1 . For example, the string 1x0x represents the numbers 1000 , 1001 , 1100 ,
 1101 . The string xx1 represents 001 , 011 , 101 , 111 . Hint: Write a helper
function replace_first_x that builds two strings based on its input argu-
ment. In one, the first x is replaced by a 0 , and in the other by a 1 . The set
function is_element may be useful too.

 8. The version of the selection sort that we studied in Chapter 7 places the small-
est value in the initial array element, the second smallest in the next element,
and so on. Implement this version recursively.

 9. In Chapter 5 we studied the bisection method of approximating a root of a
function on an interval that contains an odd number of roots. Write a recursive
function find_root that could be called by function bisect of Fig. 5.19 to
handle any nonerror case, that is, any case involving an interval that definitely
contains an odd number of roots. This problem lends itself to a recursive
solution because there are two clearly defined simple cases: (a) when the
function’s value at the midpoint of the interval is actually zero, and (b) when
the length of the interval is less than epsilon. Moreover, in all other cases the
problem is naturally redefined as a simpler version of itself—a search within
a shorter interval. Test your function by running a revised version of the
program in Fig. 5.19. Simply replace the while loop of bisect by a call to
 find_root , and return its result as the value of bisect .

This page intentionally left blank

 Structure and
Union Types

 CHAPTER OBJECTIVES

 • To learn how to declare a struct data type which consists of
several data fi elds, each with its own name and data type

 • To understand how to use a struct to store data for a struc-
tured object or record

 • To learn how to use dot notation to process individual fi elds
of a structured object

 • To learn how to use structs as function parameters and to
return function results

 • To see how to create a struct data type for representing
complex numbers and how to write functions that perform
arithmetic operations on complex numbers

 • To understand the relationship between parallel arrays and
arrays of structured objects

 • To learn about union data types and how they differ from
 structs

 C H A P T E R

10

 I n previous chapters, we have seen how to represent in C numbers, characters,
words, other strings, and lists (arrays) of these objects. But surely there is more to
the world we live in than words and lists of numbers! Every day the role of comput-
ers in this complex universe widens, and a programming language must be able to
model not only numbers and names, but also protozoa, people, and planets.

 In this chapter, we will study how to broaden the modeling facilities of C by
defining our own data types that represent structured collections of data pertaining
to particular objects. Unlike an array, a structure can have individual components
that contain data of different types. A single variable of a composite type designed
for planets can store a planet’s name, diameter, number of moons, the number of
years to complete one solar orbit, and the number of hours to make one rotation on
its axis. Each of these data items is stored in a separate component of the structure
and can be referenced by using the component name.

 10.1 User-Defined Structure Types
 A database is a collection of information stored in a computer’s memory or in a disk
file. A database is subdivided into records , which normally contain information
regarding specific data objects. The structure of the record is determined by the
structure of the object’s data type.

 Structure Type Definition

 Before a structured data object can be created or saved, the format of its com-
ponents must be defined. Although C provides several ways to define structures,
we will explore just one approach—defining a new data type for each category
of structured objects.

 EXAMPLE 10.1 As part of a project for our local observatory, we are developing a database of the
planets in our solar system. For each planet, we need to represent information like
the following:

 Name: Jupiter
 Diameter: 142,800 km
 Moons: 16

 record a collection of
information about one
data object

10.1 • User-Defined Structure Types 569

 Orbit time: 11.9 years
 Rotation time: 9.925 hours

 We can define a structure type planet_t to use in declaring a variable in which
to store this information. There must be five components in the structure type,
one for each data item. We must specify the name of each component and the
type of information stored in each component. We choose the names in the same
way we choose all other identifiers: The names describe the nature of the infor-
mation represented. The contents of each component determine the appropriate
data type. For example, the planet’s name should be stored in a component that
is an array of characters.

 The structure type planet_t has five distinct components. One is an array of char-
acters; one is an int . The other three are of type double .

 #define STRSIZ 10

 typedef struct {
 char name[STRSIZ];
 double diameter; /* equatorial diameter in km */
 int moons; /* number of moons */
 double orbit_time, /* years to orbit sun once */
 rotation_time; /* hours to complete one
 revolution on axis */
 } planet_t;

 This type definition is a template that describes the format of a planet structure
and the name and type of each component. A name chosen for a component of one
structure may be the same as the name of a component of another structure or the
same as the name of a variable. We will see that the approach C takes to referencing
these components will rule out confusion of matching names used in these different
contexts.

 The typedef statement itself allocates no memory. A variable declaration is
required to allocate storage space for a structured data object. The variables cur-
rent_planet and previous_planet are declared next, and the variable blank_
planet is declared and initialized.

 {
 planet_t current_planet,
 previous_planet,
 blank_planet = {"", 0, 0, 0, 0};
 . . .

 The structured variables current_planet , previous_planet , and blank_planet
all have the format specified in the definition of type planet_t . Thus, the memory

 structure type a
data type for a record
composed of multiple
components

570 Chapter 10 • Structure and Union Types

allocated for each consists of storage space for five distinct values. The variable
 blank_planet is pictured as it appears after initialization.

Variable blank_planet, a structure of type planet_t

 .name

 .diameter

 .moons

 .orbit_time

.rotation_time

0.0

0

0.0

0.0

\0 ? ? ? ? ? ? ? ? ?

 A user-defined type like planet_t can be used to declare both simple and array

variables and to declare components in other structure types. A structure contain-
ing components that are data structures (arrays or struct s) is sometimes called
a hierarchical structure . The following definition of a structure type includes a
component that is an array of planets.

 typedef struct {
 double diameter;
 planet_t planets[9];
 char galaxy[STRSIZ];
 } solar_sys_t;

 hierarchical structure
 a structure containing
components that are
structures

 Structure Type Definition

 SYNTAX: typedef struct {

 type 1 id_list 1 ;

 type 2 id_list 2 ;

 .

 .

 .

 type n id_list n ;

 } struct_type ;

 EXAMPLE: typedef struct { /* complex number structure */

 double real_pt,

 imag_pt;

 } complex_t;

 (continued)

10.1 • User-Defined Structure Types 571

 INTERPRETATION: The identifier struct_type is the name of the structure type being defined.

Each id_list i is a list of one or more component names separated by commas; the data type of

each component in id_list i is specified by type i .

 NOTE: type i can be any standard or previously specified user-defined data type.

 Manipulating Individual Components of a Structured

Data Object

 We can reference a component of a structure by using the direct component
selection operator , which is a period. The period is preceded by the name of a
structure type variable and is followed by the name of a component.

 EXAMPLE 10.2 Figure 10.1 shows as an example the manipulation of the components of the vari-
able current_planet listed at the beginning of Example 10 . 1 . The statements in
the figure store in the variable the data pictured earlier.

 Once data are stored in a record, they can be manipulated in the same way as other
data in memory. For example, the statement

 direct component
selection operator a
period placed between
a structure type variable
and a component name
to create a reference to
the component

Variable current_planet, a structure of type planet_t

.name

.diameter

.moons

.orbit_time

.rotation_time

142800.0

16

11.9

9.925

J u p i t e r \0 ? ?

strcpy(current_planet.name, "Jupiter");
current_planet.diameter = 142800;
current_planet.moons = 16;
current_planet.orbit_time = 11.9;
current_planet.rotation_time = 9.925;

 FIGURE 10.1

 Assigning Values
to Components
of Variable
current_planet

572 Chapter 10 • Structure and Union Types

 printf("%s's equatorial diameter is %.1f km.\n",
 current_planet.name, current_planet.diameter);

 displays the sentence

 Jupiter's equatorial diameter is 142800.0 km.

 Review of Operator Precedence

 With the addition of the direct component selection operator to our repertory
of operators, we will take a moment to see how this operator fits into our over-
all scheme of precedence rules. Table 10.1 not only shows operator precedence
answering the question: In an expression with two operators, which is applied first?
It also lists operator associativity answering the question: In an expression contain-
ing two of these operators in sequence, which is applied first?

 In a generic expression containing two of the same operators in sequence,

 operand 1 op operand 2 op operand 3

 TABLE 10.1 Precedence and Associativity of Operators Seen So Far

 Precedence Symbols Operator Names Associativity

 highest a[j] f(. . .). Subscripting, function calls, direct
component selection

 left

 ++ -- Postfix increment and decrement left

 ++ -- !
 - + & *

 Prefix increment and decrement,
logical not, unary negation and
plus, address of, indirection

 right

 (type name) Casts right

 * / % Multiplicative operators (multiplica-
tion, division, remainder)

 left

 + - Binary additive operators
(addition and subtraction)

 left

 < > <= >= Relational operators left

 == != Equality / inequality operators left

 && Logical and left

 || Logical or left

 lowest = += -=
 *= /= %=

 Assignment operators right

10.1 • User-Defined Structure Types 573

 if op has left associativity, the expression is evaluated as

 (operand 1 op operand 2) op operand 3

 whereas, if op has right associativity, the implied order of evaluation is

 operand 1 op (operand 2 op operand 3)

 Manipulating Whole Structures

 The name of a structure type variable used with no component selection operator
refers to the entire structure. A new copy of a structure’s value can be made by sim-
ply assigning one structure to another as in the following statement:

 previous_planet = current_planet;

 We will see other instances of the manipulation of whole structures in the next sec-
tion when we study the use of structures as input and output parameters of func-
tions and as function result types.

 Program Style Naming Convention for Types

 When we write programs that define new types, it is easy to confuse type names and
variable names. To help reduce confusion, in this text we choose user-defined type
names that use lowercase letters and end in the suffix _t (a practice recommended
in some industrial software design environments).

 EXERCISES FOR SECTION 10.1

 Self-Check

 1. Define a type named long_lat_t that would be appropriate for storing lon-
gitude or latitude values. Include components named degrees (an integer),
 minutes (an integer), and direction (one of the characters 'N' , 'S' , 'E' ,
or 'W').

 2. The following are a type to represent a geographic location and a variable of
this hierarchical structure type. We will assume that STRSIZ means 20 .

 typedef struct {
 char place[STRSIZ];
 long_lat_t longitude,
 latitude;
 } location_t;

 location_t resort;

574 Chapter 10 • Structure and Union Types

 Given that the values shown have been stored in resort , complete the follow-
ing table to check your understanding of component selection.

 Variable resort , a structure of type location_t

.place

.longitude

.latitude

H a w a i i \0 ? ? . . .

158

21

0

30

W

N

 Reference Data Type of Reference Value

 resort.latitude long_lat_t 21 30 'N'
 resort.place ______________ _____________
 resort.longitude.direction _____________ _____________
 ______________________ int 30
 resort.place[3] ______________ _____________

 3. A catalog listing for a textbook consists of the authors’ names, the title,
the publisher, and the year of publication. Declare a structure type
 catalog_entry_t and a variable book , and write statements that store the
relevant data for this textbook in book .

 10.2 Structure Type Data as Input and Output Parameters
 When a structured variable is passed as an input argument to a function, all of its
component values are copied into the components of the function’s corresponding
formal parameter. When such a variable is used as an output argument, the address-
of operator must be applied in the same way that we would pass output arguments
of the standard types char , int , and double .

 EXAMPLE 10.3 Our observatory program from Example 10.1 and Example 10 . 2 frequently needs
to output as a unit all of the descriptive data about a planet. Figure 10.2 shows a
function to do this.

 To display the value of our structure current_planet , we would use the call
statement

 print_planet(current_planet);

57510.2 • Structure Type Data as Input and Output Parameters

 Having an output function like print_planet helps us to view the planet object
as a concept at a higher level of abstraction rather than as an ad hoc collection of
components.

 Another function that would help us think of a planet as a data object is a function
that would perform an equality comparison of two planets. Although C permits
copying of a structure using the assignment operator, the equality and inequality
operators cannot be applied to a structured type as a unit. Figure 10.3 shows a
 planet_equal function that takes two planets as input arguments and returns 1 or
 0 depending on whether all components match.

 FIGURE 10.2 Function with a Structured Input Parameter

 1. /*
 2. * Displays with labels all components of a planet_t structure
 3. */
 4. void
 5. print_planet(planet_t pl) /* input - one planet structure */
 6. {
 7. printf("%s\n", pl.name);
 8. printf(" Equatorial diameter: %.0f km\n", pl.diameter);
 9. printf(" Number of moons: %d\n", pl.moons);
 10. printf(" Time to complete one orbit of the sun: %.2f years\n",
 11. pl.orbit_time);
 12. printf(" Time to complete one rotation on axis: %.4f hours\n",
 13. pl.rotation_time);
 14. }

 FIGURE 10.3 Function Comparing Two Structured Values for Equality

 1. #include <string.h>
 2.
 3. /*
 4. * Determines whether or not the components of planet_1 and planet_2 match
 5. */
 6. int
 7. planet_equal(planet_t planet_1, /* input - planets to */
 8. planet_t planet_2) /* compare */
 9. {

(continued)

576 Chapter 10 • Structure and Union Types

 A planet input function would also help us to process current_planet as planet_t
data. Figure 10.4 shows the function scan_planet that resembles scanf in that it
takes an output argument and returns the value 1 if its single output argument is
successfully filled, returns the value 0 if there is an error, and returns the negative
value EOF if the end of the file is encountered.

 As you can see from this example, manipulating a structured output argument
using operators * and . really requires you to keep C’s operator-precedence rules
straight. In order to use scanf to store a value in one component of the structure
whose address is in plnp , we must carry out the following steps (in order):

 1. Follow the pointer in plnp to the structure.
 2. Select the component of interest.
 3. Unless this component is an array (e.g., component name in Fig. 10.4), get its

address to pass to scanf .

 When we check our precedence chart (see Table 10.1), we find that this reference

 &*plnp.diameter

 would attempt step 2 before step 1. For this reason, the function in Fig. 10.4 over-
rides the default operator precedence by parenthesizing the application of the indi-
rect referencing (pointer-following) operator, the unary * . Figure 10.5 shows the
data areas of functions main and scan_planet during execution of the following
statement in main :

 status = scan_planet(¤t_planet);

 We are assuming that the assignment statement of scan_planet calling scanf has
just finished executing and that it has successfully obtained input values for all com-
ponents of the output argument structure.

 In Table 10.2 , we analyze the reference &(*plnp).diameter from our function
 scan_planet . C also provides a single operator that combines the functions of the
indirection and component selection operators. This indirect component selection

 10. return (strcmp(planet_1.name, planet_2.name) == 0 &&
 11. planet_1.diameter == planet_2.diameter &&
 12. planet_1.moons == planet_2.moons &&
 13. planet_1.orbit_time == planet_2.orbit_time &&
 14. planet_1.rotation_time == planet_2.rotation_time);
 15. }

 FIGURE 10.3 (continued)

 indirect component
selection operator
 the character sequence
 -> placed between a
pointer variable and
a component name
creates a reference that
follows the pointer to
a structure and selects
the component

57710.2 • Structure Type Data as Input and Output Parameters

 FIGURE 10.4 Function with a Structured Output Argument

 1. /*
 2. * Fills a type planet_t structure with input data. Integer returned as
 3. * function result is success/failure/EOF indicator.
 4. * 1 => successful input of one planet
 5. * 0 => error encountered
 6. * EOF => insufficient data before end of file
 7. * In case of error or EOF, value of type planet_t output argument is
 8. * undefined.
 9. */
 10. int
 11. scan_planet(planet_t *plnp) /* output - address of planet_t structure
 12. to fill */
 13. {
 14. int result;
 15.
 16. result = scanf("%s%lf%d%lf%lf", (*plnp).name,
 17. &(*plnp).diameter,
 18. &(*plnp).moons,
 19. &(*plnp).orbit_time,
 20. &(*plnp).rotation_time);
 21. if (result == 5)
 22. result = 1;
 23. else if (result != EOF)
 24. result = 0;
 25.
 26. return (result);
 27. }

operator is represented by the character sequence -> (a minus sign followed by a
greater-than symbol). Thus, these two expressions are equivalent.

 (*structp).component structp->component

 If we rewrite the scan_planet function of Fig. 10.4 using the -> operator, the
assignment to result will be

 result = scanf("%s%lf%d%lf%lf", plnp->name,
 &plnp->diameter,
 &plnp->moons,
 &plnp->orbit_time,
 &plnp->rotation_time);

578 Chapter 10 • Structure and Union Types

 In the next section, we see how to write a function that fills up a planet_t
structure with input data and returns this structure as the function value. This
alternative way of approaching input of structures avoids the need for indirect refer-
encing, but it cannot return a status indicator as the function value in the same way
 scan_planet does.

current_planet

.name

.diameter

.moons

.orbit_time

.rotation_time

E a r t h \0

 1

Data area of
function main

?

plnp

result

Data area of
function scan_planet

status

5
12713.5

1.0

24.0

 FIGURE 10.5

 Data Areas of main
and scan_planet
during Execution
of status =
scan_planet
(¤t_
planet);

 TABLE 10.2 Step-by-Step Analysis of Reference &(*plnp).diameter

 Reference Type Value

 plnp planet_t * address of structure that main
refers to as current_planet

 *plnp planet_t structure that main refers to as
 current_planet

 (*plnp).diameter double 12713.5

 &(*plnp).diameter double * address of colored component
of structure that main refers to as
 current_planet

57910.2 • Structure Type Data as Input and Output Parameters

 EXERCISES FOR SECTION 10.2

 Self-Check

 1. Write functions print_long_lat , long_lat_equal , and scan_long_lat to
perform output, equality comparison, and input of type long_lat_t data
(see Self-Check Exercise 1 at the end of Section 10.1).

 2. Assume that you have a function verify_location that manipulates a struc-
tured input/output argument of type location_t (see Self-Check Exercise 2
at the end of Section 10.1). The figure that follows shows the data areas of
functions main and verify_location during execution of the call

 code = verify_location(&resort);

 Complete the table following the figure with references appropriate for use in
verify_location (if such references were needed).

. . .

resort

.degrees

.minutes

.direction

.degrees

.minutes

.direction

C o s t a R i c a \0

84

30

W

10

30

N

Data area of
function main

?

code

Data area of function
verify_location

locp

.place

.longitude

.latitude

580 Chapter 10 • Structure and Union Types

 10.3 Functions Whose Result Values Are Structured
 In our study so far, we have seen many situations in which user-defined structured
data types are treated just like C’s own simple types, yet we have seen only one situ-
ation in which structures are handled differently, namely, in equality comparisons.
In Chapters 7 and 8 , we saw that C’s processing of the array data structure differs
significantly from its handling of simple data types. One of the many differences is
the fact that the values of an entire array cannot be returned as a function result.
Rather, functions computing array results typically require the calling module to
provide an array output argument in which to store the result and then return this
array’s address as the function value.

 Since arrays and structure types are both data structures, one might expect
that C would handle them in a similar fashion. In fact, learning C is greatly assisted
by doing away with this expectation, because C’s approach to processing structure
types closely resembles its facilities for working with simple data types, but is very
different from its handling of arrays.

 A function that computes a structured result can be modeled on a function
computing a simple result. A local variable of the structure type can be allocated,
filled with the desired data, and returned as the function result. The function does
not return the address of the structure as it would with an array result; rather it
returns the values of all components.

 EXAMPLE 10.4 In Fig. 10.6 , we see a function that obtains from the input device values for all com-
ponents of a planet_t structure and returns the structure as the function result.
Like function getchar , our function get_planet requires no arguments. If we
assume entry of correct data, the statement

 current_planet = get_planet();

 Reference in
verify_location Type of Reference Value of Reference

 locp location_t * address of the structure that
 main refers to as resort

 _____________ _____________ the structure that main refers to
as resort

 _____________ _____________ "Costa Rica"

 address of the colored component
of the structure that main refers
to as resort
84

58110.3 • Functions Whose Result Values Are Structured

 has the same effect as

 scan_planet(¤t_planet);

 However, the assumption of correct data entry format is frequently unjustified, so
 scan_planet with its ability to return an integer error code is the more generally
useful function.

 EXAMPLE 10.5 Before performing a potentially dangerous or costly experiment in the laboratory,
we can often use a computer program to simulate the experiment. In computer
simulations, we need to keep track of the time of day as the experiment progresses.
Normally, the time of day is updated after a certain period has elapsed. Assuming a
24-hour clock, the structure type time_t is defined as follows:

 typedef struct {
 int hour, minute, second;
 } time_t;

 Function new_time in Fig. 10.7 returns as its value an updated time based on the
original time of day and the number of seconds that have elapsed since the previous
update. If time_now were 21:58:32 and secs had the value 97, the result returned

 FIGURE 10.6 Function get_planet Returning a Structured Result Type

 1. /*
 2. * Gets and returns a planet_t structure
 3. */
 4. planet_t
 5. get_planet(void)
 6. {
 7. planet_t planet;
 8.
 9. scanf("%s%lf%d%lf%lf", planet.name,
 10. &planet.diameter,
 11. &planet.moons,
 12. &planet.orbit_time,
 13. &planet.rotation_time);
 14. return (planet);
 15. }

582 Chapter 10 • Structure and Union Types

by the call

 new_time(time_now, secs)

 would be 22:00:09. Because new_time ’s variable time_of_day is strictly an input
parameter, the value of time_now will not be affected by the call to new_time . If
the intent is to update time_now , an assignment statement is used:

 time_now = new_time(time_now, secs);

 Figure 10.8 traces the assignment statement just mentioned showing the structured
 time_t value used as an input argument and the type time_t function value.

 FIGURE 10.7 Function to Compute an Updated Time Value

 1. /*
 2. * Computes a new time represented as a time_t structure
 3. * and based on time of day and elapsed seconds.
 4. */
 5. time_t
 6. new_time(time_t time_of_day, /* input - time to be
 7. updated */
 8. int elapsed_secs) /* input - seconds since last update */
 9. {
 10. int new_hr, new_min, new_sec;
 11.
 12. new_sec = time_of_day.second + elapsed_secs;
 13. time_of_day.second = new_sec % 60;
 14. new_min = time_of_day.minute + new_sec / 60;
 15. time_of_day.minute = new_min % 60;
 16. new_hr = time_of_day.hour + new_min / 60;
 17. time_of_day.hour = new_hr % 24;
 18.
 19. return (time_of_day);
 20. }

 EXERCISES FOR SECTION 10.3

 Self-Check

 1. Why does function new_time ’s assignment of new values to the second ,
 minute , and hour components of its formal parameter time_of_day have no
effect on the components of actual argument time_now in the call
 new_time(time_now, secs) ?

58310.4 • Problem Solving with Structure Types

 2. Could you modify function get_planet so that it would still have a type
 planet_t result and also indicate input success or failure to the calling
function?

 Programming

 1. Define a structure type to represent a common fraction. Write a program
that gets a fraction and displays both the fraction and the fraction reduced to
lowest terms using the following code fragment:

 frac = get_fraction();
 print_fraction(frac);
 printf(" = ");
 print_fraction(reduce_fraction(frac));

 10.4 Problem Solving with Structure Types
 When we solve problems using C’s standard data types, we take for granted the fact
that C provides us with all the basic operations we need to manipulate our data.
However, when we work with a problem whose data objects are more complex,
we find that defining our own data types is just the first step in building a tool with
which to attack the problem. In order to be able to think about the problem on the
basis of our own data types, we must also provide basic operations for manipulating
these types.

time_now = new_time(time_now,secs);

time_t
new_time(time_t time_of_day, int elapsed_secs)
{

}

int new_hr, new_min, new_sec;

new_sec = time_of_day.second + elapsed_secs;
time_of_day.second = new_sec % 60;
new_min = time_of_day.minute + new_sec / 60;
time_of_day.minute = new_min % 60;
new_hr = time_of_day.hour + new_min / 60;
time_of_day.hour = new_hr % 24;

return (time_of_day);

22 9

21 32

0

58 97

 FIGURE 10.8

 Structured Values
as a Function Input
Argument and as a
Function Result

584 Chapter 10 • Structure and Union Types

 Combining a user-defined type with a set of basic operations that allow one
truly to see the type as a unified concept creates what is called an abstract data
type (ADT) . Figure 10.9 shows one view of our data type planet_t combined with
its operations.

 If we take the time to define enough basic operations for a structure type, we
then find it possible to think about a related problem at a higher level of abstraction;
we are no longer bogged down in the details of manipulating the type’s components.

 In our next case study, we develop such a group of basic operations for process-
ing complex numbers.

 abstract data type
(ADT) a data type
combined with a set of
basic operations

. . .

planet_
 equal print_

planet

scan_
 planet

planet_t

 FIGURE 10.9

 Data Type
planet_t and Basic
Operations

 CASE STUDY A User-Defined Type for Complex Numbers

 PROBLEM

 We are working on an engineering project that uses complex numbers for modeling
of electrical circuits. We need to develop a user-defined structure type and a set of
operations that will make complex arithmetic virtually as straightforward as arithme-
tic on C’s built-in numeric types.

 ANALYSIS

 A complex number is a number with a real part and an imaginary part. For example,
the complex number a + bi has a real part a and an imaginary part b, where the

58510.4 • Problem Solving with Structure Types

symbol i represents 1-1. We will need to define functions for complex I/O as well
as for the basic arithmetic operations (addition, subtraction, multiplication, and divi-
sion) and for finding the absolute value of a complex number.

 DESIGN

 The two major aspects of our solution to this problem are defining the structure of
the user-defined type and describing the function name, parameters, and purpose
of each operation. Each function purpose then forms a subproblem to be solved
separately. The details of these subproblems will be of interest to us as we develop
our operations. However, once this group of functions is complete, we will be con-
cerned only with what each function does, not with how it does it. In the same way,
when we use C’s built-in multiplication operator, we are interested only in the fact
that * does multiplication, not caring in the least how it manages to accomplish this.

 As soon as the specification is complete, our coworkers on the circuit modeling
project can begin designing algorithms that assume the availability of these opera-
tions. Then, when our implementation is complete, our code can either be added
to their programs or packaged for inclusion in a way we will describe in Chapter 12 .

 Figure 10.10 shows a partial implementation of our specification together with a
driver function. Functions multiply_complex and divide_complex have been left
as an exercise. Notice that the definition of type complex_t is placed immediately
after our preprocessor directives so that it is visible throughout the entire program.
Function abs_complex uses the following formula to compute the absolute value
of a complex number:

 � a + bi � = 1(a + bi)(a - bi) = 2a2 + b2

 This result always has an imaginary part of zero, so print_complex will display the
result as a real number.

 Specification of Type complex_t and Associated Operations

 STRUCTURE: A complex number is an object of type complex_t that consists of a pair of

type double values.

 OPERATORS:

 /*

 * Complex number input function returns standard scanning

 * error code

 */

 (continued)

586 Chapter 10 • Structure and Union Types

 int

 scan_complex(complex_t *c) /* output - address of complex

 variable to fill */

 /*

 * Complex output function displays value as a + bi or a - bi.

 * Displays only a if imaginary part is 0.

 * Displays only bi if real part is 0.

 */

 void

 print_complex(complex_t c) /* input - complex number to

 display */

 /*

 * Returns sum of complex values c1 and c2

 */

 complex_t

 add_complex(complex_t c1, complex_t c2) /* input */

 /*

 * Returns difference c1 - c2

 */

 complex_t

 subtract_complex(complex_t c1, complex_t c2) /* input */

 /*

 * Returns product of complex values c1 and c2

 */

 complex_t

 multiply_complex(complex_t c1, complex_t c2) /* input */

 /*

 * Returns quotient of complex values (c1 / c2)

 */

 complex_t

 divide_complex(complex_t c1, complex_t c2) /* input */

 /*

 * Returns absolute value of complex number c

 */

complex_t

 abs_complex(complex_t c) /* input */

58710.4 • Problem Solving with Structure Types

(continued)

 FIGURE 10.10 Partial Implementation of Type and Operators for Complex Numbers

 1. /*
 2. * Operators to process complex numbers
 3. */
 4. #include <stdio.h>
 5. #include <math.h>
 6.
 7. /* User-defined complex number type */
 8. typedef struct {
 9. double real, imag;
 10. } complex_t;
 11.
 12. int scan_complex(complex_t *c);
 13. void print_complex(complex_t c);
 14. complex_t add_complex(complex_t c1, complex_t c2);
 15. complex_t subtract_complex(complex_t c1, complex_t c2);
 16. complex_t multiply_complex(complex_t c1, complex_t c2);
 17. complex_t divide_complex(complex_t c1, complex_t c2);
 18. complex_t abs_complex(complex_t c);
 19.
 20. /* Driver */
 21. int
 22. main(void)
 23. {
 24. complex_t com1, com2;
 25.
 26. /* Gets two complex numbers */
 27. printf("Enter the real and imaginary parts of a complex number\n");
 28. printf("separated by a space> ");
 29. scan_complex(&com1);
 30. printf("Enter a second complex number> ");
 31. scan_complex(&com2);
 32.
 33. /* Forms and displays the sum */
 34. printf("\n");
 35. print_complex(com1);
 36. printf(" + ");
 37. print_complex(com2);
 38. printf(" = ");
 39. print_complex(add_complex(com1, com2));
 40.

588 Chapter 10 • Structure and Union Types

 FIGURE 10.10 (continued)

(continued)

 41. /* Forms and displays the difference */
 42. printf("\n\n");
 43. print_complex(com1);
 44. printf(" - ");
 45. print_complex(com2);
 46. printf(" = ");
 47. print_complex(subtract_complex(com1, com2));
 48.
 49. /* Forms and displays the absolute value of the first number */
 50. printf("\n\n|");
 51. print_complex(com1);
 52. printf("| = ");
 53. print_complex(abs_complex(com1));
 54. printf("\n");
 55.
 56. return (0);
 57. }
 58.
 59. /*
 60. * Complex number input function returns standard scanning error code
 61. * 1 => valid scan, 0 => error, negative EOF value => end of file
 62. */
 63. int
 64. scan_complex(complex_t *c) /* output - address of complex variable to
 65. fill */
 66. {
 67. int status;
 68.
 69. status = scanf("%lf%lf", &c->real, &c->imag);
 70. if (status == 2)
 71. status = 1;
 72. else if (status != EOF)
 73. status = 0;
 74.
 75. return (status);
 76. }
 77.

58910.4 • Problem Solving with Structure Types

 FIGURE 10.10 (continued)

(continued)

 78. /*
 79. * Complex output function displays value as (a + bi) or (a - bi),
 80. * dropping a or b if they round to 0 unless both round to 0
 81. */
 82. void
 83. print_complex(complex_t c) /* input - complex number to display */
 84. {
 85. double a, b;
 86. char sign;
 87.
 88. a = c.real;
 89. b = c.imag;
 90.
 91. printf("(");
 92.
 93. if (fabs(a) < .005 && fabs(b) < .005) {
 94. printf("%.2f", 0.0);
 95. } else if (fabs(b) < .005) {
 96. printf("%.2f", a);
 97. } else if (fabs(a) < .005) {
 98. printf("%.2fi", b);
 99. } else {
 100. if (b < 0)
 101. sign = '-';
 102. else
 103. sign = '+';
 104. printf("%.2f %c %.2fi", a, sign, fabs(b));
 105. }
 109.
 107. printf(")");
 108. }
 109.
 110. /*
 111. * Returns sum of complex values c1 and c2
 112. */
 113. complex_t
 114. add_complex(complex_t c1, complex_t c2) /* input - values to add */

590 Chapter 10 • Structure and Union Types

 FIGURE 10.10 (continued)

(continued)

 115. {
 116. complex_t csum;
 117.
 118. csum.real = c1.real + c2.real;
 119. csum.imag = c1.imag + c2.imag;
 120. return (csum);
 121. }
 123.
 124. /*
 125. * Returns difference c1 - c2
 126. */
 127. complex_t
 128. subtract_complex(complex_t c1, complex_t c2) /* input parameters */
 129. {
 130. complex_t cdiff;
 131. cdiff.real = c1.real - c2.real;
 132. cdiff.imag = c1.imag - c2.imag;
 133.
 134. return (cdiff);
 135. }
 136.
 137. /* ** Stub **
 138. * Returns product of complex values c1 and c2
 139. */
 140. complex_t
 141. multiply_complex(complex_t c1, complex_t c2) /* input parameters */
 142. {
 143. printf("Function multiply_complex returning first argument\n");
 144. return (c1);
 145. }
 146.
 147. /* ** Stub **
 148. * Returns quotient of complex values (c1 / c2)
 149. */
 150. complex_t
 151. divide_complex(complex_t c1, complex_t c2) /* input parameters */
 152. {
 153. printf("Function divide_complex returning first argument\n");
 154. return (c1);

59110.4 • Problem Solving with Structure Types

 FIGURE 10.10 (continued)

 155. }
 156.
 157. /*
 158. * Returns absolute value of complex number c
 159. */
 160. complex_t
 161. abs_complex(complex_t c) /* input parameter */
 162. {
 163. complex_t cabs;
 164.
 165. cabs.real = sqrt(c.real * c.real + c.imag * c.imag);
 166. cabs.imag = 0;
 167.
 168. return (cabs);
 169. }

 Enter the real and imaginary parts of a complex number
 separated by a space> 3.5 5.2
 Enter a second complex number> 2.5 1.2

 (3.50 + 5.20i) + (2.50 + 1.20i) = (6.00 + 6.40i)

 (3.50 + 5.20i) - (2.50 + 1.20i) = (1.00 + 4.00i)

 |(3.50 + 5.20i)| = (6.27)

 EXERCISES FOR SECTION 10.4

 Self-Check

 1. What does the following program segment display if the data entered are 6.5
5.0 3.0 -4.0 ?

 complex_t a, b, c;

 scan_complex(&a);
 scan_complex(&b);

 print_complex(a);
 printf(" + ");
 print_complex(b);
 printf(" = ");
 print_complex(add_complex(a, b));

592 Chapter 10 • Structure and Union Types

 c = subtract_complex(a, abs_complex(b));
 printf("\n\nSecond result = ");
 print_complex(c);
 printf("\n");

 Programming

 1. Write functions multiply_complex and divide_complex to implement
the operations of multiplication and division of complex numbers defined as
follows:

 (a + bi) × (c + di) = (ac − bd) + (ad + bc)i

 (a + bi) = ac + bd + bc − ad i
(c + di) c2 + d2 c2 + d2

 10.5 Parallel Arrays and Arrays of Structures
 Often a data collection contains items of different types or items that, although of
the same type, represent quite distinct concepts. For example, the data used to rep-
resent a list of students might consist of an integer identification number and a type
 double gpa for each student. The data representing a polygon might be a list of the
(x , y) coordinates of the polygon’s corners.

 Parallel Arrays

 In Section 7.7 , we learned how to represent such data collections using parallel
arrays like these:

 int id[50]; /* id numbers and */
 double gpa[50]; /* gpa's of up to 50 students */
 double x[NUM_PTS], /* (x,y) coordinates of */
 y[NUM_PTS]; /* up to NUM_PTS points */

 Arrays id and gpa are called parallel arrays because the data items with the same
subscript (for example, i) pertain to the same student (the i th student). Similarly,
the i th elements of arrays x and y are the coordinates of one point. A better way to
organize data collections like these is shown next.

 Declaring an Array of Structures

 A more natural and convenient organization of student data or polygon points
is to group the information pertaining to one student or to one point in a

59310.5 • Parallel Arrays and Arrays of Structures

structure whose type we define. Declarations of arrays whose elements are
structures follow.
 #define MAX_STU 50
 #define NUM_PTS 10

 typedef struct {
 int id;
 double gpa;
 } student_t;

 typedef struct {
 double x, y;
 } point_t;

 . . .

 {
 student_t stulist[MAX_STU];
 point_t polygon[NUM_PTS];

 A sample array stulist is shown in Fig. 10.11 . The data for the first student are
stored in the structure stulist[0] . The individual data items are stulist[0].id
and stulist[0].gpa . As shown, stulist[0].gpa is 2.71 .

 If a function scan_student is available for scanning a student_t structure,
the following for statement can be used to fill the entire array stulist with data.
 for (i = 0; i < MAX_STU; ++i)
 scan_student(&stulist[i]);

 This for statement would display all the id numbers:
 for (i = 0; i < MAX_STU; ++i)
 printf("%d\n", stulist[i].id);

 In our next case study, we see how to use an array of descriptive information
about units of measurement in order to make possible conversion of any measure-
ment to any other unit of the same category.

609465503

512984556

232415569

. . .

173745903

stulist[0]

stulist[1]

stulist[2]

. . .

stulist[49]

2.71

3.09

2.98

. . .

3.98

 Array
.id

 stulist
 .gpa

stulist[0].gpa

 FIGURE 10.11

 An Array of
Structures

594 Chapter 10 • Structure and Union Types

 CASE STUDY Universal Measurement Conversion

 In a day when our computer software spell-checks text and looks up synonyms for
words, it seems primitive to use printed tables for hand conversion of feet to meters,
liters to quarts, and so on.

 PROBLEM

 We would like a program that takes a measurement in one unit (e.g., 4.5 quarts) and
converts it to another unit (e.g., liters). For example, this conversion request

 450 km miles

 would result in this program output

 Attempting conversion of 450.0000 km to miles . . .
 450.0000km = 279.6247 miles

 The program should produce an error message if a conversion between two units
of different classes (e.g., liquid volume to distance) is requested. The program
should take a database of conversion information from an input file before accepting
conversion problems entered interactively by the user. The user should be able to
specify units either by name (e.g., kilograms) or by abbreviation (e.g., kg).

 ANALYSIS

 This program’s basic data objects are units of measurement. We need to define a
structure type that groups all relevant attributes about one unit. We can then store
a database of these structures in an array and look up conversion factors as needed.
To convert a measurement, the user will need to provide the measurement as a
number and a string (e.g., 5 kg or 6.5 inches). The user must also enter the name or
abbreviation of the desired units.

 The attributes of a unit include its name and abbreviation, its class (mass,
distance, and so on), and a representation of the unit in terms of the chosen
standard unit for its class. If we allow the actual unit name, class names, and
standard units to be determined by the contents of the input file, the program
will be usable for any class of measurements and for units in any language based
on our character set.

59510.5 • Parallel Arrays and Arrays of Structures

 DATA REQUIREMENTS

 Structured Data Type
 unit_t
 components:
 name /* character string such as "milligrams" */
 abbrev /* shorter character string such as "mg" */
 class /* character string "liquid_volume",
 "distance", or "mass" */
 standard /* number of standard units that are
 equivalent to this unit */

 Problem Constants
 NAME_LEN 30 /* storage allocated for a unit name */
 ABBREV_LEN 15 /* storage allocated for a unit
 abbreviation */
 CLASS_LEN 20 /* storage allocated for a
 measurement class */
 MAX_UNITS 20 /* maximum number of different units
 handled */

 Problem Inputs

 unit_t units[MAX_UNITS] /* array representing unit conversion
 factors database */
 double quantity /* value to convert */
 char old_units[NAME_LEN] /* name or abbreviation of units to be
 converted */
 char new_units[NAME_LEN] /* name or abbreviation of units to
 convert to */

 Problem Output
 Message giving conversion.

 DESIGN

 ALGORITHM

 1. Load units of measurement database.
 2. Get value to convert and old and new unit names.
 3. Repeat until data format error encountered.

 4. Search for old units in database.
 5. Search for new units in database.

596 Chapter 10 • Structure and Union Types

 6. if conversion is impossible
 7. Issue appropriate error message.
 else
 8. Compute and display conversion.

 9. Get value to convert and old and new unit names.

 The refinement of step 1 follows.

 1.1 Open database file.
 1.2 Initialize subscripting variable i .
 1.3 Scan a unit structure from the database file.
 1.4 Repeat until EOF, data format error, or attempted overflow of units list

 1.4.1 Store unit structure in units array.
 1.4.2 Update i .
 1.4.3 Scan next unit structure from file.

 1.5 Close database file.

 We will develop separate functions for step 1 (load_units), for step 1.3 and
step 1.4.3 (fscan_unit), for the search used in step 4 and step 5, and for the con-
version aspect of step 8. We can base our search function on the linear search
algorithm used in Fig. 7.14 .

 IMPLEMENTATION

 Code that implements our universal conversion program is shown in Fig. 10.12 . In
the universal conversion program, it makes sense to use two sources of input. The
database of units is taken from a file (units.txt) that can be created once and then
used for many runs of the program. In contrast, the program expects that the con-
version problems will be entered interactively.

 TESTING

 In addition to testing the conversion of units of liquid volume, distance, and mass
using values whose conversions are easy to verify, we should also select test cases
that exercise each of the error message facilities of the program. Figure 10.13 shows
a small data file and one run of the conversion program. The database in this file
assumes standard units of meters, liters, and kilograms. Note that all that is required
by the program is that the database consistently use some standard units. It does not
prescribe what units these must be.

59710.5 • Parallel Arrays and Arrays of Structures

(continued)

 FIGURE 10.12 Universal Measurement Conversion Program Using an Array of Structures

 1. /*
 2. * Converts measurements given in one unit to any other unit of the same
 3. * category that is listed in the database file, units.txt.
 4. * Handles both names and abbreviations of units.
 5. */
 6. #include <stdio.h>
 7. #include <string.h>
 8.
 9. #define NAME_LEN 30 /* storage allocated for a unit name */
 10. #define ABBREV_LEN 15 /* storage allocated for a unit abbreviation */
 11. #define CLASS_LEN 20 /* storage allocated for a measurement class */
 12. #define NOT_FOUND -1 /* value indicating unit not found */
 13. #define MAX_UNITS 20 /* maximum number of different units handled */
 14.
 15. typedef struct { /* unit of measurement type */
 16. char name[NAME_LEN]; /* character string such as "milligrams" */
 17. char abbrev[ABBREV_LEN];/* shorter character string such as "mg" */
 18. char class[CLASS_LEN]; /* character string such as "pressure",
 19. "distance", "mass" */
 20. double standard; /* number of standard units equivalent
 21. to this unit */
 22. } unit_t;
 23.
 24. int fscan_unit(FILE *filep, unit_t *unitp);
 25. void load_units(int unit_max, unit_t units[], int *unit_sizep);
 26. int search(const unit_t units[], const char *target, int n);
 27. double convert(double quantity, double old_stand, double new_stand);
 28.
 29. int
 30. main(void)
 31. {
 32. unit_t units[MAX_UNITS]; /* units classes and conversion factors*/
 33. int num_units; /* number of elements of units in use */
 34. char old_units[NAME_LEN], /* units to convert (name or abbrev) */
 35. new_units[NAME_LEN]; /* units to convert to (name or abbrev)*/
 36. int status; /* input status */
 37. double quantity; /* value to convert */
 38.

598 Chapter 10 • Structure and Union Types

 FIGURE 10.12 (continued)

(continued)

 39. int old_index, /* index of units element where
 40. old_units found */
 41. new_index; /* index where new_units found */
 42.
 43. /* Load units of measurement database */
 44. load_units(MAX_UNITS, units, &num_units);
 45.
 46. /* Convert quantities to desired units until data format error
 47. (including error code returned when q is entered to quit) */
 48. printf("Enter a conversion problem or q to quit.\n");
 49. printf("To convert 25 kilometers to miles, you would enter\n");
 50. printf("> 25 kilometers miles\n");
 51. printf(" or, alternatively,\n");
 52. printf("> 25 km mi\n> ");
 53.
 54. for (status = scanf("%lf%s%s", &quantity, old_units, new_units);
 55. status == 3;
 56. status = scanf("%lf%s%s", &quantity, old_units, new_units)) {
 57. printf("Attempting conversion of %.4f %s to %s . . .\n",
 58. quantity, old_units, new_units);
 59. old_index = search(units, old_units, num_units);
 60. new_index = search(units, new_units, num_units);
 61. if (old_index == NOT_FOUND)
 62. printf("Unit %s not in database\n", old_units);
 63. else if (new_index == NOT_FOUND)
 64. printf("Unit %s not in database\n", new_units);
 65. else if (strcmp(units[old_index].class,
 66. units[new_index].class) != 0)
 67. printf("Cannot convert %s (%s) to %s (%s)\n",
 68. old_units, units[old_index].class,
 69. new_units, units[new_index].class);
 70. else
 71. printf("%.4f%s = %.4f %s\n", quantity, old_units,
 72. convert(quantity, units[old_index].standard,
 73. units[new_index].standard),
 74. new_units);
 75. printf("\nEnter a conversion problem or q to quit.\n> ");
 76. }
 77.

59910.5 • Parallel Arrays and Arrays of Structures

 FIGURE 10.12 (continued)

(continued)

 78. return (0);
 79. }
 80.
 81. /*
 82. * Gets data from a file to fill output argument
 83. * Returns standard error code: 1 => successful input, 0 => error,
 84. * negative EOF value => end of file
 85. */
 86. int
 87. fscan_unit(FILE *filep, /* input - input file pointer */
 88. unit_t *unitp) /* output - unit_t structure to fill */
 89. {
 90. int status;
 91.
 92. status = fscanf(filep, "%s%s%s%lf", unitp->name,
 93. unitp->abbrev,
 94. unitp->class,
 95. &unitp->standard);
 96.
 97. if (status == 4)
 98. status = 1;
 99. else if (status != EOF)
 100. status = 0;
 101.
 102. return (status);
 103. }
 104.
 105. /*
 106. * Opens database file units.txt and gets data to place in units until end
 107. * of file is encountered. Stops input prematurely if there are more than
 108. * unit_max data values in the file or if invalid data is encountered.
 109. */
 110. void
 111. load_units(int unit_max, /* input - declared size of units */
 112. unit_t units[], /* output - array of data */
 113. int *unit_sizep) /* output - number of data values
 114. stored in units */
 115. {

600 Chapter 10 • Structure and Union Types

 FIGURE 10.12 (continued)

(continued)

 116. FILE * inp;
 117. unit_t data;
 118. int i, status;
 119.
 120. /* Gets database of units from file */
 121. inp = fopen("units.txt", "r");
 123. i = 0;
 124.
 125. for (status = fscan_unit(inp, &data);
 126. status == 1 && i < unit_max;
 127. status = fscan_unit(inp, &data)) {
 128. units[i++] = data;
 129. }
 130. fclose(inp);
 131.
 132. /* Issue error message on premature exit */
 133. if (status == 0) {
 134. printf("\n*** Error in data format ***\n");
 135. printf("*** Using first %d data values ***\n", i);
 136. } else if (status != EOF) {
 137. printf("\n*** Error: too much data in file ***\n");
 138. printf("*** Using first %d data values ***\n", i);
 139. }
 140.
 141. /* Send back size of used portion of array */
 142. *unit_sizep = i;
 143. }
 144.
 145. /*
 146. * Searches for target key in name and abbrev components of first n
 147. * elements of array units
 148. * Returns index of structure containing target or NOT_FOUND
 149. */
 150. int
 151. search(const unit_t units[], /* array of unit_t structures to search */
 152. const char *target, /* key searched for in name and abbrev
 153. components */
 154. int n) /* number of array elements to search */
 155. {

60110.5 • Parallel Arrays and Arrays of Structures

 FIGURE 10.12 (continued)

 156. int i,
 157. found = 0, /* whether or not target has been found */
 158. where; /* index where target found or NOT_FOUND */
 159.
 160. /* Compare name and abbrev components of each element to target */
 161. i = 0;
 162. while (!found && i < n) {
 163. if (strcmp(units[i].name, target) == 0 ||
 164. strcmp(units[i].abbrev, target) == 0)
 165. found = 1;
 166. else
 167. ++i;
 168. }
 169. /* Return index of element containing target or NOT_FOUND */
 170. if (found)
 171. where = i;
 172. else
 173. where = NOT_FOUND;
 174. return (where);
 175. }
 176.
 177. /*
 178. * Converts one measurement to another given the representation of both
 179. * in a standard unit. For example, to convert 24 feet to yards given a
 180. * standard unit of inches: quantity = 24, old_stand = 12 (there are 12
 181. * inches in a foot), new_stand = 36 (there are 36 inches in a yard),
 182. * result is 24 * 12 / 36 which equals 8
 183. */
 184. double
 185. convert(double quantity, /* value to convert */
 186. double old_stand, /* number of standard units in one of
 187. quantity's original units */
 188. double new_stand) /* number of standard units in 1 new unit */
 189. {
 190. return (quantity * old_stand / new_stand);
 191. }

602 Chapter 10 • Structure and Union Types

 FIGURE 10.13 Data File and Sample Run of Measurement Conversion Program

 Data file units.txt:
 miles mi distance 1609.3
 kilometers km distance 1000
 yards yd distance 0.9144
 meters m distance 1
 quarts qt liquid_volume 0.94635
 liters l liquid_volume 1
 gallons gal liquid_volume 3.7854
 milliliters ml liquid_volume 0.001
 kilograms kg mass 1
 grams g mass 0.001
 slugs slugs mass 0.14594
 pounds lb mass 0.43592

 Sample run:
 Enter a conversion problem or q to quit.
 To convert 25 kilometers to miles, you would enter
 > 25 kilometers miles
 or, alternatively,
 > 25 km mi
 > 450 km miles
 Attempting conversion of 450.0000 km to miles . . .
 450.0000km = 279.6247 miles

 Enter a conversion problem or q to quit.
 > 2.5 qt l
 Attempting conversion of 2.5000 qt to l . . .
 2.5000qt = 2.3659 l

 Enter a conversion problem or q to quit.
 > 100 meters gallons
 Attempting conversion of 100.0000 meters to gallons . . .
 Cannot convert meters (distance) to gallons (liquid_volume)

 Enter a conversion problem or q to quit.
 > 1234 mg g
 Attempting conversion of 1234.0000 mg to g . . .
 Unit mg not in database

 Enter a conversion problem or q to quit.
 > q

60310.6 • Union Types (Optional)

 EXERCISES FOR SECTION 10.5

 Self-Check

 1. In function main of our universal conversion program, we see the statement

 load_units(MAX_UNITS, units, &num_units);

 Inside load_units we see the function call

 fscan_unit(inp, &data);

 Variables units , num_units , and data are all being used as output arguments
in these statements. Why is the & applied to num_units and data , but not to
 units ?

 2. Write a code fragment that would add 0.2 to all the gpa ’s in stulist (see
 Fig. 10.11). If the addition of 0.2 would inflate a gpa past 4.0 , just set the
 gpa to 4.0 .

 10.6 Union Types (Optional)
 So far, all the variables we have seen of a particular structure type have had exactly
the same components. However, sometimes we need structured types in which
some components vary depending on the value of another component. For exam-
ple, if we were to write a program to manipulate a variety of geometric figures, the
data we would need to store would vary depending on the type of figure processed.
In order to find the area and circumference of a circle, we would need to know the
radius; to compute the area and perimeter of a square, we would need to know the
length of a side; to figure the area and perimeter of other rectangles, we would need
height and width.

 C provides a data structure called a union to deal with situations in which one
needs a data object that can be interpreted in a variety of ways.

 EXAMPLE 10.6 The following declaration defines a union structure to use as the type of one com-
ponent of a person’s physical description. If the person has hair, we would like to
record the hair color. However, if the person is bald, we need to note whether or
not this baldness is disguised by a wig.

 typedef union {
 int wears_wig;
 char color[20];
 } hair_t;

 union a data
structure that overlays
components in
memory, allowing one
chunk of memory to be
interpreted in multiple
ways

604 Chapter 10 • Structure and Union Types

 As you can see, the format of a union type definition exactly parallels a structure
type definition. As before, our typedef statement allocates no memory. A later
declaration

 hair_t hair_data;

 creates a variable hair_data built on the template of the type definition. This
variable hair_data does not contain both wears_wig and color components.
Rather, it has either a wears_wig component referenced by hair_data.wears_
wig or a color component referenced by hair_data.color . When memory is
allocated for hair_data , the amount of memory is determined by the largest
component of the union.

 In most cases, it is useful to be able to interpret a chunk of memory in more than
one way only if it is possible to determine which way is currently the valid interpre-
tation. For this reason, unions are most often used as types of portions of a larger
structure, and the larger structure typically contains a component whose value
indicates which interpretation of the union is correct at the present time. Such a
structure containing a hair_t union component is the following:

 typedef struct {
 int bald;
 hair_t h;
 } hair_info_t;

 When we write code using a hair_info_t structure, we can base our manipulation
of the union component h on the value of the bald component. This component
indicates whether the subject is bald. For bald subjects, the wears_wig interpreta-
tion of component h is valid. For nonbald subjects, the color interpretation is valid
and represents the color of the subject’s hair. Figure 10.14 shows a function to dis-
play hair_info_t data.

 In Fig. 10.15 , we see the two possible interpretations of the h component of param-
eter hair , one that is conceptually valid when hair.bald is true, and one that
applies when hair.bald is false. Referencing the appropriate union component is
 always the programmer’s responsibility; C can do no checking of the validity of such
a component reference.

 EXAMPLE 10.7 In Fig. 10.16 , we see a partial solution to the problem of finding the area and
perimeter (circumference) of a geometric figure, the problem mentioned at the
beginning of our discussion of union types. First, we define structure types for
each figure of interest including components for the figure’s area and perimeter or
circumference, as well as components for those dimensions of the figure that are

60510.6 • Union Types (Optional)

needed in computation of its area and perimeter. Then, we define a union type
with a component for each figure type. Finally, we define a structure containing
both a component of the union type and a component whose value denotes which
is the correct interpretation of the union. Notice that all functions that process
 figure_t data contain switch statements to select the valid view of the fig com-
ponent based on the value of the shape component. In function compute_area ,
the default case of the switch statement prints an error message. This message
will never appear as long as the function’s preconditions are met.

Parameter hair:
View 1

.bald

.h.wears_wig

1

0 ? ? ? ? ? ? ? ? ? ?

Parameter hair:
View 2

.bald

.h.color r e d d i s h b l o n d \0

0

 FIGURE 10.14 Function That Displays a Structure with a Union Type Component

 1. void
 2. print_hair_info(hair_info_t hair) /* input - structure to display */
 3. {
 4. if (hair.bald) {
 5. printf("Subject is bald");
 6. if (hair.h.wears_wig)
 7. printf(", but wears a wig.\n");
 8. else
 9. printf(" and does not wear a wig.\n");
 10. } else {
 11. printf("Subject's hair color is %s.\n", hair.h.color);
 12. }
 13. }

 FIGURE 10.15 Two Interpretations of Parameter hair

606 Chapter 10 • Structure and Union Types

(continued)

 FIGURE 10.16 Program to Compute Area and Perimeter of Geometric Figures

 1. /*
 2. * Computes the area and perimeter of a variety of geometric figures.
 3. */
 4.
 5. #include <stdio.h>
 6. #define PI 3.14159
 7.
 8. /* Types defining the components needed to represent each shape. */
 9. typedef struct {
 10. double area,
 11. circumference,
 12. radius;
 13. } circle_t;
 14.
 15. typedef struct {
 16. double area,
 17. perimeter,
 18. width,
 19. height;
 20. } rectangle_t;
 21.
 22. typedef struct {
 23. double area,
 24. perimeter,
 25. side;
 26. } square_t;
 27.
 28. /* Type of a structure that can be interpreted a different way for
 29. each shape */
 30. typedef union {
 31. circle_t circle;
 32. rectangle_t rectangle;
 33. square_t square;
 34. } figure_data_t;
 35.
 36. /* Type containing a structure with multiple interpretations along with
 37. * a component whose value indicates the current valid interpretation */
 38. typedef struct {
 39. char shape;
 40. figure_data_t fig;
 41. } figure_t;

60710.6 • Union Types (Optional)

(continued)

 FIGURE 10.16 (continued)

 42.
 43. figure_t get_figure_dimensions(void);
 44. figure_t compute_area(figure_t object);
 45. figure_t compute_perim(figure_t object);
 46. void print_figure(figure_t object);
 47.
 48. int
 49. main(void)
 50. {
 51. figure_t onefig;
 52.
 53. printf("Area and Perimeter Computation Program\n");
 54.
 55. for (onefig = get_figure_dimensions();
 56. onefig.shape != 'Q';
 57. onefig = get_figure_dimensions()) {
 58. onefig = compute_area(onefig);
 59. onefig = compute_perim(onefig);
 60. print_figure(onefig);
 61. }
 62.
 63. return (0);
 64. }
 65.
 66. /*
 67. * Prompts for and stores the dimension data necessary to compute a
 68. * figure's area and perimeter. Figure returned contains a 'Q' in the
 69. * shape component when signaling end of data.
 70. */
 71. figure_t
 72. get_figure_dimensions(void)
 73. {
 74. figure_t object;
 75. printf("Enter a letter to indicate the object shape or Q to quit.\n");
 76. printf("C (circle), R (rectangle), or S (square)> ");
 77. object.shape = getchar();
 78.
 79. switch (object.shape) {
 80. case 'C':
 81. case 'c':

608 Chapter 10 • Structure and Union Types

 FIGURE 10.16 (continued)

(continued)

 82. printf("Enter radius> ");
 83. scanf("%lf", &object.fig.circle.radius);
 84. break;
 85.
 86. case 'R':
 87. case 'r':
 88. printf("Enter height> ");
 89. scanf("%lf", &object.fig.rectangle.height);
 90. printf("Enter width> ");
 91. scanf("%lf", &object.fig.rectangle.width);
 92. break;
 93.
 94. case 'S':
 95. case 's':
 96. printf("Enter length of a side> ");
 97. scanf("%lf", &object.fig.square.side);
 98. break;
 99.
 100. default: /* Error is treated as a QUIT */
 101. object.shape = 'Q';
 102. }
 103.
 104. return (object);
 105. }
 106.
 107. /*
 108. * Computes the area of a figure given relevant dimensions. Returns
 109. * figure with area component filled.
 110. * Pre: value of shape component is one of these letters: CcRrSs
 111. * necessary dimension components have values
 112. */
 113. figure_t
 114. compute_area(figure_t object)
 115. {
 116. switch (object.shape) {
 117. case 'C':
 118. case 'c':
 119. object.fig.circle.area = PI * object.fig.circle.radius *
 120. object.fig.circle.radius;
 121. break;

60910.6 • Union Types (Optional)

 FIGURE 10.16 (continued)

 122.
 123. case 'R':
 124. case 'r':
 125. object.fig.rectangle.area = object.fig.rectangle.height *
 126. object.fig.rectangle.width;
 127. break;
 128.
 129. case 'S':
 130. case 's':
 131. object.fig.square.area = object.fig.square.side *
 132. object.fig.square.side;
 133. break;
 134.
 135. default:
 136. printf("Error in shape code detected in compute_area\n");
 137. }
 138.
 139. return (object);
 140. }
 141.
 142. /* Code for compute_perim and print_figure goes here */

 EXERCISES FOR SECTION 10.6

 Self-Check

 1. Determine how many bytes are needed to store a structure of type hair_
info_t , assuming two bytes for an integer and one byte for a character. How
much of this space is actually in use when component wears_wig is valid?

 Programming

 1. Write functions compute_perim and print_figure to complete the program
in Fig. 10.16 .

610 Chapter 10 • Structure and Union Types

 10.7 Common Programming Errors
 When programmers manipulate structure types, their most common error is incor-
rect use of a component selected for processing. When using the direct selection
operator (.), always be aware of the type of the component selected, and use the
value in a manner consistent with its type. For example, if the component selected is
an array, passing it to a function as an output argument does not require application
of the address-of operator.

 If a structure type output parameter is used in a function, one can avoid the
operator precedence problems associated with combining the indirection (*) and
direct component selection (.) operators by using the indirect component selection
operator (->).

 C allows the use of structure type values in assignment statements as function
arguments and as function results, so one can easily forget that expressions of these
types cannot be operands of equality comparators or arguments of printf and
 scanf . You can select simple components from a structure to use in these contexts,
or you can write your own type-specific equality and I/O functions.

 When you use a union type, referencing a component that is not currently
valid is easy to do. It is helpful to place the union within another structure that
contains a component whose value indicates which interpretation of the union is
correct. Then all manipulation of the union can fall within if or switch state-
ments that reference the union component based on the value of the associated
structure component.

 ■ Chapter Review

 1. C permits the user to define a type composed of multiple named components.
 2. A component of a structure is referenced by placing the direct component

selection operator (.) between the structure variable name and the compo-
nent name.

 3. A component of a structured output parameter is referenced by placing the
indirect component selection operator (->) between the structure variable
name and the component name.

 4. User-defined structure types can be used in most situations where built-in
types are valid: Structured values can be function arguments and function
results and can be copied using the assignment operator; structure types are
legitimate in declarations of variables, of structure components, and of arrays.

 5. Structured values cannot be compared for equality using the == and !=
operators.

611Chapter Review

 6. Structure types play an important role in data abstraction: You create an
abstract data type (ADT) by implementing as functions all of the type’s neces-
sary operators.

 7. In a union type variable, structure components are overlaid in memory.

 NEW C CONSTRUCTS

 Construct Effect

 Definition of a Structure Type

 typedef struct {
 char name[20];
 int quantity;
 double price;
 } part_t;

 A structure type part_t is defined with
components that can store a string and two numbers,
one of type int and one of type double .

 Declaration of Variables to Hold One Structure
or an Array of Structures

 part_t nuts, bolts, parts_list[40];
 part_t mouse = {"serial mouse", 30,
 145.00};

 nuts , bolts , and mouse are structured
variables of type part_t ; parts_list
is an array of 40 such structures. The
three components of mouse are initialized
in its declaration.

 Component Reference

 cost = nuts.quantity * nuts.price;

 printf("Part: %s\n",
 parts_list[i].name);

 Multiplies two components of type part_t
variable nuts .
Displays name component of i th element of
 parts_list.

 Structure Copy

 bolts = nuts; Stores in bolts a copy of each component of nuts .

 Definition of a Union Type

 typedef union {
 char str[4];
 int intger;
 double real;
 } multi_t;

 A union type multi_t is defined allowing
three interpretations of the contents of a type
 multi_t variable: The contents may be seen
as a four-character string, as an integer, or as a
type double number.

(continued)

612 Chapter 10 • Structure and Union Types

 ■ Quick-Check Exercises

 1. What is the primary difference between a structure and an array? Which
would you use to store the catalog description of a course? To store the names
of students in the course?

 2. How do you access a component of a structure type variable?

 Exercises 3–8 refer to the following type student_t and to variables stu1
and stu2 .

 typedef struct {
 char fst_name[20],
 last_name[20];
 int score;
 char grade;
 } student_t;
 . . .
 student_t stu1, stu2;

 3. Identify the following statements as possibly valid or definitely invalid. If
invalid, explain why.

 a. student_t stulist[30];
 b. printf("%s", stu1);
 c. printf("%d %c", stu1.score, stu1.grade);
 d. stu2 = stu1;
 e. if (stu2.score == stu1.score)
 printf("Equal");
 f. if (stu2 == stu1)
 printf("Equal structures");

 Construct Effect

 Definition of a Structure Type with a
Union Component

 typedef struct {
 char interp;
 multi_t val;
 } choose_t;

 A structure type choose_t is defined with a
component interp , whose value (' S ‘ for string,
‘ I ‘ for integer, ‘ D ‘ for double) indicates
which interpretation of union component val
is valid.

NEW C CONSTRUCTS (continued)

613Answers to Quick-Check Exercises

 g. scan_student(&stu1);
 h. stu2.last_name = "Martin";

 4. Write a statement that displays the initials of stu1 (with periods).
 5. How many components does variable stu2 have?
 6. Write functions scan_student and print_student for type

 student_t variables.
 7. Declare an array of 40 student_t structures, and write a code segment that

displays on separate lines the names (last name, first name) of all the students
in the list.

 8. Identify the type of each of the following references:

 a. stu1
 b. stu2.score
 c. stu2.fst_name[3]
 d. stu1.grade

 9. When should you use a union type component in a structured variable?

 ■ Answers to Quick-Check Exercises

 1. A structure can have components of different types, but an array’s elements
must all be of the same type. Use a structure for the catalog item and an array
of strings for the list of student names.

 2. Components of structures are accessed using the direct selection operator fol-
lowed by a component name.

 3. a. Valid
 b. Invalid: printf does not accept structured arguments.
 c. Valid
 d. Valid
 e. Valid
 f. Invalid: Equality operators cannot be used with structure types.
 g. Valid (assuming parameter type is student_t *)
 h. Invalid: Cannot copy strings with = except in declaration (this case needs

 strcpy)
 4. printf("%c.%c.", stu1.fst_name[0],

stu1.last_name[0]);
 5. four
 6. int
 scan_student(student_t *stup) /* output - student structure to
 fill */
 {
 int status,

614 Chapter 10 • Structure and Union Types

 char temp[4]; /* temporary storage for grade */
 status = scanf("%s%s%d%s", stu->fst_name,
 stu->last_name,
 &stu->score,
 temp);
 if (status == 4) {
 status = 1;
 (*stu).grade = temp[0];
 } else if (status != EOF) {
 status = 0;
 }
 return (status);
 }

 void
 print_student(student_t stu) /* input - student structure to
 display */
 {
 printf("Student: %s, %s\n", stu.last_name,
 stu.fst_name);
 printf(" Score: %d Grade: %c\n", stu.score,
 stu.grade);
 }

 7. student_t students[40];

 for (i = 0; i < 40; ++i)
 printf("%s, %s\n", students[i].last_name,
 students[i].fst_name);

 8. a. student_t
 b. int
 c. char
 d. char
 9. Use a union type component in a structured variable when the needed struc-

ture components vary depending on the value of one component.

 ■ Review Questions

 1. Define a structure type called subscriber_t that contains the components
 name , street_address , and monthly_bill (i.e., how much the subscriber
owes).

615Review Questions

 2. Write a C program that scans data to fill the variable competition declared
below and then displays the contents of the structure with suitable labels.

 #define STR_LENGTH 20

 typedef struct {
 char event[STR_LENGTH],
 entrant[STR_LENGTH],
 country[STR_LENGTH];
 int place;
 } olympic_t;

 . . .

 olympic_t competition;

 3. How would you call a function scan_olympic passing competition as an
output argument?

 4. Identify and correct the errors in the following program:

 typedef struct
 char name[15],
 start_date[15],
 double hrs_worked,
 summer_help_t;

 /* prototype for function scan_sum_hlp goes here */

 int
 main(void)
 {
 struct operator;

 scan_sum_hlp(operator);
 printf("Name: %s\nStarting date: %s\nHours worked:
 %.2f\n", operator);

 return(0);
 }

 5. Define a data structure to store the following student data: gpa, major, address
(consisting of street address, city, state, zip), and class schedule (consisting of
up to six class records, each of which has description, time, and days compo-
nents). Define whatever data types are needed.

616 Chapter 10 • Structure and Union Types

 ■ Programming Projects

 1. Define a structure type auto_t to represent an automobile. Include com-
ponents for the make and model (strings), the odometer reading, the manu-
facture and purchase dates (use another user-defined type called date_t),
and the gas tank (use a user-defined type tank_t with components for tank
capacity and current fuel level, giving both in gallons). Write I/O functions
 scan_date , scan_tank , scan_auto , print_date , print_tank , and
 print_auto , and also write a driver function that repeatedly fills and displays
an auto structure variable until EOF is encountered in the input file.

 Here is a small data set to try:

 Mercury Sable 99842 1 18 2001 5 30 1991 16 12.5
 Mazda Navajo 123961 2 20 1993 6 15 1993 19.3 16.7

 2. Define a structure type element_t to represent one element from the peri-
odic table of elements. Components should include the atomic number (an
integer); the name, chemical symbol, and class (strings); a numeric field for
the atomic weight; and a seven-element array of integers for the number of
electrons in each shell. The following are the components of an element_t
structure for sodium.

 11 Sodium Na alkali_metal 22.9898 2 8 1 0 0 0 0

 Define and test I/O functions scan_element and print_element .
 3. A number expressed in scientific notation is represented by its mantissa (a

fraction) and its exponent (an integer). Define a type sci_not_t that has sep-
arate components for these two parts. Define a function scan_sci that takes
from the input source a string representing a positive number in scientific
notation, and breaks it into components for storage in a sci_not_t structure.
The mantissa of an input value (m) should satisfy this condition: 0.1 <= m <
1.0 . Also, write functions to compute the sum, difference, product, and quo-
tient of two sci_not_t values. All these functions should have a result type
of sci_not_t and should ensure that the result’s mantissa is in the prescribed
range. Define a print_sci function as well. Then, create a driver program to
test your functions. Your output should be of this form:

 Values input: 0.25000e3 0.20000e1
 Sum: 0.25200e3
 Difference: 0.24800e3
 Product: 0.50000e3
 Quotient: 0.12500e3

617Programming Projects

 4. Microbiologists estimating the number of bacteria in a sample that contains
bacteria that do not grow well on solid media may use a statistical technique
called the most probable number (MPN) method. Each of five tubes of nutri-
ent medium receives 10 ml of the sample. A second set of five tubes receives
1 ml of sample per tube, and in each of a third set of five tubes, only 0.1 ml of
sample is placed. Each tube in which bacterial growth is observed is recorded
as a positive, and the numbers for the three groups are combined to create a
triplet such as 5-2-1, which means that all five tubes receiving 10 ml of sample
show bacterial growth, only two tubes in the 1-ml group show growth, and
only one of the 0.1-ml group is positive. A microbiologist would use this com-
bination-of-positives triplet as an index to a table like the table below to deter-
mine that the most probable number of bacteria per 100 ml of the sample is

 Table of Bacterial Concentrations for Most Probable Number Method

Combination of Positives MPN Index/100 ml 95 percent Confi dence Limits

 Lower Upper

 4-2-0 22 9 56

 4-2-1 26 12 65

 4-3-0 27 12 67

 4-3-1 33 15 77

 4-4-0 34 16 80

 5-0-0 23 9 86

 5-0-1 30 10 110

 5-0-2 40 20 140

 5-1-0 30 10 120

 5-1-1 50 20 150

 5-1-2 60 30 180

 5-2-0 50 20 170

 5-2-1 70 30 210

 5-2-2 90 40 250

 5-3-0 80 30 250

 5-3-1 110 40 300

 5-3-2 140 60 360

 1 Microbiology, An Introduction, 7th ed. edited by Gerard J. Tortora, Berdell R. Funke, and Christine L. Case (San Francisco,
California: Benjamin Cummings, 2001), p. 177 .

618 Chapter 10 • Structure and Union Types

70, and 95 percent of the samples yielding this triplet contain between 30 and
210 bacteria per 100 ml.
 Define a structure type to represent one row of the MPN table. The
structure will include one string component for the combination-of-positives
triplet and three integer components in which to store the associated most
probable number and the lower and upper bounds of the 95 percent confi-
dence range. Write a program to implement the following algorithm for gen-
erating explanations of combination-of-positives triplets.

 a. Load the MPN table from a file into an array of structures called
 mpn_table .

 b. Repeatedly get from the user a combination-of-positives triplet, search
for it in the combination-of-positives components of mpn_table , and then
generate a message such as:

 For 5-2-1, MPN = 70; 95% of samples contain between 30 and
 210 bacteria/ml.

 c. Define and call the following functions.

 load_Mpn_Table —Takes as parameters the name of the input fi le, the
 mpn_table array and its maximum size. Function opens the fi le, fi lls
the mpn_table array, and closes the fi le. Then it returns the actual
array size as the function result. If the fi le contains too much data, the
function should store as much data as will fi t, display an error mes-
sage indicating that some data has been ignored, and return the array’s
maximum size as its actual size.

 search —Takes as parameters the mpn_table array, its actual size, and a
target string representing a combination-of-positives triplet. Returns
the subscript of the structure whose combination-of-positives compo-
nent matches the target or �1 if not found.

 5. Numeric addresses for computers on the international network Internet are
composed of four parts, separated by periods, of the form

 xx.yy.zz.mm

 where xx , yy , zz , and mm are positive integers. Locally, computers are usually
known by a nickname as well. You are designing a program to process a list of
Internet addresses, identifying all pairs of computers from the same locality.
Create a structure type called address_t with components for the four inte-
gers of an Internet address and a fifth component in which to store an associ-
ated nickname of ten characters. Your program should read a list of up to 100
addresses and nicknames terminated by a sentinel address of all zeros and a
sentinel nickname.

619Programming Projects

 Sample Data
 111.22.3.44 platte
 555.66.7.88 wabash
 111.22.5.66 green
 0.0.0.0 none

 The program should display a list of messages identifying each pair of com-
puters from the same locality, that is, each pair of computers with matching
values in the first two components of the address. In the messages, the com-
puters should be identified by their nicknames.

 Example Message
 Machines platte and green are on the same local network.

 Follow the messages by a display of the full list of addresses and nicknames.
Include in your program a scan_address function, a print_address func-
tion, and a local_address function. Function local_address should take
two address structures as input parameters and return 1 (for true) if the
addresses are on the same local network, and 0 (for false) otherwise.

 6. Define a structure type to represent a word list. The structure will contain
one string component for the language of the words (e.g., English, Japanese,
Spanish), an integer component that keeps track of how many words are in the
list, and an array of MAX_WORDS 20-character strings to hold the words. Define
the following functions to work with word lists:

 a. load_word_list —Takes as parameters the name of an input file and a
wordlist structure to be filled.

 b. add_word —Takes as parameters a word and a wordlist structure to
modify. If the wordlist is already full, it displays the message “ List full ,
 word not added .” If the word is already in the list, it leaves the structure
unchanged. Otherwise, it adds the word to the list and updates the list
size. Do not bother keeping the list in order.

 c. contains —Takes as parameters a word and a wordlist. If the word
matches one of the wordlist entries, the function returns true, otherwise
false.

 d. equal_lists —Takes two wordlists as parameters and returns true if
the lists are in the same language, have the same number of elements,
and every element of one list is found in the other. (Hint : Call contains
repeatedly.)

 e. display_word_list —Displays all the words of its wordlist structure
parameter in four columns.

 Write a program that fills a wordlist from a data file. Then prompt the user
to enter a language and 12 words to add to a different list. Then ask the user
to enter some words to search for in the first list using contains , and print a

620 Chapter 10 • Structure and Union Types

message indicating whether each is found. Use equal_lists to compare the
two lists, printing an appropriate message. Finally, use display_word_list
to output each list.

 7. Design and implement a structure type to model an ideal transformer. If
you have a single iron core with wire 1 coiled around the core N 1 times and
wire 2 wound around the core N 2 times, and if wire 1 is attached to a source
of alternating current, then the voltage in wire 1 (the input voltage V 1) is
related to the voltage in wire 2 (the output voltage V 2) as

V1

V2

N1

N2

=

 and the relationship between the input current I 1 and the output current I 2 is

I1

I2

N1

N2

=

 A variable of type transformer_t should store N 1 , N 2 , V 1 , and I 1 . Also, define
functions v_out and i_out to compute the output voltage and current of a
transformer. In addition, define functions that set each of the transformer’s
components to produce a desired output voltage or current. For example,
function set_n1_for_v2 should take a desired output voltage as an input
parameter and a transformer as an input/output parameter and should change
the component representing N 1 to produce the desired current. Also, define
 set_v1_for_v2 , set_n2_for_v2 , and set_n2_for_i2 . Include scan_
transformer and print_transformer functions to facilitate I/O.

 8. At a grocery store, certain categories of products sold have been established,
and this information is to be computerized. Write a function to scan and store
information in a structure variable whose data type is one you define—a type
that includes a component that has multiple interpretations. Also, write an
output function and a driver function to use in testing.

 The data for each item consists of the item name (a string of less than 20
characters with no blanks), the unit cost in cents (an integer), and a character
indicating the product category ('M' for meat, 'P' for produce, 'D' for dairy,
 'C' for canned goods, and 'N' for nonfoods). The following additional data
will depend on the product category.

621Programming Projects

 A data line for canned corn would be

 corn 89C 11 2000 12B

 The corn costs 89 cents, expires in November of 2000, and is displayed in
aisle 12B.

 9. Create a structure type to represent a battery. A battery_t variable’s com-
ponents will include the voltage, how much energy the battery is capable
of storing, and how much energy it is currently storing (in joules). Define
functions for input and output of batteries. Create a function called power_
device that (a) takes the current of an electrical device (amps) and the
time the device is to be powered by the battery (seconds) as input param-
eters and (b) takes a battery as an input/output parameter. The function
first determines whether the battery’s energy reserve is adequate to power
the device for the prescribed time. If so, the function updates the battery’s
energy reserve by subtracting the energy consumed and then returns the
value true (1). Otherwise, it returns the value false (0) and leaves the energy
reserve unchanged. Also, define a function named max_time that takes a bat-
tery and the current of an electrical device as input parameters and returns
the number of seconds the battery can operate the device before it is fully

 Product
Category Additional Data

 Meats character indicating meat type ('R' for red meat, 'P' for poultry,
 'F' for fi sh)
date of packaging
expiration date

 Produce character 'F' for fruit or 'V' for vegetable
date received

 Dairy expiration date

 Canned goods expiration date (month and year only)
aisle number (an integer)
aisle side (letter 'A' or 'B')

 Nonfoods character indicating category ('C' for cleaning product, 'P' for
pharmacy, 'O' for other)
aisle number (an integer)
aisle side (letter 'A' or 'B')

622 Chapter 10 • Structure and Union Types

discharged. This function does not change any of the battery’s component
values. Write a function recharge that sets to the maximum capacity the
battery’s component representing present energy reserve. Use the following
equations in your design:

 p = vi p = power in watts (W)
 v = voltage in volts (V)

 w = pt i = current in amps (A)
 w = energy in joules (J)
 t = time in seconds (s)

 For this simulation, neglect any loss of energy in the transfer from battery to
device.

 Create a main function that declares and initializes a variable to model a
12-V automobile battery with a maximum energy storage of 5 � 10 6 J. Use the
battery to power a 4-A light for 15 minutes, and then find out how long the
battery’s remaining energy could power an 8-A device. After recharging the
battery, recalculate how long it could operate an 8-A device.

 10. In the Self-Check Exercises of Sections 10.1 and 10.2 , you defined a data type
 location_t to represent a geographic location and some functions to process
certain components of the type. Write functions print_location , location_
equal , and scan_location for processing type location_t data, and develop
a driver to use in testing this group of functions.

 Text and Binary
File Processing

 CHAPTER OBJECTIVES
 • To learn about streams in C and their relationship to files

and standard input and output devices

 • To review how scanf , fscanf and printf , fprintf
are used to read and write characters to text files

 • To learn about escape sequences and their use in format
strings

 • To review file pointer variables and learn how to use
functions that process them to make a backup copy of a
text file

 • To learn about binary files and understand the differ-
ences between binary and text files

 • To see how to write a program that searches a database
stored in a binary file

 C H A P T E R

11

 T his chapter will explore in greater depth the use of standard input, standard
output, and program-controlled text files. We also will introduce binary files and
compare the advantages and disadvantages of text and binary files.

 11.1 Input/Output Files: Review and Further Study
 C can process two kinds of files, text files and binary files. We will study text
files in this section and binary files later in this chapter. All the files you have
created using an editor or word processor have been text files. A text file is a
named collection of characters saved in secondary storage (e.g., on a disk). A
text file has no fixed size. To mark the end of a text file, the computer places
a special end-of-file character, which we will denote <eof>, after the last char-
acter in the file. As you create a text file using an editor program, pressing the
<return> or <enter> key causes the newline character (represented by C as
 '\n') to be placed in the file.

 The following lines represent a text file consisting of two lines of letters, blank
characters, and the punctuation characters . and ! .

 This is a text file!<newline>
 It has two lines.<newline><eof>

 Each line ends with the newline character, and the eof character follows the
last newline in the file. For convenience in examining the file’s contents, we
listed each line of the file (through <newline>) as a separate line, although this
would not be the case in the actual disk file. The disk file consists of a sequence
of characters occupying consecutive storage locations on a track of the disk, as
shown here:

 This is a text file!<newline>It has two lines.<newline><eof>

 The first character of the second line (I) follows directly after the last character of
the first line (the newline character). Because all textual input and output data are
actually a continuous stream of character codes, we sometimes refer to a data source
or destination as an input stream or an output stream . These general terms can
be applied to files, to the terminal keyboard and screen, and to any other sources of
input data or destinations of output data.

 text file a named
collection of characters
saved in secondary
storage

 input (output)
stream continuous
stream of character
codes representing
textual input (or
output) data

62511.1 • Input/Output Files: Review and Further Study

 The Keyboard and Screen as Text Streams

 In interactive programming, C associates system names with the terminal key-
board and screen. The name stdin represents the keyboard’s input stream. Two
system streams, the “normal” output stream stdout and the “error” output stream
 stderr , are associated with the screen. All three streams can be treated like text
files because their individual components are characters.

 Normally at the keyboard, we enter one line of data at a time, pressing
<return> or <enter> to indicate the end of a data line. Pressing one of these keys
inserts the newline character in system stream stdin . Normally in interactive pro-
gramming, we use a sentinel value to indicate the end of data rather than attempting
to place the eof character in system stream stdin . However, the eof character could
be used. No single key represents the eof character, so most systems use the control
key followed by a letter. (For example, on computers running the UNIX operating
system, the keystrokes <control-d> would be used.)

 Writing characters to the streams stdout and stderr causes a display on the
screen in an interactive program. We have studied the use of the printf function
to write characters to the screen. Using a '\n' in the printf format string causes
output of a newline character that moves the cursor to the start of the next line of
the screen.

 Newline and EOF

 We have seen that C handles the special newline character differently than the
eof character, even though they have similar purposes. The <newline> marks
the end of a line of text, and the <eof> marks the end of the entire file. The
<newline> can be processed like any other character: It can be input using scanf
with the %c specifier, it can be compared to '\n' for equality, and it can be out-
put using printf .

 However, input of the special eof character is regarded as a failed operation,
and the input function responsible returns as its value the negative integer associ-
ated with the identifier EOF . Because this special return value gives the calling func-
tion an indication that no more data are in the input file, the C run-time support
system is under no obligation to provide an error message if the program ignores the
warning value and continues to attempt to get input from the stream in question.
The following is another example of the input loops that we studied that base their
exit condition on the appearance of the EOF return value:

 for (status = scanf("%d", &num);
 status != EOF;
 status = scanf("%d", &num))
 process(num);

 stdin system file
pointer for keyboard’s
input stream

 stdout, stderr
 system file pointers for
screen’s output stream

626 Chapter 11 • Text and Binary File Processing

 Escape Sequences

 The character '\n' is one of several escape sequences defined by C to represent
special characters. Table 11.1 shows some of the most commonly used escape
sequences. Because all the escape sequences begin with a backslash (\), to repre-
sent the actual backslash character in a C program, you must use two: '\\' . The
 '\r' sequence differs from the newline ('\n') in that it moves the cursor to the
beginning of the current line of output, not to the beginning of the next line. Using
 '\r' gives a program the ability to create a file containing more than one character
in one line position. For example, this call to printf displays a heading at the top of
a new page, indented to the third tab stop and underlined.

 printf("\f\t\t\tFinal Report\r\t\t\t____________\n");

 Formatting Output with printf

 In earlier chapters we have studied placeholders to include in printf format
strings for integer, character, floating-point, and string values. Table 11.2 reviews
these placeholders and presents additional placeholders that cause output of
integers in octal (base 8) or hexadecimal (base 16) and that display floating-point
numbers in scientific notation with either a lowercase or uppercase e just before
the exponent. The notation calls for an exponent that will produce exactly one
nonzero digit to the left of the decimal point. In the example shown in Table 11.2 ,
8.197000e+01 means 8.197000 � 10 1 . The last entry in the table indicates that
in order to display a single percent sign, you must place two of them (%%) in the
format string.

 Each of these placeholders can be combined with a numeric field width to
prescribe the minimum number of columns occupied by the value displayed. If the
field width number is positive, the value is right-justified in the field: That is, any
blank padding is output in front of the displayed value. If the field width number is
negative, the value is left-justified in the field: That is, any blank padding is output
 following the displayed value. If the field width is too small, printf simply uses the

 TABLE 11.1 Meanings of Common Escape Sequences

 Escape Sequence Meaning

 '\n' new line

 '\t' tab

 '\f' form feed (new page)

 '\r' return (go back to column 1 of current output line)

 '\b' backspace

62711.1 • Input/Output Files: Review and Further Study

minimum-sized field that will accommodate the value. In the display of a floating-
point value, you may specify both the total field width and the number of decimal
digits to the right of the decimal point. The value will be rounded or padded with
trailing zeros as necessary to comply with the prescribed precision. You should note
that a decimal point occupies a full column of a field, and the precision specification
can be used with or without a total field width. Table 11.3 gives examples of field-
width use in format strings. In the “Output Produced” column, an individual blank
is represented by the symbol ❚ for clarity.

 File Pointer Variables

 We saw in Chapter 6 that before using a nonstandard text file for input or output,
we must declare a file pointer variable and give it a value, allowing us to access the
desired file. The system must prepare the file for input or output before permitting
access. This preparation is the purpose of the stdio library function fopen . The
statements that follow declare and initialize the file pointer variables infilep and
 outfilep :

 FILE *infilep;
 FILE *outfilep;
 infilep = fopen("data.txt", "r");
 outfilep = fopen("results.txt", "w");

 TABLE 11.2 Placeholders for printf Format Strings

 Placeholder Used for Output of Example Output

 %c a single character printf("%c%c%c\n",
 'a', '\n', 'b');

 a
 b

 %s a string printf("%s%s\n",
 "Hi, how ",
 "are you?");

 Hi, how are you?

 %d an integer (in base 10) printf("%d\n", 43); 43

 %o an integer (in base 8) printf("%o\n", 43); 53

 %x an integer (in base 16) printf("%x\n", 43); 2b

 %f a floating-point number printf("%f\n", 81.97); 81.970000

 %e a floating-point number
in scientific notation

 printf("%e\n", 81.97); 8.197000e+01

 %E a floating-point number
in scientific notation

 printf("%E\n", 81.97); 8.197000E+01

 %% a single % sign printf("%d%%\n", 10); 10%

628 Chapter 11 • Text and Binary File Processing

 TABLE 11.3 Designating Field Width, Justification, and Precision in Format Strings

 Example
 Meaning of Highlighted
Format String Fragment

 Output
Produced

 printf("%5d%4d\n",
 100, 2);

 Display an integer right-justified in a field of
five columns.

 ❚❚100❚❚❚ 2

 printf
 ("%2d with label\n",
 5210);

 Display an integer in a field of two columns.
Note: Field is too small.

 5210 ❚ with ❚ label

 printf("%-16s%d\n",
 "Jeri R. Hanly", 28);

 Display a string left-justified in a field of 16
columns.

 Jeri ❚ R. ❚ Hanly ❚❚❚ 28

 printf("%15f\n",
 981.48);

 Display a floating-point number right-justified
in a field of 15 columns.

 ❚❚❚❚❚ 981.480000

 printf("%10.3f\n",
 981.48);

 Display a floating-point number right-justified
in a field of ten columns, with three digits to the
right of the decimal point.

 ❚❚❚ 981.480

 printf("%7.1f\n",
 981.48);

 Display a floating-point number right-justified
in a field of seven columns, with one digit to the
right of the decimal point.

 ❚❚ 981.5

 printf("%12.3e\n",
 981.48);

 Display a floating-point number in scientific
notation right-justified in a field of 12 columns,
with three digits to the right of the decimal point
and a lowercase e before the exponent.

 ❚❚❚ 9.815e+02

 printf("%.5E\n",
 0.098148);

 Display a floating-point number in scientific
notation, with five digits to the right of the decimal
point and an uppercase E before the exponent.

 9.81480E-02

 Notice that the data type of infilep and outfilep is FILE* . Remember that C
is case sensitive, so you must use all capital letters when writing the type name
FILE. It is possible to declare both infilep and outfilep in the same statement,
but each must be immediately preceded by the asterisk denoting “pointer to,” as
shown here:

 FILE *infilep, *outfilep;

 We use the stdio library function fopen to open or create an additional text
file. The "r" in the first call to fopen just shown indicates that we wish to use the
text file opened as an input file from which we will r ead (scan) data. The "w" in the
second call conveys that our intention is to w rite to the file—that is, to use it as an
output destination. The first argument to fopen is a string that is the name of the
text file to manipulate. The correct form of such a file name will vary from one oper-
ating system to another. The result returned by fopen is the file pointer to be used in
all further operations on the file. This pointer is the address of a structure of type

62911.1 • Input/Output Files: Review and Further Study

 FILE that contains the information necessary to access the file opened by fopen .
The pointer must be saved in a variable of type FILE* . In a program containing the
lines just shown, the variable infilep will be used to access the input file named
 "data.txt" , and the variable outfilep will be used to access the newly created
output file named "results.txt" . The identifiers stdin , stdout , and stderr also
name variables of type FILE* , variables initialized by the system prior to the start
of a C program.

 If the fopen function is unable to accomplish the requested operation, the file
pointer that it returns is equal to the value associated with the identifier NULL by the
stdio library. For example, if execution of this call to fopen

 infilep = fopen("data.txt", "r");

 were unsuccessful due to the nonexistence of a file named "data.txt", then execu-
tion of the following statement would display an appropriate error message:

 if (infilep == NULL)
 printf("Cannot open data.txt for input\n");

 A pointer whose value equals NULL is called a null pointer . Take care not to con-
fuse this concept with the null character, whose value is the character '\0'.

 Using fopen with mode "w" to open for output a file that already exists usually
causes loss of the contents of the existing file. However, if the computer’s operating
system automatically numbers file versions and creates a new version when it opens
an output file, the contents of the existing file will not be lost.

 Functions That Take File Pointer Arguments

 Table 11.4 compares calls to printf and scanf with calls to analogous functions
for input from the file accessed by infilep and for output to the file accessed by
 outfilep. In this table, we assume that infilep and outfilep have been initial-
ized as shown earlier.

 Line 1 shows input of a single integer value to be stored in num . The call to
 scanf obtains this value from the standard input stream, typically the keyboard.
The call to fscanf obtains the integer value from "data.txt" , the file accessed
through the file pointer infilep . Like scanf , function fscanf returns as its result
the number of input values it has successfully stored through its output arguments.
Function fscanf also returns the negative EOF value when it encounters the end of
the file accessed by its file pointer argument.

 Similarly, the behavior of fprintf , getc , and putc is fully comparable to the
behavior of the standard I/O equivalents— printf , getchar , and putchar —except
that each takes a file pointer argument through which to access its input source or
output destination. Observe carefully that this file pointer is provided as the first
argument to fscanf , fprintf , and getc . In contrast, putc takes the file pointer as
its second argument.

 null pointer pointer
whose value is NULL

630 Chapter 11 • Text and Binary File Processing

 Closing a File

 When a program has no further use for a file, it should close the file by calling the
library function fclose with the file pointer. The following statement closes the file
accessed through infilep :

 fclose(infilep);

 Function fclose disposes of the structure that was created to store file access infor-
mation and carries out other “cleanup” operations.

 If necessary, a program can create an output file and can then rescan the file.
The file is first opened in "w" mode, and data are stored using a function such as
 fprintf . The file is then closed using fclose and reopened in "r" mode, allowing
the data to be rescanned with a function such as fscanf .

 EXAMPLE 11.1 For security reasons, having a backup or duplicate copy of a file is a good idea,
in case the original is lost. Even though operating systems typically provide a
command that will copy a file, we will write our own C program to do this. The
program in Fig. 11.1 copies each character in one file to a backup file and allows
the user to enter interactively both the name of the file to copy and the name of
the backup file.

 The program in Fig. 11.1 begins by displaying a prompting message on the screen
using printf . Then scanf is executed to take the file name typed at the keyboard.

 The repetition condition of the first for loop is

 (inp = fopen(in_name, "r")) == NULL

 The call to function fopen causes the system to try to open for input the file whose
name is stored in in_name. If this attempt is successful, a file pointer is returned
and assigned to inp. The value of this assignment will equal NULL only if the file

 TABLE 11.4 Comparison of I/O with Standard Files and I/O with User-Defined
File Pointers

 Line
 Functions That Access
stdin and stdout

 Functions That Can Access
Any Text File

 1 scanf("%d", &num); fscanf(infilep, "%d", &num);

 2 printf
 ("Number = %d\n",
 num);

 fprintf(outfilep,
 "Number = %d\n", num);

 3 ch = getchar(); ch = getc(infilep);

 4 putchar(ch); putc(ch, outfilep);

63111.1 • Input/Output Files: Review and Further Study

 FIGURE 11.1 Program to Make a Backup Copy of a Text File

 1. /*
 2. * Makes a backup file. Repeatedly prompts for the name of a file to
 3. * back up until a name is provided that corresponds to an available
 4. * file. Then it prompts for the name of the backup file and creates
 5. * the file copy.
 6. */
 7.
 8. #include <stdio.h>
 9. #define STRSIZ 80
 10.
 11. int
 12. main(void)
 13. {
 14. char in_name[STRSIZ], /* strings giving names */
 15. out_name[STRSIZ]; /* of input and backup files */
 16. FILE *inp, /* file pointers for input and */
 17. *outp; /* backup files */
 18. char ch; /* one character of input file */
 19.
 20. /* Get the name of the file to back up and open the file for input */
 21. printf("Enter name of file you want to back up> ");
 22. for (scanf("%s", in_name);
 23. (inp = fopen(in_name, "r")) == NULL;
 24. scanf("%s", in_name)) {
 25. printf("Cannot open %s for input\n", in_name);
 26. printf("Re-enter file name> ");
 27. }
 28.
 29. /* Get name to use for backup file and open file for output */
 30. printf("Enter name for backup copy> ");
 31. for (scanf("%s", out_name);
 32. (outp = fopen(out_name, "w")) == NULL;
 33. scanf("%s", out_name)) {
 34. printf("Cannot open %s for output\n", out_name);
 35. printf("Re-enter file name> ");
 36. }
 37.
 38. /* Make backup copy one character at a time */
 39. for (ch = getc(inp); ch != EOF; ch = getc(inp))
 40. putc(ch, outp);

(continued)

632 Chapter 11 • Text and Binary File Processing

 FIGURE 11.1 (continued)

 41.
 42. /* Close files and notify user of backup completion */
 43. fclose(inp);
 44. fclose(outp);
 45. printf("Copied %s to %s.\n", in_name, out_name);
 46.
 47. return(0);
 48. }

could not be successfully opened; in this case, the user is asked to reenter the name
of the file.

 In the next program segment, a similar for loop is used to get the name of an out-
put file and to open the file, storing the file pointer in outp .

 The for loop that follows manipulates not the standard I/O streams but rather
the input and output files accessed through the file pointers in inp and outp .
Function getc is called repeatedly to take one character at a time from the
input file, and putc echoes these characters to the output file. When the copy is
complete, the calls to fclose release the two files after writing an <eof> on the
output file.

 Figure 11.2 shows the input and output streams used by the file backup program.

printf(. . .)scanf(. . .)

putc(ch, outp)getc(inp)

File
Backup
Program

 FIGURE 11.2

 Input and Output
Streams for File
Backup Program

63311.1 • Input/Output Files: Review and Further Study

 EXERCISES FOR SECTION 11.1

 Self-Check

 1. Assume these declarations for the problem that follows:

 double x;
 int n;
 char ch, str[40];

 Indicate the contents of these variables after each of the following input oper-
ations is performed. Assume that the file accessed by indatap consists of the
data given and that each lettered group of operations occurs at the beginning
of a program, immediately following a statement that opens the file.

 123 3.145 xyz<newline>35 z<newline>

 a. fscanf(indatap, "%d%lf%s%c", &n, &x, str, &ch);
 b. fscanf(indatap, "%d%lf", &n, &x);
 fscanf(indatap, "%s%c", str, &ch);
 c. fscanf(indatap, "%lf%d%c%s", &x, &n, &ch, str);
 d. fscanf(indatap, "%s%s%s%d%c%c", str, str, str, &n, &ch, &ch);

 2. List the library functions we have studied that require a file pointer
argument.

 3. The code for function scan_complex that we used in Chapter 10 to scan one
complex number is shown with some blanks added. Fill in the blanks to create
 fscan_complex , a function that takes a file pointer argument in addition to
the complex_t output argument. This function should scan a complex number
from the file accessed by the file pointer.

 /*
 * Complex number __________ input function returns standard
 * scanning error code
 * 1 => valid scan, 0 => error, negative EOF value =>
 * end of file
 */
 int
 fscan_complex(______________________________________
 complex_t *c) /* output - address of complex
 variable to fill */
 {
 int status;
 status = __scanf(____________,
 "%lf%lf", &c->real, &c->imag;

 if (status == 2)
 status = 1;

634 Chapter 11 • Text and Binary File Processing

 else if (status != EOF)
 status = 0;

 return (status);
 }

 Programming

 1. Rewrite the file backup program in Fig. 11.1 so it uses a function with file
pointer parameters to do the actual file copy.

 11.2 Binary Files
 When we use text files for storage of data, a program must expend a significant
amount of effort to convert the stream of characters from an input file into the
binary integers, type double mantissas and exponents, and character strings that
are the representation in main memory of the same data. The program must again
expend time in converting the internal data format back into a stream of characters
for storage in an output file of text. In a C program, these conversions are carried
out by functions such as scanf and printf .

 Many programs produce output files that are used as input files for other pro-
grams. If there is no need for a human to read the file, it is a waste of computer time
for the first program to convert its internal data format to a stream of characters,
and then for the second program to have to apply an inverse conversion to extract
the intended data from the stream of characters. We can avoid this unnecessary
translation by using a binary file rather than a text file.

 A binary file is created by executing a program that stores directly in the file
the computer’s internal representation of each file component. For example, the
code fragment in Fig. 11.3 creates a binary file named "nums.bin" , which contains
the even integers from 2 to 500.

 You see in Fig. 11.3 that a binary file is declared in exactly the same way as a text
file. The fopen and fclose functions are used just as they are for text files, except

 binary file a file
containing binary
numbers that are the
computer’s internal
representation of each
file component

 FIGURE 11.3 Creating a Binary File of Integers

 1. FILE *binaryp;
 2. int i;
 3.
 4. binaryp = fopen("nums.bin", "wb");
 5.
 6. for (i = 2; i <= 500; i += 2)
 7. fwrite(&i, sizeof (int), 1, binaryp);
 8.
 9. fclose(binaryp);

63511.2 • Binary Files

that the second argument to fopen is either "wb" (w rite b inary) for output files or
 "rb" (r ead b inary) for input files. However, a different stdio library function is used
for copying values into the file: function fwrite , which has four input parameters.
The first parameter is the address of the first memory cell whose contents are to be
copied to the file. In Fig. 11.3 , we want the contents of the variable i copied to the
file, so we provide fwrite with the address of i (&i) as the first argument.

 The second parameter of function fwrite is the number of bytes to copy to
the file for one component. In Chapter 1 , we noted that a memory cell is a collec-
tion of smaller units called bytes and that a byte is the amount of storage needed to
represent one character. A C operator sizeof can be applied to any data type name
to find the number of bytes that the current implementation uses for storage of the
data type. For example, these statements will print a sentence indicating how many
bytes are being occupied by one integer:

 printf("An integer requires %d bytes ", sizeof (int));
 printf("in this implementation.\n");

 The sizeof operator can be applied to both built-in and user-defi ned types.
 The third parameter of fwrite is the number of values to write to the binary

file. In our example, we are writing one integer at a time, so we provide the constant
 1 as this argument. However, it is possible to save the contents of an entire array
using just one call to fwrite by providing the array’s size as the third argument. The
final argument to fwrite is a file pointer to the file being created, a file previously
opened in mode "wb" using function fopen . For example, if array score is an array
of ten integers, the statement

 fwrite(score, sizeof (int), 10, binaryp);

 writes the entire array to the output file.
 Writing the value of an integer variable i to a binary file using fwrite is faster

than writing i to a text file. For example, if the value of i is 244 , the statement from
the for loop

 fwrite(&i, sizeof (int), 1, binaryp);

 copies the internal binary representation of i from memory to the file accessed by
 binaryp . If your computer uses two bytes to store an int value, the byte that stores
the highest order bits would contain all zeros, and the byte that stores the lowest
order bits would contain the binary string 11110100 (244 = 128 + 64 + 32 + 16 + 4) .
Both bytes would be written to disk as the next file component.

 Assuming textp is a pointer to a text output file, the statement

 fprintf(textp, "%d ", i);

 writes the value of i to the file using four characters (four bytes). The computer
must first convert the binary number in i to the character string "244" and then
write the binary codes for the characters 2 , 4 , 4 , and blank to the fi le. Obviously, it
takes more time to do the conversion and copy each character than it does to copy
the internal binary representation to disk. Also, twice as much disk space is required

 sizeof operator
that finds the number
of bytes used for
storage of a data type

Chapter 11 • Text and Binary File Processing636

to store four characters as to store the internal binary representation of the type int
value (four bytes versus two).

 Using a binary file has another advantage. Each time we write a type double value
to a text file, the computer must convert this value to a character string whose precision
is determined by the placeholder in the format string. A loss of precision may result.

 There is a negative side to binary file usage, however. A binary file created on one
computer is rarely readable on another type of computer. Since a binary file can be
read only by a specialized computer program, a person cannot proofread the file by
printing it out or by examining it in a word processor. Furthermore, a binary file cannot
be created or modified in a word processor, so a program that expects binary file input
cannot be tested until the program that produces the needed binary file is complete.

 The stdio library includes an input function fread that is comparable to
 fwrite . Function fread also requires four arguments:

 1. Address of first memory cell to fill.
 2. Size of one value.
 3. Maximum number of elements to copy from the file into memory.
 4. File pointer to a binary file opened in mode "rb" using function fopen .

 Function fread returns as its value an integer indicating how many elements it suc-
cessfully copied from the file. This number will be less than the value of the third
argument of fread if EOF is encountered prematurely.

 It is very important not to mix file types. A binary file created (written) using
 fwrite must be read using fread . A text file created using fprintf must be read
using a text file input function such as fscanf .

 Table 11.5 compares the use of text and binary files for input and output of data
of various types. The statements in both columns assume the following constant
macros, type definition, and variable declarations.

 #define STRSIZ 10
 #define MAX 40
 typedef struct {
 char name[STRSIZ];
 double diameter; /* equatorial diameter in km */
 int moons; /* number of moons */
 double orbit_time, /* years to orbit sun once */
 rotation_time; /* hours to complete one
 revolution on axis */
 } planet_t;
 . . .
 double nums[MAX], data;
 planet_t a_planet;
 int i, n, status;
 FILE *plan_bin_inp, *plan_bin_outp, *plan_txt_inp, *plan_txt_outp;
 FILE *doub_bin_inp, *doub_bin_outp, *doub_txt_inp, *doub_txt_outp;

 TABLE 11.5 Data I/O Using Text and Binary Files

 Example Text File I/O Binary File I/O Purpose

 1 plan_txt_inp =
 fopen("planets.txt", "r");

 doub_txt_inp =
 fopen("nums.txt", "r");

 plan_bin_inp =
 fopen("planets.bin", "rb");

 doub_bin_inp =
 fopen("nums.bin", "rb");

 Open for input
a file of planets
and a file of numbers,
saving file pointers
for use in calls to
input functions.

 2 plan_txt_outp =
 fopen("pl_out.txt", "w");

 doub_txt_outp =
 fopen("nm_out.txt", "w");

 plan_bin_outp =
 fopen("pl_out.bin", "wb");

 doub_bin_outp =
 fopen("nm_out.bin", "wb");

 Open for output a
file of planets and
a file of numbers,
saving file pointers
for use in calls to
output functions.

 3 fscanf(plan_txt_inp,
 "%s%lf%d%lf%lf",
 a_planet.name,
 &a_planet.diameter,
 &a_planet.moons,
 &a_planet.orbit_time,
 &a_planet.rotation_time);

 fread(&a_planet,
 sizeof (planet_t),
 1, plan_bin_inp);

 Copy one planet
structure into
memory from
the data file.

 4 fprintf(plan_txt_outp,
 "%s %e %d %e %e",
 a_planet.name,
 a_planet.diameter,
 a_planet.moons,
 a_planet.orbit_time,
 a_planet.rotation_time);

 fwrite(&a_planet,
 sizeof (planet_t),
 1, plan_bin_outp);

 Write one planet
structure to the
output file.

(continued)

637

 Example Text File I/O Binary File I/O Purpose

 5 for (i = 0; i < MAX; ++i)
 fscanf(doub_txt_inp,
 "%lf", &nums[i]);

 fread(nums, sizeof (double),
 MAX, doub_bin_inp);

 Fill array nums
with type double
values from input file.

 6 for (i = 0; i < MAX; ++i)
 fprintf(doub_txt_outp,
 "%e\n", nums[i]);

 fwrite(nums, sizeof (double),
 MAX, doub_bin_outp);

 Write contents of
array nums to
output file.

 7 n = 0;
 for (status =
 fscanf(doub_txt_inp,
 "%lf", &data);
 status != EOF &&
 n < MAX;
 status =
 fscanf(doub_txt_inp,
 "%lf", &data))
 nums[n++] = data;

 n = fread(nums,
 sizeof (double),
 MAX, doub_bin_inp);

 Fill nums with data
until EOF encountered,
setting n to the number
of values stored.

 8 fclose(plan_txt_inp);
 fclose(plan_txt_outp);
 fclose(doub_txt_inp);
 fclose(doub_txt_outp);

 fclose(plan_bin_inp);
 fclose(plan_bin_outp);
 fclose(doub_bin_inp);
 fclose(doub_bin_outp);

 Close all input
and output files.

TABLE 11.5 (continued)

638

63911.2 • Binary Files

 In Example 1 of Table 11.5 , we use fopen to open our input files, and we store
the file pointers returned by fopen in variables of type FILE* . Notice that the form
of the call to fopen for opening a binary file differs from the call for opening a text
file only in the value of the mode (second argument). In fact, even this difference is
 optional . Also, notice that the type of the file pointer does not vary. We see a simi-
lar situation in the opening of output files in Example 2. One consequence of this
similarity is that the ability of the C compiler and run-time support system to detect
misuse of a file pointer is severely limited. It is the programmer’s responsibility to
keep track of which type of file each file pointer accesses and to use the right I/O
function at the right time.

 In Examples 3 and 4 of Table 11.5 , we compare input/output of a user-
defined structure type as it is done with text and binary files. In Examples 5 and
6, we see input/output of an array of type double values. In the text file code,
array elements are scanned or written one at a time in an indexed loop. When
we use a binary file, we can fill the array from or copy it to the file using just one
call to fread or fwrite . We see that the calls used to read/write array nums pro-
vide the size of one array element as the second argument to fread or fwrite
and the number of array elements to process as the third argument. Example 7
demonstrates partially filling array nums and setting n to the number of elements
filled. Example 8 shows that all files—binary or text, input or output—are closed
in the same way.

 EXERCISES FOR SECTION 11.2

 Self-Check

 1. Assume the environment shown, and complete the statements that follow so
that they are valid:

 #define NAME_LEN 50
 #define SIZE 30

 typedef struct {
 char name[NAME_LEN];
 int age;
 double income;
 } person_t;
 . . .
 int num_err[SIZE];
 person_t exec;
 FILE *nums_inp, *psn_inp, *psn_outp, *nums_outp;
 /* binary files */

640 Chapter 11 • Text and Binary File Processing

 FILE *nums_txt_inp, *psn_txt_inp, *psn_txt_outp;
 /* text files */

 nums_inp = fopen("nums.bin", "rb");
 nums_txt_inp = fopen("nums.txt", "r");
 psn_inp = fopen("persons.bin", "rb");
 psn_txt_inp = fopen("persons.txt", "r");
 psn_outp = fopen("persout.bin", "wb");
 psn_txt_outp = fopen("persout.txt", "w");
 nums_outp = fopen("numsout.bin", "wb");

 a. fread(_________________, sizeof (person_t), 1,
 _________________);

 b. fscanf(psn_txt_________________, "%s", _________________);
 c. fwrite(&exec, _________________, 1, psn_________________);
 d. fwrite(num_err, _________________, _________________,

 nums_outp);
 e. fread(&num_err[3], _________________, _________________,

 nums_inp);
 f. fprintf(psn_txt_outp, "%s %d %f\n", _________________,

 _________________, _________________);

 Programming

 1. Write a function fread_units that is similar to the load_units function
from the Universal Measurement Conversion Program (see Fig. 10.12)
except it assumes that the unit conversion data have been stored as a
binary file. The function should ask the user for the name of a binary file,
open the file, and get up to unit_max type unit_t values to place in array
 units . Be sure to send back to the calling function the size of the used
portion of the array.

 11.3 Searching a Database
 Computerized matching of data against a file of records is a common practice.
For example, many real estate companies maintain a large file of property list-
ings: A realtor can process the file to locate desirable properties for a client.
Similarly, mail-order firms purchase large files of information on potential
 customers. These large files of data are called databases . In this section, we will
write a program that searches a database to find all records that match a pro-
posed set of requirements.

 database a vast
electronic file of
information that can be
quickly searched using
subject headings or
keywords

64111.3 • Searching a Database

 CASE STUDY Database Inquiry

 PROBLEM

 Periphs Plus is a mail-order computer supply company that maintains its inventory
as a computer file in order to facilitate answering questions regarding that database.
Some questions of interest might be:

 ■ What printer stands that cost less than $100 are available?
 ■ What product has the code 5241?
 ■ What types of data cartridges are available?

 These questions and others can be answered if we know the correct way to ask
them.

 ANALYSIS

 A database inquiry program has two phases: Setting the search parameters and
searching for records that satisfy the parameters. In our program, we will assume
that all the structure components can be involved in the search. The program user
must enter low and high bounds for each field of interest. Let’s illustrate how we
might set the search parameters to answer the question, What modems that cost less
than $200 are available?

 Assuming that the price of any Periphs Plus product does not exceed $1,000, we
can use the following menu-driven dialogue to set the search parameters.

 Select by letter a search parameter to set, or enter q to
 accept parameters shown.
 Search Parameter Current Value
 [a] Low bound for stock number 1111
 [b] High bound for stock number 9999
 [c] Low bound for category aaaa
 [d] High bound for category zzzz
 [e] Low bound for technical description aaaa
 [f] High bound for technical description zzzz
 [g] Low bound for price $ 0.00
 [h] High bound for price $1000.00

 Selection> c
 New low bound for category> modem

 Select by letter a search parameter to set, or enter q to accept
 parameters shown.
 Search Parameter Current Value
 [a] Low bound for stock number 1111
 [b] High bound for stock number 9999

642 Chapter 11 • Text and Binary File Processing

 [c] Low bound for category modem
 [d] High bound for category zzzz
 [e] Low bound for technical description aaaa
 [f] High bound for technical description zzzz
 [g] Low bound for price $ 0.00
 [h] High bound for price $1000.00

 Selection> d
 New high bound for category> modem

 Select by letter a search parameter to set, or enter q to accept
 parameters shown.
 Search Parameter Current Value
 [a] Low bound for stock number 1111
 [b] High bound for stock number 9999
 [c] Low bound for category modem
 [d] High bound for category modem
 [e] Low bound for technical description aaaa
 [f] High bound for technical description zzzz
 [g] Low bound for price $ 0.00
 [h] High bound for price $1000.00

 Selection> h
 New high bound for price> 199.99

 Select by letter a search parameter to set, or enter q to accept
 parameters shown.
 Search Parameter Current Value
 [a] Low bound for stock number 1111
 [b] High bound for stock number 9999
 [c] Low bound for category modem
 [d] High bound for category modem
 [e] Low bound for technical description aaaa
 [f] High bound for technical description zzzz
 [g] Low bound for price $ 0.00
 [h] High bound for price $ 199.99

 Selection> q

 DATA REQUIREMENTS

 Problem Inputs
 search_params_t params; /* search parameter
 bounds */
 char inv_filename[STR_SIZ] /* name of inventory file */

64311.3 • Searching a Database

 Problem Outputs
 All products that satisfy the search.

 DESIGN

 INITIAL ALGORITHM

 1. Open inventory file.
 2. Get search parameters.
 3. Display all products that satisfy the search parameters.

 The structure chart for the database inquiry problem is shown in Fig. 11.4 . The
refinement of this design is distributed through the development of functions
 get_params and display_match .

 IMPLEMENTATION

 In Fig. 11.5 , we see an outline of the database program’s implementation includ-
ing the full code of function main . Our design and implementation of the functions
called by main and most of their helper functions follow this outline.

 DESIGN OF THE FUNCTION SUBPROGRAMS

 Function get_params must first initialize the search parameters to allow the widest
search possible and then let the user change some parameters to narrow the search. The
local variables and algorithm for get_params follow; the structure chart is in Fig. 11.6 .

 Local Variables for get_params
 search_params_t params; /* structure whose components
 must be defined */
 char choice; /* user's response to menu */

Display all products
that satisfy search
parameters

Open inventory
file

Display products
that match

Get search
parameters

params params
inventoryp

inventoryp

 FIGURE 11.4

 Structure Chart for
Database Inquiry
Problem

644 Chapter 11 • Text and Binary File Processing

 FIGURE 11.5 Outline and Function main for Database Inquiry Program

 1. /*
 2. * Displays all products in the database that satisfy the search
 3. * parameters specified by the program user.
 4. */
 5. #include <stdio.h>
 6. #include <string.h>
 7.
 8. #define MIN_STOCK 1111 /* minimum stock number */
 9. #define MAX_STOCK 9999 /* maximum stock number */
 10. #define MAX_PRICE 1000.00 /* maximum product price */
 11. #define STR_SIZ 80 /* number of characters in a string */
 12.
 13. typedef struct { /* product structure type */
 14. int stock_num; /* stock number */
 15. char category[STR_SIZ];
 16. char tech_descript[STR_SIZ];
 17. double price;
 18. } product_t;
 19.
 20. typedef struct { /* search parameter bounds type */
 21. int low_stock, high_stock;
 22. char low_category[STR_SIZ], high_category[STR_SIZ];
 23. char low_tech_descript[STR_SIZ], high_tech_descript[STR_SIZ];
 24. double low_price, high_price;
 25. } search_params_t;
 26.
 27. search_params_t get_params(void);
 28. void display_match(FILE *databasep, search_params_t params);
 29.
 30. /* Insert prototypes of functions needed by get_params and display_match */
 31.
 32. int
 33. main(void)
 34. {
 35. char inv_filename[STR_SIZ]; /* name of inventory file */
 36. FILE *inventoryp; /* inventory file pointer */
 37. search_params_t params; /* search parameter bounds */
 38.
 39. /* Get name of inventory file and open it */

(continued)

64511.3 • Searching a Database

 FIGURE 11.5 (continued)

 40. printf("Enter name of inventory file> ");
 41. scanf("%s", inv_filename);
 42. inventoryp = fopen(inv_filename, "rb");
 43.
 44. /* Get the search parameters */
 45. params = get_params();
 46.
 47. /* Display all products that satisfy the search parameters */
 48. display_match(inventoryp, params);
 49.
 50. return(0);
 51. }
 52.
 53. /*
 54. * Prompts the user to enter the search parameters
 55. */
 56. search_params_t
 57. get_params(void)
 58. {
 59. /* body of get_params to be inserted */
 60. }
 61. /*
 62. * Displays records of all products in the inventory that satisfy search
 63. * parameters.
 64. * Pre: databasep accesses a binary file of product_t records that has
 65. * been opened as an input file, and params is defined
 66. */
 67. void
 68. display_match(FILE *databasep, /* input - file pointer to binary
 69. database file
 70. */
 71. search_params_t params) /* input - search parameter bounds
 72. */
 73. {
 74. /* body of display_match to be inserted */
 75. }
 76.
 77. /* Insert functions needed by get_params and display_match */

646 Chapter 11 • Text and Binary File Processing

 Algorithm for get_params
 1. Initialize params to permit widest possible search.
 2. Display menu and get response to store in choice.
 3. Repeat while choice is not 'q'
 4. Select appropriate prompt and get new parameter value.
 5. Display menu and get response to store in choice .
 6. Return search parameters.

 Function display_match must examine each file record with a stock number
between the low and high bounds for stock numbers. If a record satisfies the search
parameters, it is displayed. Function display_match will also print a message if no
matches are found. The local variables, algorithm, and structure chart for the func-
tion follow (see Fig. 11.7).

 Local Variables for display_match
 product_t next_prod /* the current product */
 int no_matches /* a flag indicating whether or
 not there are any matches */

 Algorithm for display_match
 1. Initialize no_matches to true(1).
 2. Advance to the first record whose stock number is within range.
 3. while the current stock number is still in range repeat
 4. if the search parameters match
 5. Display the product and set no_matches to false(0).
 6. Get the next product record.

Get search
parameters

Initialize
parameters

Get new value
for parameter

Use menu to get
parameter change
preference

choice paramsparams

menu_choose

params

get_params

choice

 FIGURE 11.6

 Structure Chart for
get_params

64711.3 • Searching a Database

Display products
that match

Get a product Display a productDetermine if
there is a match

next_prod
params

next_prodnext_prod

display_match

match
show

is_match

 FIGURE 11.7

 Structure Chart for
display_match

 7. if there are no matches
 8. Print a no products available message.

 IMPLEMENTATION OF THE FUNCTION SUBPROGRAMS

 Figure 11.8 shows the code of functions display_match , menu_choose , and match ,
along with a stub for function show .

 FIGURE 11.8 Functions display_match, menu_choose, and match

 1. /*
 2. * Displays a lettered menu with the current values of search parameters.
 3. * Returns the letter the user enters. A letter in the range a..h selects
 4. * a parameter to change; q quits, accepting search parameters shown.
 5. * Post: first nonwhitespace character entered is returned
 6. */
 7. char
 8. menu_choose(search_params_t params) /* input - current search parameter
 9. bounds */
 10. {
 11. char choice;
 12.
 13. printf("Select by letter a search parameter to set or enter");

(continued)

648 Chapter 11 • Text and Binary File Processing

 FIGURE 11.8 (continued)

 14. printf("q to\naccept parameters shown.\n\n");
 15. printf(" Search parameter ");
 16. printf("Current value\n\n");
 17. printf("[a] Low bound for stock number %4d\n",
 18. params.low_stock);
 19. printf("[b] High bound for stock number %4d\n",
 20. params.high_stock);
 21. printf("[c] Low bound for category %s\n",
 22. params.low_category);
 23. printf("[d] High bound for category %s\n",
 24. params.high_category);
 25. printf("[e] Low bound for technical description %s\n",
 26. params.low_tech_descript);
 27. printf("[f] High bound for technical description %s\n",
 28. params.high_tech_descript);
 29. printf("[g] Low bound for price $%7.2f\n",
 30. params.low_price);
 31. printf("[h] High bound for price $%7.2f\n\n",
 32. params.high_price);
 33.
 34. printf("Selection> ");
 35. scanf(" %c", &choice);
 36.
 37. return (choice);
 38. }
 39.
 40. /*
 41. * Determines whether record prod satisfies all search parameters
 43. */
 44. int
 45. match(product_t prod, /* input - record to check */
 46. search_params_t params) /* input - parameters to satisfy */
 47. {
 48. return (strcmp(params.low_category, prod.category) <= 0 &&
 49. strcmp(prod.category, params.high_category) <= 0 &&
 50. strcmp(params.low_tech_descript, prod.tech_descript) <= 0 &&
 51. strcmp(prod.tech_descript, params.high_tech_descript) <= 0 &&
 52. params.low_price <= prod.price &&
 53. prod.price <= params.high_price);
 54. }

(continued)

64911.3 • Searching a Database

 FIGURE 11.8 (continued)

 55. /*
 56. * *** STUB ***
 57. * Displays each field of prod. Leaves a blank line after the product
 58. * display.
 59. */
 60. void
 61. show(product_t prod)
 62. {
 63. printf("Function show entered with product number %d\n",
 64. prod.stock_num);
 65. }
 66.
 67. /*
 68. * Displays records of all products in the inventory that satisfy search
 69. * parameters.
 70. * Pre: databasep accesses a binary file of product_t records that has
 71. * been opened as an input file, and params is defined
 72. */
 73. void
 74. display_match(FILE *databasep, /* file pointer to binary
 75. database file */
 76. search_params_t params) /* input - search parameter bounds */
 77. {
 78. product_t next_prod; /* current product from database */
 79. int no_matches = 1; /* flag indicating if no matches have
 80. been found */
 81. int status; /* input file status */
 82.
 83. /* Advances to first record with a stock number greater than or
 84. equal to lower bound. */
 85. for (status = fread(&next_prod, sizeof (product_t), 1, databasep);
 86. status == 1 && params.low_stock > next_prod.stock_num;
 87. status = fread(&next_prod, sizeof (product_t), 1, databasep)) {}
 88.
 89. /* Displays a list of the products that satisfy the search
 90. parameters */
 91. printf("\nProducts satisfying the search parameters:\n");
 92. while (next_prod.stock_num <= params.high_stock &&
 93. status == 1) {

(continued)

650 Chapter 11 • Text and Binary File Processing

 FIGURE 11.8 (continued)

 94. if (match(next_prod, params)) {
 95. no_matches = 0;
 96. show(next_prod);
 97. }
 98. status = fread(&next_prod, sizeof (product_t), 1, databasep);
 99. }
 100.
 101. /* Displays a message if no products found */
 102. if (no_matches)
 103. printf("Sorry, no products available\n");
 104. }

 EXERCISES FOR SECTION 11.3

 Self-Check

 1. What values would you use as search parameter bounds to answer the ques-
tions listed at the beginning of this section?

 2. Which function in our database search program determines whether a particu-
lar record matches the search parameters? Which one displays each matching
record?

 3. Why does function match not need to check a product’s stock_num field?

 Programming

 1. Write the functions get_params and show described in the database inquiry
problem. Since get_params calls function menu_choose , your implementa-
tion of algorithm step 4 for get_params must be sure to account for the fact
that menu_choose does not validate the value the user enters.

 2. Write a void function make_product_file that would convert a text file
containing product information to a binary file of product_t structures. The
function’s parameters are file pointers to the text input and binary output files.

 11.4 Common Programming Errors
 File processing in any programming language has many pitfalls; C is no exception.
Remember to declare a file pointer variable (type FILE*) for each file you want
to process. Because C makes no type distinction between file pointers accessing

651Chapter Review

text files and those accessing binary files, it is easy to use the wrong library function
with a file pointer. In a program that manipulates both file types, choose names for
your file pointers that remind you of the type of file accessed. For example, you
could choose names containing "_txt_" for text file pointers and names containing
 "_bin_" for binary file pointers.

 It is also critical that you remember that library functions fscanf , fprintf ,
 getc , and putc must be used for text I/O only; functions fread and fwrite are
applied exclusively to binary files. You should have the summary table in this chap-
ter handy for reference when you are using these functions to help you keep straight
the order of their arguments. The fact that fprintf , fscanf , and getc take the
file pointer as their first argument while putc , fread , and fwrite take it as the last
argument is definitely confusing at first.

 If you are permitting the program user to enter the name of a file to process,
you will have two variables identifying the file—one to hold its name (a character
string) and one to hold the pointer for file access. It is essential to remember that
the only file operation in which the file name is used is the call to fopen . Keep in
mind that opening a file for output by calling fopen with a second argument of
 "w" or "wb" typically results in a loss of any existing file whose name matches the
first argument.

 It is easy to forget that binary files cannot be created, viewed, or modified using
an editor or word processor program. Rather, they must be created and interpreted
by a program that reads values into or writes values from variables of the same type
as the binary file’s elements.

 ■ Chapter Review

 1. Text files are continuous streams of character codes that can be viewed as bro-
ken into lines by the newline character.

 2. Processing text files requires the transfer of sequences of characters between
main memory and disk storage.

 3. In order to be processed as numbers, character strings taken as input from
a text file must be converted to a different format such as int or double for
storage in memory. Output of numeric values to a text file requires conversion
of the internal formats back to a sequence of characters.

 4. Binary files permit storage of information using a computer’s internal data for-
mat: Neither time nor accuracy is lost through conversion of values transferred
between main and secondary storage.

 5. Binary files cannot be created using a word processor and are not meaningful
when displayed on the screen or printed.

652 Chapter 11 • Text and Binary File Processing

 NEW C CONSTRUCTS

 Statement Effect

 Declarations

 char name_txt_in[50],
 name_bin_out[50];

 Declares two string variables whose names imply that
they may be used to hold names of a text file to be used
for input and of a binary output file.

 FILE *text_inp, *text_outp,
 *bin_inp, *bin_outp;

 Declares four file pointer variables.

 Calls to stdio Library

 text_inp = fopen(name_txt_in, "r");
 text_outp = fopen("result.txt", "w");
 bin_inp = fopen("data.bin", "rb");
 bin_outp = fopen(name_bin_out, "wb");

 Opens "data.bin" and the file whose name is
the value of name_txt_in as input files; opens
 "result.txt" and the file whose name is the value of
 name_bin_out as output files. Pointers accessing the
open files are stored in file pointer variables text_inp ,
 text_outp , bin_inp , and bin_outp .

 fscanf(text_inp, "%s%d%lf", animal,
 &age, &weight);

 Copies string, int , and double values from the text
input file accessed by file pointer text_inp , storing the
values in variables animal , age , and weight .

 fprintf(text_outp, "(%.2f, %.2f)",
 x, y);

 Writes to the text output file accessed by file pointer
 text_outp a set of parentheses enclosing the values of
 x and y rounded to two decimal places.

 nextch = getc(text_inp); Stores in nextch the next character available in the text
input file accessed by file pointer text_inp , or the inte-
ger EOF value if no characters remain.

 putc(ch, text_outp); Copies the value of ch into the text output file accessed
by file pointer text_outp .

 fread(&var, sizeof (double), 1,
 bin_inp);

 Copies into type double variable var the next value
from the binary input file accessed by file pointer
 bin_inp .

 fwrite(&insect, sizeof (insect_t), 1,
 bin_outp);

 Copies the value of type insect_t variable insect
into the binary output file accessed by file pointer
 bin_outp .

 fclose(text_outp); Closes text file accessed by file pointer text_outp after
writing the <eof> character.

 fclose(bin_inp); Closes binary file accessed by bin_inp so it is no longer
available as an input source.

653Quick-Check Exercises

 ■ Quick-Check Exercises

 1. A _____________ file consists of a stream of character codes; a _____________
file is a sequence of values of any type represented exactly as they would be in
main memory.

 2. For each of these library functions, indicate whether it is used in processing
binary or text files.

 fread putc
 fscanf fwrite
 getc fprintf

 3. What file pointer name(s) does a C program associate with the keyboard?
With the screen?

 4. A word processor can be used to create or view a _____________ file but not a
_____________ file.

 5. Write a prototype for a function fprintf_blob that writes to a text output file
the value of a structure of type blob_t . The function does not open the output
file; the function assumes the file is already open.

 6. Write a prototype for a function fwrite_blob that writes to a binary output
file the value of a structure of type blob_t . The function does not open the
output file; the function assumes the file is already open.

 7. The _____________ character separates a _____________ file into lines, and
the _____________ character appears at the end of a file.

 8. Can a file be used for both input and output by the same program?
 9. Comment on the correctness of this statement: It is more efficient to use a

text file because the computer knows that each component is a single charac-
ter that can be copied into a single byte of main memory; with a binary file,
however, the size of the components may vary.

 10. Consider the following code segment, and then choose the correct “next”
statement from the two options given. Indicate how you know which is the
right choice. If you can’t determine which is right, explain what additional
information you would need in order to decide.

 FILE *inp;
 int n;

 inp = fopen("data.in", "r");

 "next" option 1
 fread(&n, sizeof (int), 1, inp);

 "next" option 2
 fscanf(inp, "%d", &n);

654 Chapter 11 • Text and Binary File Processing

 ■ Answers to Quick-Check Exercises
 1. text, binary
 2. fread : binary; fscanf : text; getc : text; putc : text; fwrite : binary; fprintf :

text
 3. keyboard: stdin ; screen: stdout , stderr
 4. text, binary
 5. void fprintf_blob(FILE *filep, blob_t blob);
 6. void fwrite_blob(FILE *filep, blob_t blob);
 7. newline (or '\n'), text, eof
 8. Yes, it can be opened in one mode, closed, and then reopened in another

mode.
 9. The statement is not correct because no data conversions are necessary

when you use binary files. Therefore, binary files are more efficient than
text files.

 10. The code segment shown could be followed by either statement. In order to
choose one option, it would be necessary to know whether data.in was a
text file or a binary file of integers. If one were certain that the code’s author
always used the mode "rb" when opening a binary file, then option 2 would
be the expected next statement.

 ■ Review Questions
 1. Where are files stored?
 2. How would you modify the program in Fig. 11.1 so the data would be sent to

the screen as well as written to the backup file?
 3. Consider a file empstat.txt that contains employee records. The data for

each employee consist of the employee’s name (up to 20 characters), social
security number (up to 11 characters), gross pay for the week (double), taxes
deducted (double), and net pay (double) for the week. Each record is a sepa-
rate text line in file empstat.txt . Write a program that will create a text file
 report.txt with the heading line

 NAME SOC.SEC.NUM GROSS TAXES NET

 followed by two blank lines and the pertinent information under each col-
umn heading. The program should also produce a binary file version of
 empstat.txt named empstat.bin .

 4. What are the characteristics of a binary file?
 5. Write a program that takes as input the file empstat.bin created in Review

Question 3 and produces a binary file ssngross.bin containing only social
security numbers and gross pay for each employee.

655Programming Projects

 6. What is a file pointer?
 7. A sparse matrix is one in which a large number of the elements are zero. Write

a void function store_sparse that writes to a binary file a compressed rep-
resentation of a 50 � 50 sparse matrix of type int . The function’s parameters
are the file pointer and the matrix. The function will store only the nonzero
matrix values, writing for each of these a record containing three components:
Row subscript, column subscript, and value.

 8. How would the prototype of function store_sparse be different if its pur-
pose were to write the sparse matrix representation to a text file (see Review
Question 7)? Discuss the implications of your answer.

 ■ Programming Projects

 1. You are developing a database of measured meteorological data for use in
weather and climate research. Define a structure type measured_data_t
with components site_id_num (a four-digit integer), wind_speed ,
 day_of_month , and temperature . Each site measures its data daily, at noon
local time. Write a program that inputs a file of measured_data_t records
and determines the site with the greatest variation in temperature (defined
here as the biggest difference between extrema) and the site with the highest
average wind speed for all the days in the file. You may assume that there will
be at most ten sites. Test the program on the following July daily data col-
lected over one week at three sites:

 ID Day Wind Speed (knots) Temperature (deg C)

 2001 10 11 30

 2001 11 5 22

 2001 12 18 25

 2001 13 16 26

 2001 14 14 26

 2001 15 2 25

 2001 16 14 22

 3345 10 8 29

 3345 11 5 23

 3345 12 12 23

 3345 13 14 24

 3345 14 10 24

656 Chapter 11 • Text and Binary File Processing

 2. Write a void function that will merge the contents of two text files containing
chemical elements sorted by atomic number and will produce a sorted file of
binary records. The function’s parameters will be three file pointers. Each text
file line will contain an integer atomic number followed by the element name,
chemical symbol, and atomic weight. Here are two sample lines:

 11 Sodium Na 22.99
 20 Calcium Ca 40.08

 The function can assume that one file does not have two copies of the same
element and that the binary output file should have this same property. Hint:
When one of the input files is exhausted, do not forget to copy the remaining
elements of the other input file to the result file.

 3. Develop a database inquiry program to search a binary file of aircraft data sorted
in descending order by maximum cruise speed. Each aircraft record should
include the name (up to 25 characters), maximum cruise speed (in km/h), wing-
span and length (in m), the character M (for military) or C (for civilian), and a
descriptive phrase (up to 80 characters). Your system should implement a menu-
driven interface that allows the user to search on all components except the
descriptive phrase. Here are three planes to start your database:

 SR-71 Blackbird (name)
 3500 (max cruise speed)
 16.95 32.74 M (wingspan, length, military/civilian)
 high-speed strategic reconnaissance

 EF-111A Raven
 2280
 19.21 23.16 M
 electronic warfare

 ID Day Wind Speed (knots) Temperature (deg C)

 3345 15 9 22

 3345 16 9 20

 3819 10 17 27

 3819 11 20 21

 3819 12 22 21

 3819 13 18 22

 3819 14 15 22

 3819 15 9 19

 3819 16 12 18

657Programming Projects

 Concorde
 2140
 25.61 62.2 C
 supersonic airliner

 4. A sparse matrix is a two-dimensional array in which a large number of the ele-
ments are zero. A concise text file representation of a sparse matrix needs to
store only the array dimensions on the first line and the number of nonzero
elements on the second. Each of the remaining lines should contain three
numbers—row subscript, column subscript, and value of one nonzero entry.
Write a program that converts a text file containing a traditional matrix rep-
resentation to a text file containing a compressed sparse matrix. The program
should open the file containing the traditional representation (a line with
dimensions followed by matrix contents a row at a time), call a function
 scan_matrix to input the matrix, open the output file, and call a function
 write_sparse to store the compressed representation. Write a second pro-
gram that reverses the process—doing input of a sparse matrix file and creat-
ing a file containing the traditional representation. For the second program,
write functions scan_sparse and write_matrix .

 5. Write a program that takes words from a text file and prints each one on a
separate line of an output file followed by the number of letters (alphabetic
characters) in the word. Any leading or trailing punctuation marks should
be removed from the word before it is printed. When all the text has been
processed, display on the screen a count of the words in the file. Assume
that words are groups of nonwhitespace characters separated by one or more
whitespace characters.

 6. Write a program that helps the user to consider a range of interest rates for a
mortgage over 20, 25, and 30 years. Prompt the user to enter the amount of
the loan and a minimum and maximum interest rate (in whole percentages).
Then write a text file containing a table of the form,

 Loan Amount: $50,000.00
 Interest Duration Monthly Total
 Rate (years) Payment Payment

 10.00 20 _______ _______
 10.00 25 _______ _______
 10.00 30 _______ _______
 10.25 20 _______ _______
 .
 .
 .

 The output file produced should contain payment information on a particular
loan amount for interest rates from the minimum rate to the maximum rate in
increments of 0.25 percent. The loan durations should be 20, 25, and 30 years.

658 Chapter 11 • Text and Binary File Processing

Output the monthly payment and total payment values rounded to two decimal
places. You may neglect the fact that because the monthly payment must be
rounded, the final payment will be slightly different. The formula for calculat-
ing monthly payment is given in Programming Project 1 of Chapter 3 .

 7. Develop a small airline reservation system. The database of flight information
should be kept in a file of structures with the following components:

 a. Flight number (including airline code)
 b. City of departure
 c. Destination
 d. Date and time of departure
 e. Date and time of arrival
 f. Number of first-class seats still available
 g. Number of first-class seats sold
 h. Number of coach seats still available
 i. Number of coach seats sold

 Include in your program separate functions for creation, deletion, and
update of flight records. Also, implement make_reservation and
 cancel_reservation functions.

 8. Cooking recipes can be stored on a computer and, with the use of files, can be
quickly referenced.
 a. Write a function that will create a text file of recipes from information

entered at the terminal. The format of the data to be stored is
 1. recipe type (dessert, meat, etc.)
 2. subtype (for dessert, use cake, pie, or cookies)
 3. name (e.g., German chocolate)
 4. number of lines in the recipe to follow
 5. the actual recipe
 Item 3 should be on a separate line.

 b. Write a function that will accept as parameters a file and a structured
record of search parameter bounds. The function should display all reci-
pes satisfying the search parameters.

 Programming
in the Large

 CHAPTER OBJECTIVES
 • To learn how procedural abstraction helps the program-

mer separate concerns about what a function does from
the details of how to code the function

 • To understand how data abstraction enables us to
describe what information is stored in an object and
what operations we want to perform on the object
 without knowing the specifics of how the object’s
 information is organized and represented

 • To learn how to create your own personal library with
a separate header file and implementation file and to
understand what should be stored in each file

 • To understand the purpose of different storage classes in C

 • To learn how to use conditional compilation to prevent
multiple declarations of the identifiers in a header file

 • To learn how to use multidimensional arrays for storing
tables of data

 • To learn how to declare parameters for function main
and how to pass data such as file names through
 command line arguments

 • To learn how to define macros with parameters and
understand what happens when a macro is expanded

 C H A P T E R

12

 I n this chapter, we examine the special difficulties associated with the develop-
ment of large software systems. We explore how separating our expression of what
we need to do from ho w we actually plan to accomplish it reduces the complexity of
system development and maintenance (upkeep). This chapter introduces C’s facili-
ties for formalizing this separation of concerns.

 We study how to define flexible macros that help to make a program more read-
able as well as easier to maintain. This chapter describes the storage classes of vari-
ables and functions we have been using along with some additional storage classes
that may be useful in large program development. We also investigate how to build
a library of reusable code from functions developed for specific contexts. We meet
additional preprocessor directives that allow us to format libraries so they are easy
to include in any combination.

 12.1 Using Abstraction to Manage Complexity
 Up to this point in your study of programming, you have been primarily concerned
with writing relatively short programs that solve individual problems, but otherwise
have little general use. In this chapter, we focus on the design and maintenance of
large-scale programs. We discuss how to modularize a large project so that individual
pieces can be implemented by different programmers at different times. We also
see how to write software modules in ways that simplify their reuse in other projects.

 Procedural Abstraction

 When a team of programmers is assigned the task of developing a large software sys-
tem, they must have a rational approach to breaking down the overall problem into
solvable chunks. Abstraction is a powerful technique that helps problem solvers deal
with complex issues in a piecemeal fashion. The dictionary defines abstraction as
the process of separating the inherent qualities or properties of something from the
actual physical object to which they belong. One example of the use of abstraction
is the representation of a program variable (for example, velocity) by a storage
location in memory. We don’t have to know anything about the physical structure of
memory in order to use such a variable in programming.

 In this text, we have applied aspects of two types of abstraction to program
development. First, we practiced procedural abstraction , which is the philosophy
that function development should separate the concern of what is to be achieved
by a function from the details of how it is to be achieved. In other words, you can

 procedural
abstraction
separation of what a
function does from
the details of how the
function accomplishes
its purpose

12.1 • Using Abstraction to Manage Complexity 661

specify what you expect a function to do and then use that function in the design of
a problem solution before you know how to implement the function.

 For example, in Chapter 11 , when we tackled our database inquiry problem,
our initial algorithm was one that could lead directly to an outline of a program frag-
ment that identifies three functions representing the major steps of a solution. The
following outline defers the details of parameter lists and use of function values.

 Initial Algorithm Program Outline

 1. Open inventory file. fopen(. . .)

 2. Get the search parameters. get_params(. . .)

 3. Display all products that
satisfy the search parameters.

 display_match(. . .)

 In this example of procedural abstraction, we see that what one of the func-
tions must accomplish (i.e., open a file) corresponds to the purpose of a library
function we have studied. Reuse of this existing function means that we never have
to concern ourselves with the details of how this task is accomplished. Clearly, the
availability of powerful libraries of functions is of significant benefit in reducing the
complexity of large systems. As we have already seen, the use of such libraries is a
fundamental feature of the C programming language.

 In the example shown, the other two functions identified in this first level of
procedural abstraction are excellent candidates for assignment to separate members
of a program development team. Once the purpose and parameter lists of each
function are spelled out, neither developer will have any need to be concerned
about the details of how the other member carries out the assigned task.

 Data Abstraction

 Data abstraction is another powerful tool we have seen for breaking down a large
problem into manageable chunks. When we apply data abstraction to a complex
problem, we initially specify the data objects involved and the operations to be
performed on these data objects without being overly concerned with how the data
objects will be represented and stored in memory. We can describe what informa-
tion is stored in the data object without being specific as to how the information is
organized and represented. This is the logical view of the data object as opposed to
its physical view, the actual internal representation in memory. Once we understand
the logical view, we can use the data object and its operators in our programs; how-
ever, we (or someone else) will eventually need to implement the data object and its
operators before we can run any program that uses them.

 One simple example of data abstraction is our use of the C data type double ,
which is an abstraction for the set of real numbers. The computer hardware lim-
its the range of real numbers that can be represented, and not all real numbers

 data abstraction
separation of the logical
view of a data object
(what is stored) from
the physical view
(how the information
is stored)

662 Chapter 12 • Programming in the Large

within the specified range can be represented. Different computers use a variety of
representation schemes for type double . However, we can generally use the data
type double and its associated operators (+ , −, * , / , = , == , < , and so on) without
being concerned with these details of its implementation. Another example of data
abstraction is the definition of a data type and associated operators for complex
numbers given in Chapter 10 .

 Information Hiding

 One advantage of procedural abstraction and data abstraction is that they enable the
designer to make implementation decisions in a piecemeal fashion. The designer
can postpone making decisions regarding the actual internal representation of the
data objects and the implementation of its operators. At the top levels of the design,
the designer focuses on how to use a data object and its operators; at the lower
levels of design, the designer works out the implementation details. In this way, the
designer can hierarchically break down a large problem, controlling and reducing
its overall complexity.

 If the details of a data object’s implementation are not known when a higher-
level module is implemented, the higher-level module can access the data object
only through its operators. This limitation is actually an advantage: It allows the
designer to change his or her mind at a later date and possibly to choose a more
efficient method of internal representation or implementation. If the higher-level
modules reference a data object only through its operators, a change in the data
object’s representation will require no change in a higher-level module. The process
of protecting the implementation details of a lower-level module from direct access
by a higher-level module is called information hiding .

 Reusable Code

 One of the keys to productivity in software development is the writing of reus-
able code, code that can be reused in many different applications, preferably
without having to be modified or recompiled. One way to facilitate reuse in C
is to encapsulate a data object together with its operators in a personal library.
Then we can use the #include preprocessor directive to give functions in a file
access to this library.

 Encapsulation is a powerful concept in everyday life that can be applied very
profitably to software design. For example, one encapsulated object that we are all
familiar with is an aspirin. Our familiarity is based strictly on what the object does
(relieves pain and reduces fever) when activated through the standard interface (swal-
lowing). Only its producers and prescribers care how an aspirin does what it does (the
effect of acetylsalicylic acid on inflammation and blood flow to the skin surface). By
applying the principles of procedural and data abstraction, we can package the “bitter”
details of a complex problem’s solution in equally neat, easy-to-use capsules.

 information hiding
protecting the imple-
mentation details of
a lower-level module
from direct access by a
higher-level module

 encapsulate
packaging as a unit
a data object and its
operators

12.2 • Personal Libraries: Header Files 663

 EXERCISES FOR SECTION 12.1

 Self-Check

 1. Describe how each of the following encapsulated objects allows the user to
focus on what the object does with little or no concern for how it does it:

 microwave oven television set calculator

 12.2 Personal Libraries: Header Files
 We have seen how the availability of C’s standard libraries simplifies program devel-
opment. However, the standard libraries are not extensive enough to handle every
programming need. Often we write a function that would be useful in a context
other than the one for which it was originally written. Copying the code of functions
into other programs to allow reuse is possible but cumbersome, especially when
compared to the way we get access to standard libraries. In fact, one can use the C
preprocessor directive #include to make available personal libraries as well. Since
C permits source code files to be compiled separately and then linked prior to load-
ing and execution, we can provide our personal libraries as object files; programs
using our personal libraries need not first compile the functions in them. If we take
another look at a diagram first presented in Chapter 1 and now repeated in Fig. 12.1 ,
we are in a better position to understand the rectangle and arrow that are in color.
Until now, the “other object files” that have been linked to our code have been the
standard C libraries. When we learn to make our own library files, these files can also
be provided to the linker as part of preparing our program for execution.

 Header Files

 To create a personal library, we must first make a header file —a text file contain-
ing all the information about a library needed by the compiler when compiling a
program that uses the facilities defined in the library. Precisely this type of data is
found in system header files such as stdio.h , math.h , and string.h . The form
we recommend for a header file also provides all the information that a user of the
library needs. Typical contents of a header file include:

 1. a block comment summarizing the library’s purpose
 2. #define directives naming constant macros
 3. type definitions
 4. block comments stating the purpose of each library function and declarations

of the form

 extern prototype

 header file text file
containing the interface
information about a
library needed by a
compiler to translate a
program system that
uses the library or by a
person to understand
and use the library

664 Chapter 12 • Programming in the Large

Word Processor
(editor) Used to
type in program
and corrections

Source File

Format: text

Object File

Format: binary

Format: binary

Other Object
Files

Format: binary

Executable File
(load module)

Compiler
Attempts to

translate program
into machine

code

Successful

Unsuccessful

Error
Messages

Linker
Resolves

cross-references
among

object files

Loader
Copies executable
file into memory;

initiates execution
of instructions

Input data Results

 FIGURE 12.1 Preparing a Program for Execution

12.2 • Personal Libraries: Header Files 665

 The use of the keyword extern in a function declaration notifies the compiler
that the function’s definition will be provided to the linker. Figure 12.2 shows a
header file for our planet data type and operators from Chapter 10 . In Fig. 12.3 ,
we see the beginning of a source file that has need of facilities from this library. We
are assuming here that the header file is named planet.h , and that it is located
in the directory in which the preprocessor first looks for files whose names appear
in quotation marks after a #include . This issue is system dependent, but, in many
cases, the directory first searched would be the one in which the current source
file resides.

 FIGURE 12.2 Header File planet.h for Personal Library with Data Type and Associated
Functions

 1. /* planet.h
 2. *
 3. * abstract data type planet
 4. *
 5. * Type planet_t has these components:
 6. * name, diameter, moons, orbit_time, rotation_time
 7. *
 8. * Operators:
 9. * print_planet, planet_equal, scan_planet
 10. */
 11.
 12. #define PLANET_STRSIZ 10
 13.
 14. typedef struct { /* planet structure */
 15. char name[PLANET_STRSIZ];
 16. double diameter; /* equatorial diameter in km */
 17. int moons; /* number of moons */
 18. double orbit_time, /* years to orbit sun once */
 19. rotation_time; /* hours to complete one revolution on
 20. axis */
 21. } planet_t;
 22.
 23. /*
 24. * Displays with labels all components of a planet_t structure
 25. */
 26. extern void
 27. print_planet(planet_t pl); /* input - one planet structure */
 28.

(continued)

666 Chapter 12 • Programming in the Large

 29. /*
 30. * Determines whether or not the components of planet_1 and planet_2
 31. * match
 32. */
 33. extern int
 34. planet_equal(planet_t planet_1, /* input - planets to */
 35. planet_t planet_2); /* compare */
 36.
 37. /*
 38. * Fills a type planet_t structure with input data. Integer returned as
 39. * function result is success/failure/EOF indicator.
 40. * 1 => successful input of planet
 41. * 0 => error encountered
 42. * EOF => insufficient data before end of file
 43. * In case of error or EOF, value of type planet_t output argument is
 44. * undefined.
 45. */
 46. extern int
 47. scan_planet(planet_t *plnp); /* output - address of planet_t structure to fill */

FIGURE 12.2 (continued)

 FIGURE 12.3 Portion of Program That Uses Functions from a Personal Library

 1. /*
 2. * Beginning of source file in which a personal library and system I/O library
 3. * are used.
 4. */
 5.
 6. #include <stdio.h> /* system's standard I/O functions */
 7.
 8. #include "planet.h" /* personal library with planet_t data type and
 9. operators */
 10. . . .

 In our programming so far, we have used angular brackets (<>), as in
 #include <stdio.h>

 to indicate to the preprocessor that a header file is to be found in a system directory.
Quotes around the header file name, as in
 #include "planet.h"

 mark it as information about a library belonging to the programmer.

12.2 • Personal Libraries: Header Files 667

 When revising a source file, the C preprocessor replaces each #include line
with the contents of the header file it references.

 In Chapters 3 and 6 , when we first met user-defined functions, we empha-
sized the importance of the block comment placed at the beginning of the func-
tion and the importance of the function prototype and the comments on its
parameters. When taken together, this prototype and its associated commentary
provide the basic information needed by a programmer desiring to call the func-
tion: What the function does, what type of value it returns (if any), and what types
of arguments it operates on. Notice that this is precisely the information placed
in the header file.

 An important aspect of dividing any problem into manageable chunks is defin-
ing the points at which the chunks of the solution come together to form the com-
plete solution. The common boundary between two separate parts of a solution is
called the interface . The header file’s purpose is to define the interface between a
library and any program that uses the library.

 Cautionary Notes for Header File Design

 You will notice that in our header file example, the constant macro defined
(PLANET_STRSIZ) has a long name that begins with the library name. This nam-
ing strategy reduces the likelihood that the name associated with a constant in the
header file will conflict with other constant macro names in the program.

 In Section 12.3 , we will see how to create an implementation file for a personal
library. The header (interface) file and the implementation file are the two essential
source files in a personal library.

 EXERCISES FOR SECTION 12.2

 Self-Check

 1. How can the C preprocessor determine whether a header file name in an
 #include statement is the name of a system library or of a personal library?

 2. A function’s _____________ and associated _____________ are the collection
of information that a programmer must know about the function in order to be
able to use it.

 3. A header (interface) file describes _____________ the functions of a library
do, not _____________ they do it.

 Programming

 1. Look at the table of math library functions in Chapter 3 (Table 3.1). Define
a header file myops.h that contains a full description of the interfaces of
functions fabs , sqrt , and pow . Then add to this file information about the

668 Chapter 12 • Programming in the Large

 factorial function (see Fig. 5.7). Would anything about your interface
information for factorial require your implementation of the function to be
iterative? Would anything require the implementation to be recursive?

 12.3 Personal Libraries: Implementation Files
 In Section 12.2 , we saw how to create a library header file containing all the interface
information needed by a program and programmer using the library. We created a
header file for a planet library and studied a program that uses the #include directive
in order to make this header a part of the program’s code. In this section, we investi-
gate how to create a library implementation file . The header file describes what the
functions of the library do; the implementation file will show how the functions do it.

 A library’s implementation file is a C source file that contains both the code of
all the library functions and any other information needed for compilation of these
functions. The elements of an implementation file are the same as the elements of
any program and have many similarities with the elements of the library’s header
file. These elements are:

 1. a block comment summarizing the library’s purpose
 2. #include directives for this library’s header file and for other libraries used

by the functions in this library
 3. #define directives naming constant macros used only inside this library
 4. type definitions used only inside this library
 5. function definitions including the usual comments

 It may seem odd that we #include the header file for the library we are imple-
menting since the prototypes found in it are redundant. We do this to make main-
tenance and modification of the library more straightforward. Alternatively, we
could simply restate the constant macro and type definitions from the header file
in the implementation file. However, then a modification of one of these defini-
tions would require changes in two files. Using the header file #include as shown,
we would simply modify the header file; when the implementation file is recom-
piled, the change will be taken into account. Figure 12.4 shows an implementation
file that might be associated with the header file planet.h .

 Using a Personal Library

 To use a personal library, one must complete these steps:

 Creation

 C1 Create a header fi le containing the interface information for a program needing
the library.

 C2 Create an implementation fi le containing the code of the library functions and
other details of the implementation that are hidden from the user program.

 implementation file
file containing the
C source code of a
library’s functions and
any other information
needed for compilation
of these functions

12.3 • Personal Libraries: Implementation Files 669

 FIGURE 12.4 Implementation File planet.c Containing Library with Planet Data Type
and Operators

 1. /*
 2. *
 3. * planet.c
 4. */
 5.
 6. #include <stdio.h>
 7. #include <string.h>
 8. #include "planet.h"
 9.
 10. /*
 11. * Displays with labels all components of a planet_t structure
 12. */
 13. void
 14. print_planet(planet_t pl) /* input - one planet structure */
 15. {
 16. printf("%s\n", pl.name);
 17. printf(" Equatorial diameter: %.0f km\n", pl.diameter);
 18. printf(" Number of moons: %d\n", pl.moons);
 19. printf(" Time to complete one orbit of the sun: %.2f years\n",
 20. pl.orbit_time);
 21. printf(" Time to complete one rotation on axis: %.4f hours\n",
 22. pl.rotation_time);
 23. }
 24.
 25. /*
 26. * Determines whether or not the components of planet_1 and planet_2 match
 27. */
 28. int
 29. planet_equal(planet_t planet_1, /* input - planets to */
 30. planet_t planet_2) /* compare */
 31. {
 32. return (strcmp(planet_1.name, planet_2.name) == 0 &&
 33. planet_1.diameter == planet_2.diameter &&
 34. planet_1.moons == planet_2.moons &&
 35. planet_1.orbit_time == planet_2.orbit_time &&
 36. planet_1.rotation_time == planet_2.rotation_time);
 37. }
 38.
 39. /*

(continued)

670 Chapter 12 • Programming in the Large

 40. * Fills a type planet_t structure with input data. Integer returned as
 41. * function result is success/failure/EOF indicator.
 42. * 1 => successful input of planet
 43. * 0 => error encountered
 44. * EOF => insufficient data before end of file
 45. * In case of error or EOF, value of type planet_t output argument is
 46. * undefined.
 47. */
 48. int
 49. scan_planet(planet_t *plnp) /* output - address of planet_t structure to
 50. fill */
 51. {
 52. int result;
 53.
 54. result = scanf("%s%lf%d%lf%lf", plnp->name,
 55. &plnp->diameter,
 56. &plnp->moons,
 57. &plnp->orbit_time,
 58. &plnp->rotation_time);
 59. if (result == 5)
 60. result = 1;
 61. else if (result != EOF)
 62. result = 0;
 63. return (result);
 64.
 65. }

FIGURE 12.4 (continued)

 C3 Compile the implementation fi le. This step must be repeated any time either
the header fi le or the implementation fi le is revised.

 Use

 U1 Include the library’s header file in the user program through an #include directive.
 U2 After compiling the user program, include both its object file and the object

file created in C3 in the command that activates the linker.

 EXERCISES FOR SECTION 12.3

 Self-Check

 1. Why do we openly define the constant macro PLANET_STRSIZ in the header
file "planet.h" rather than protecting this name as one of the implementa-
tion details?

12.4 • Storage Classes 671

 2. If you see the following #include directives in a program, what do you
assume about libraries red and blue?

 #include <red.h>
 #include "blue.h"

 Programming

 1. Create a library named complex that defines the complex arithmetic operators
from Section 10.4 .

 12.4 Storage Classes
 C has five storage classes; so far we have seen three. Formal parameters and local
variables of functions are variables that are auto matically allocated on the stack
when a function is called and auto matically deallocated when the function returns;
they are of storage class auto . In Chapter 6 , we studied that the scope of these
names—that is, the program region in which the name is visible—extends from the
point of declaration to the end of the function in which the declaration appears.

 The names of the functions themselves are of storage class extern , meaning
that they will be available to the linker. If function prototypes precede any function
definition, then these functions may be called by any other function in a program.
The compiler needs to know the following vital information about a function in
order to translate a call to it: Its return type, how many arguments it takes, and the
data types of the arguments. Providing this information is the purpose of the

 extern prototype

 statement of which we have seen numerous examples in library header files. This
statement does not create a function of storage class extern ; it merely notifies the
compiler that such a function exists and that the linker will know where to find it.
 Figure 12.5 shows the two storage classes, auto and extern . Names in color are of
storage class auto ; those in boldface black are of storage class extern .

 The shaded area of Fig. 12.5 marks the program’s top level . Class extern is the
default storage class for all names declared at this level.

 Global Variables

 We have seen only declarations of functions at the top level of a program. However,
it is also possible (though usually inadvisable) to declare variables at the top level.
The scope of such a variable name extends from the point of declaration to the end
of the source file, except in functions where the same name is declared as a formal
parameter or local variable. If we need to reference a top-level variable in the region
of its source file that precedes its declaration or in another source file, the compiler
can be alerted to the variable’s existence by placing a declaration of the variable that

 auto default storage
class of function
parameters and local
variables; storage is
automatically allocated
on the stack at the time
of a function call and
deallocated when the
function returns

 extern storage class
of names known to the
linker

672 Chapter 12 • Programming in the Large

begins with the keyword extern in the file prior to the first reference. Such a varia-
ble can be made accessible to all functions in a program and is therefore sometimes
called a global variable . Figure 12.6 shows the declaration at the top level of int
variable global_var_x of storage class extern in file eg1.c and an extern state-
ment in eg2.c that makes the global variable accessible throughout this file as well.
Only the defining declaration, the one in eg1.c , allocates space for global_var_x .
A declaration beginning with the keyword extern allocates no memory; it simply
provides information for the compiler.

 Although there are applications in which global variables are unavoidable,
such unrestricted access to a variable is generally regarded as detrimental to a pro-
gram’s readability and maintainability. Global access conflicts with the principle

 FIGURE 12.5 Storage Classes auto and extern as Previously Seen

 void
 fun_one (int arg_one, int arg_two)
 {
 int one_local;
 . . .

 }

 int
 fun_two (int a2_one, int a2_two)
 {
 int local_var;
 . . .

 }

 int
 main (void)
 {
 int num;
 . . .
 }

 global variable a
variable that may be
accessed by many
functions in a program

/* eg1.c */

int global_var_x;

void
afun(int n)
 . . .

/* eg2.c */

extern int global_var_x;

int
bfun(int p)
 . . .

 FIGURE 12.6

 Declaration of a
Global Variable

12.4 • Storage Classes 673

that functions should have access to data on a need-to-know basis only, and then
strictly through the documented interface as represented by the function prototype.
However, one context in which a global variable can be used without reducing
program readability is when the global represents a constant. We have been using
globally visible macro constants throughout this text, and they have been a help, not
a hindrance, in clarifying the meaning of a program. In Fig. 12.7 , we see two global
names that represent constant data structures. Because we plan to initialize these
memory blocks and never change their values, there is no harm in letting our whole
program access them. We include the const type qualifier in our declarations that
define the globals as well as in the extern declarations that give additional functions
access to the globals. This qualifier notifies the compiler that the program can look
at, but not modify, these locations.

 Figure 12.7 also shows another storage class that we have met before, namely,
 typedef . Including typedef in the set of storage classes is merely a notational con-
venience. As we saw in Chapters 7 and 10 , a typedef statement does not allocate
storage space!

/* fileone.c */

typedef struct {

/* filetwo.c */

/* #define's and typedefs
 including complex_t */

void
f2_fun1(int x)
{ . . . }

/* Compiler-notifying
 declarations -- no
 storage allocated */
extern const complex_t
 complex_zero;
extern const char
 *months[12];

void
f2_fun2(void)
{ . . . }

int
f2_fun3(int n)
{ . . . }

double real,
 imag;

} complex_t;

/* Defining declarations of
 global structured constant
 complex_zero and of global
 constant array of month
 names */

const complex_t complex_zero
 = {0, 0};
const char *months[12] =
 {"January", "February",
 "March", "April", "May",
 "June", "July", "August",
 "September", "October",
 "November", "December"};

int
fl_fun1(int n)
{ . . . }

double
fl_fun2(double x)
{ . . . }

char
f1_fun3(char cl, char c2)
{ double months; . . . }

 FIGURE 12.7

 Use of Variables
of Storage Class
extern

674 Chapter 12 • Programming in the Large

 TABLE 12.1 Functions in Fig. 12.7 with Global Variable Access and Reasons

 Function(s)
 Can Access Variables
of Class extern Reason

 f1_fun1 and
 f1_fun2

 complex_zero and
 months

 Their definitions follow in the same source file the
top-level defining declarations of complex_zero
and months . The functions have no parameters or
local variables by these names.

 f1_fun3 complex_zero only Its definition follows in the same source file the top-
level defining declaration of complex_zero , and
it has no parameter or local variable by this name.

 f2_fun1 none Its definition precedes the declarations that notify
the compiler of the existence of complex_zero
and months .

 f2_fun2 and
 f2_fun3

 complex_zero and
 months

 Their definitions follow in the same source file the
declarations containing keyword extern that notify
the compiler of the existence of global names
 complex_zero and months . The functions have
no parameters or local variables by these names.

 Table 12.1 shows which functions are allowed to access globals complex_zero
and months and why. We assume that any local variable declarations affecting
access to the globals are shown.

 Storage Classes static and register

 C’s remaining storage classes are static and register . Placing the static key-
word at the beginning of a local variable declaration changes the way the variable is
allocated. Let’s compare variables once and many in the following function fragment:

 int
 fun_frag(int n)
 {
 static int once = 0;
 int many = 0;
 . . .
 }

 As a variable of storage class auto , many is allocated space on the stack each time
 fun_frag is called; for every call many is initialized to zero. Every time fun_frag
returns, many is deallocated. In contrast, static variable once is allocated and ini-
tialized one time, prior to program execution. It remains allocated until the entire
program terminates. If fun_frag changes the value of once , that value is retained
between calls to fun_frag .

 static storage class
of variables allocated
only once, prior to
program execution

12.5 • Modifying Functions for Inclusion in a Library 675

 Using a static local variable to retain data from one call to a function to the
next is usually a poor programming practice. If the function’s behavior depends on
these data, then the function is no longer performing a transformation based solely
on its input arguments, and the complexity of its purpose from the program reader’s
perspective is vastly increased.

 One situation in which the use of a static local variable does not degrade
readability is in function main , since a return from this function terminates the pro-
gram. On a system that allocates a relatively small run-time stack, one might wish
to declare large arrays as static variables in function main . Then these arrays will
not use up stack space.

 The final storage class, register , is closely related to storage class auto and
may be applied only to local variables and parameters. In fact, C implementa-
tions are not required to treat register variables differently from auto variables.
Designating that a variable is of storage class register simply alerts the compiler
to the fact that this memory cell will be referenced more often than most. By
choosing storage class register , the programmer indicates an expectation that the
program would run faster if a register, a special high-speed memory location inside
the central processor, could be used for the variable. Variables serving as subscripts
for large arrays are good candidates for this storage class. Here are declarations of
variables in storage classes static and register :

 static double matrix[50][40];
 register int row, col;

 EXERCISES FOR SECTION 12.4

 Self-Check

 Reread the program in Fig. 10.12 that converts units of measure.

 1. Identify the storage classes of the following names used in the program:

 unit_max (first parameter of load_units)
 found (in function search)
 convert
 quantity (in function main)

 2. For which one of the variables in function search would it be a good idea to
request storage class register ?

 12.5 Modifying Functions for Inclusion in a Library
 When building a personal library based on functions originally developed for use
in a specific context, usually some modifications are advisable. A library function
should be as general as possible, so all constants used should be examined to see

 register storage
class of automatic
variables that the
programmer would
like to have stored in
registers

676 Chapter 12 • Programming in the Large

whether they could be replaced by input parameters. Any restrictions on the library
function’s parameters should be carefully defined.

 In previous work, our functions have dealt with an error either by returning an
error code or by displaying an error message and returning a value that should permit
continued execution. In some situations, however, it is better not to permit continued
processing. For example, manipulation of a large two-dimensional array can be very
time-consuming, and it might be pointless to expend this time on a matrix that con-
tains erroneous data. Similarly, if our factorial function is called with a negative
number, there is no way it can return a valid answer. Therefore, we might want to
print a message and then terminate execution of a program in which this error occurs.

 C’s exit function from the standard library stdlib can be used in these types
of situations to terminate execution prematurely. Calling exit with the argument 1
indicates that some failure led to the exit. Using the value 0 in an exit call implies
no such failure, just as a 0 returned from function main indicates successful func-
tion completion. The exit function may also use one of the predefined constants
 EXIT_SUCCESS or EXIT_FAILURE as its return value. These constants are an option
for use in the return statement as well, providing that the standard library stdlib is
included. Figure 12.8 shows a library form of function factorial that terminates
program execution prematurely on a negative input.

 The following syntax display describes the exit function.

 FIGURE 12.8 Function factorial with Premature Exit on Negative Data

 1. /*
 2. * Computes n!
 3. * n is greater than or equal to zero -- premature exit on negative data
 4. */
 5. int
 6. factorial(int n)
 7. {
 8. int i, /* local variables */
 9. product;
 10.
 11. if (n < 0) {
 12. printf("\n***Function factorial reports ");
 13. printf("ERROR: %d! is undefined***\n", n);
 14. exit(1);
 15. } else {
 16. /* Compute the product n x (n-1) x (n-2) x . . . x 2 x 1 */
 17. product = 1;
 18. for (i = n; i > 1; --i) {
 19. product = product * i;
 20. }

(continued)

12.5 • Modifying Functions for Inclusion in a Library 677

 21. /* Return function result */
 22. return (product);
 23. }
 24. }

FIGURE 12.8 (continued)

 exit Function

 SYNTAX: exit(return_value);

 EXAMPLE: /*

 * Gets next positive number from input

 * stream. Returns EOF if end of file

 * is encountered. Exits program with error

 * message if erroneous input is encountered.

 */

 int

 get_positive(void)

 {

 int n, status

 char ch;

 for (status = scanf("%d", &n);

 status == 1 && n <= 0;

 status = scanf("%d", &n)) {}

 if (status == 0) {

 scanf("%c", &ch);

 printf("\n***Function get_positive ");

 printf("reports ERROR in data at ");

 printf(">>%c<<***\n", ch);

 exit(1);

 } else if (status == EOF) {

 return (status);

 } else {

 return (n);

 }

 }

(continued)

678 Chapter 12 • Programming in the Large

 EXERCISES FOR SECTION 12.5

 Self-Check

 1. Why should you #include the header file of a library in the library’s own
implementation file?

 12.6 Conditional Compilation
 C’s preprocessor recognizes commands that allow the user to select parts of a program
to be compiled and parts to be omitted. This ability can be helpful in a variety of situ-
ations. For example, one can build in debugging printf calls when writing a func-
tion and then include these statements in the compiled program only when they are
needed. Inclusion of header files is another activity that may need to be done condi-
tionally. For example, we might have two libraries, sp_one and sp_two, that both use a
data type and operators of a third library, sp. The header files sp_one.h and sp_two.h
would both have the directive #include "sp.h" . However, if we wanted a program to
use the facilities of both sp_one and sp_two, including both of their header files would
lead to inclusion of sp.h twice, resulting in duplicate declarations of the data type
defined in sp.h . Because C prohibits such duplicate declarations, we must be able to
prevent this situation. A third case in which conditional compilation is very helpful is
the design of a system for use on a variety of computers. Conditional compilation allows
one to compile only the code appropriate for the current computer.

 Figure 12.9 shows a recursive function containing printf calls to create a trace of
its execution. Compilation of these statements depends on the value of the condition

 defined (TRACE)

 INTERPRETATION: Execution of a call to exit causes program termination from any point in

a program. The return_value is used to indicate whether termination was brought on by some

type of failure. A return_value of 0 means normal exit. In general, the use of

 exit(0);

 should be avoided in functions other than main since placing “normal” termination of a

program in one of its function subprograms tends to diminish the readability of function

 main . The use of

 exit(1);

 should be reserved for terminating execution in cases where error recovery is not possible or

not useful.

12.6 • Conditional Compilation 679

 The defined operator evaluates to 1 if the name that is its operand is defined in the
preprocessor. Such definition is the result of using the name either in a #define
directive or in a compiler option that simulates a #define . Otherwise, the defined
operator evaluates to 0 .

 After creating functions like the one in Fig. 12.9 , one need only include the
directive

 #define TRACE

 somewhere in the source file prior to the function definition to “turn on” the
compilation of the tracing printf calls. It is not necessary to explicitly associate a
value with TRACE . Remember that, as for all preprocessor directives, the # of the
conditional compilation directives must be the first nonblank character on the line.
The defined operator exists exclusively for application in #if and #elif directives.
The #elif means “else if ” and is used when selecting among multiple alternatives,
as in Fig. 12.10 .

 FIGURE 12.9 Conditional Compilation of Tracing printf Calls

 1. /*
 2. * Computes an integer quotient (m/n) using subtraction
 3. */
 4. int
 5. quotient(int m, int n)
 6. {
 7. int ans;
 8. #if defined (TRACE)
 9. printf("Entering quotient with m = %d, n = %d\n", m, n);
 10. #endif
 11.
 12. if (n > m)
 13. ans = 0;
 14. else
 15. ans = 1 + quotient(m - n, n);
 16.
 17. #if defined (TRACE)
 18. printf("Leaving quotient(%d, %d) with result = %d\n", m, n, ans);
 19. #endif
 20.
 21. return (ans);
 22. }

680 Chapter 12 • Programming in the Large

 One approach to the coordination of included files is illustrated in Fig. 12.11 .
Each header file is constructed so as to prevent duplicate compilation of its con-
tents, regardless of the number of times the header file is included. The entire
contents of a header file are enclosed in an #if that tests whether a name based on
the header file name has been defined in a #define directive. Then the first time
the header file is included, its entire contents are passed to the compiler. Since a
 #define of the critical name is in the file, additional #include directives for the
same file will provide no code to the compiler.

 C’s #if and #elif directives are complemented by an #else directive to make
possible a full range of selective compilation constructs. An #undef directive that
cancels the preprocessor’s definition of a particular name is also available.

 FIGURE 12.10 Conditional Compilation of Tracing printf Calls

 1. /*
 2. * Computes an integer quotient (m/n) using subtraction
 3. */
 4. int
 5. quotient(int m, int n)
 6. {
 7. int ans;
 8.
 9. #if defined (TRACE_VERBOSE)
 10. printf("Entering quotient with m = %d, n = %d\n", m, n);
 11. #elif defined (TRACE_BRIEF)
 12. printf(" => quotient(%d, %d)\n", m, n);
 13. #endif
 14.
 15. if (n > m)
 16. ans = 0;
 17. else
 18. ans = 1 + quotient(m - n, n);
 19.
 20. #if defined (TRACE_VERBOSE)
 21. printf("Leaving quotient(%d, %d) with result = %d\n", m, n, ans);
 22. #elif defined (TRACE_BRIEF)
 23. printf("quotient(%d, %d) => %d\n", m, n, ans);
 24. #endif
 25.
 26. return (ans);
 27. }

12.6 • Conditional Compilation 681

 FIGURE 12.11 Header File That Protects Itself from Effects of Duplicate Inclusion

 1. /* Header file planet.h
 2. *
 3. * abstract data type planet
 4. *
 5. * Type planet_t has these components:
 6. * name, diameter, moons, orbit_time, rotation_time
 7. *
 8. * Operators:
 9. * print_planet, planet_equal, scan_planet
 10. */
 11.
 12. #if !defined (PLANET_H_INCL)
 13. #define PLANET_H_INCL
 14.
 15. #define PLANET_STRSIZ 10
 16.
 17. typedef struct { /* planet structure */
 18. char name[PLANET_STRSIZ];
 19. double diameter; /* equatorial diameter in km */
 20. int moons; /* number of moons */
 21. double orbit_time , /* years to orbit sun once */
 22. rotation_time; /* hours to complete one revolution on axis */
 23. } planet_t;
 24.
 25. /*
 26. * Displays with labels all components of a planet_t structure
 27. */
 28. extern void
 29. print_planet(planet_t pl); /* input - one planet structure */
 30.
 31. /*
 32. * Determines whether or not the components of planet_1 and planet_2
 33. * match
 34. */
 35. extern int
 36. planet_equal(planet_t planet_1, /* input - planets to */
 37. planet_t planet_2); /* compare */
 38.
 39. /*
 40. * Fills a type planet_t structure with input data. Integer returned as
 41. * function result is success/failure/EOF indicator.
 42. * 1 => successful input of planet (continued)

682 Chapter 12 • Programming in the Large

 EXERCISES FOR SECTION 12.6

 Self-Check

 1. Use conditional compilation to select an appropriate call to printf . Assume
that on a UNIX operating system, the name UNIX will be defined in the C
 preprocessor; on the VMS operating system, the name VMS will be defined.
The desired message on UNIX is

 Enter <ctrl-d> to quit.

 The desired message on VMS is

 Enter <ctrl-z> to quit.

 2. Consider the header file shown in Fig. 12.11 . Describe what happens (a) when
the preprocessor first encounters a #include "planet.h" directive and (b)
when the preprocessor encounters a second #include "planet.h" directive.

 12.7 Arguments to Function main
 Up to this point, we have always defined function main with a void parameter list.
However, as another possibility, we could use the following prototype that indicates
that main has two formal parameters: An integer and an array of pointers to strings:

 int
 main(int argc, /* input - argument count (including
 program name) */
 char *argv[]) /* input - argument vector */

 43. * 0 => error encountered
 44. * EOF => insufficient data before end of file
 45.
 46. * In case of error or EOF, value of type planet_t output argument is
 47. * undefined.
 48.
 49. */
 50. extern int
 51. scan_planet(planet_t *plnp); /* output - address of planet_t structure to
 52. fill */
 53.
 54. #endif

FIGURE 12.11 (continued)

12.7 • Arguments to Function main 683

 The way you cause your program to run varies from one operating system to
another. However, most operating systems provide some way for you to specify
values of options when you run a program. For example, on the ULTRIX operating
system, one would specify options opt1 , opt2 , and opt3 when running a program
named prog by typing the command line

 prog opt1 opt2 opt3

 The formal parameters argc and argv provide a mechanism for a C main function
to access these command line arguments . If the program prog just mentioned
were the machine code of a C program whose main function prototype had param-
eters argc and argv , then the command line

 prog opt1 opt2 opt3

 would result in these formal parameter values within main :

 argc 4 argv[0] "prog"
 [1] "opt1"
 [2] "opt2"
 [3] "opt3"
 [4] "" (empty string)

 Figure 12.12 shows a revised version of our program from Chapter 11 to make a
backup copy of a text file. Rather than prompting the user for the names of the file
to copy and the file to be the backup, the new version expects the user to enter this

 command line
arguments options
specified in the
statement that activates
a program

 FIGURE 12.12 File Backup Using Arguments to Function main

 1. /*
 2. * Makes a backup of the file whose name is the first command line argument.
 3. * The second command line argument is the name of the new file.
 4. */
 5. #include <stdio.h>
 6. #include <stdlib.h>
 7.
 8. int
 9. main(int argc, /* input - argument count (including program name) */
 10. char *argv[]) /* input - argument vector */
 11. {
 12. FILE *inp, /* file pointers for input */
 13. *outp; /* and backup files */
 14. char ch; /* one character of input file */
 15.
 16. /* Verify argument count */
 17. if (argc >= 3) {

(continued)

684 Chapter 12 • Programming in the Large

information on the command line. For example, if the program is named backup
and the user activates it by typing

 backup old.txt new.txt

 the formal parameters of main will have these values:

 argc 3 argv[0] "backup"
 [1] "old.txt"
 [2] "new.txt"
 [3] ""

 If the program encounters any difficulty in opening either of the files named by
the user, it exits with an appropriate error message. Otherwise, it proceeds with the
copy operation.

 18.
 19. /* Open input and backup files if possible */
 20. inp = fopen(argv[1], "r");
 21. if (inp == NULL) {
 22. printf("\nCannot open file %s for input\n", argv[1]);
 23. exit(1);
 24. }
 25.
 26. outp = fopen(argv[2], "w");
 27. if (outp == NULL) {
 28. printf("\nCannot open file %s for output\n", argv[2]);
 29. exit(1);
 30. }
 31.
 32. /* Make backup copy one character at a time */
 33. for (ch = getc(inp); ch != EOF; ch = getc(inp))
 34. putc(ch, outp);
 35.
 36. /* Close files and notify user of backup completion */
 37. fclose(inp);
 38. fclose(outp);
 39. printf("\nCopied %s to %s\n", argv[1], argv[2]);
 40.
 41. } else
 42. printf("Invalid argument list: Include two file names\n");
 43. return(0);
 44. }

FIGURE 12.12 (continued)

12.8 • Defining Macros with Parameters 685

 EXERCISES FOR SECTION 12.7

 Self-Check

 1. How would you modify the program in Fig. 12.12 so that if a user typed a
command line with fewer than two file names provided, an appropriate error
message would be displayed?

 Programming

 1. Write a program that takes a single command line argument. The argument
should be the name of a text file containing integers, and the program should
sum the integers in the file. If any invalid data are encountered, the program
should terminate with an error message that includes the file name and the
invalid character.

 12.8 Defining Macros with Parameters
 We have consistently used the #define preprocessor directive we talked about in
 Chapter 2 for associating symbolic names with constant values. In Chapter 2 , we
discussed the fact that C’s preprocessor actually revises the text of the source code,
replacing each occurrence of a defined name by its meaning before turning the
code over to the compiler. In this section, we study how to define macros that have
formal parameters. The form of such a macro definition is

 #define macro_name (parameter list) macro body

 Like functions, macros allow us to give a name to a commonly used statement or
operation. Because macros are handled through textual substitution, macro calls
execute without the overhead of space allocation and deallocation on the stack that
is associated with functions. Of course, since the macro’s meaning appears in the
program at every call, the object file produced by the compiler typically requires
more memory than the same program would require if it used a function rather
than a macro.

 Figure 12.13 shows a brief program that uses a macro named LABEL_PRINT_
INT to display the value of an integer variable or expression with a label (a string).
Notice that in the directive that defines LABEL_PRINT_INT , there is no space
between the macro name and the left parenthesis of the parameter list. This detail
is critical, for if there were a space, the preprocessor would misinterpret the macro
definition and would replace every occurrence of LABEL_PRINT_INT by

 (label, num) printf("%s = %d", (label), (num))

 The process of replacing a macro call such as

 LABEL_PRINT_INT("rabbit", r)

 macro facility for
naming a commonly
used statement or
operation

686 Chapter 12 • Programming in the Large

 by a copy of the macro body with appropriate parameter substitution,

 printf("%s = %d", ("rabbit"), (r))

 is called macro expansion . When doing this replacement, the C preprocessor
matches each macro parameter name with the corresponding actual argument.
Then, in a copy of the macro body, every occurrence of a formal parameter name
is replaced by the actual argument. This modified macro body takes the place of
the macro call in the text of the program. Figure 12.14 illustrates the process of
macro expansion of the last macro call in our sample program. Notice that only the
macro name and its argument list are involved in the macro expansion process. The
semicolon at the end of the macro call line is unaffected. It would be a mistake to
include a semicolon at the end of the printf call in the macro body. If a semicolon
were placed there, the statements resulting from macro expansion of our two macro
calls would both end in two semicolons.

 Use of Parentheses in Macro Body

 You will notice that in the body of LABEL_PRINT_INT , each occurrence of a formal
parameter of the macro is enclosed in parentheses. The use of adequate parentheses

 FIGURE 12.13 Program Using a Macro with Formal Parameters

 1. /* Shows the definition and use of a macro */
 2.
 3. #include <stdio.h>
 4.
 5. #define LABEL_PRINT_INT(label, num) printf("%s = %d", (label), (num))
 6.
 7. int
 8. main(void)
 9. {
 10. int r = 5, t = 12;
 11.
 12. LABEL_PRINT_INT("rabbit", r);
 13. printf(" ");
 14. LABEL_PRINT_INT("tiger", t + 2);
 15. printf("\n");
 16.
 17. return(0);
 18. }
 19.
 20. rabbit = 5 tiger = 14

 macro expansion
process of replacing
a macro call by its
meaning

12.8 • Defining Macros with Parameters 687

in a macro’s body is essential for correct evaluation. In Fig. 12.15 , we see a program
fragment that uses a macro to compute n 2 . We show two versions of the macro defi-
nition and the different program outputs that result.

 Let’s look at the different macro expansions that occur in Versions 1 and 2.
Examination of Fig. 12.16 reveals that the incorrect results of Version 1 are a simple
consequence of the operator precedence rules.

 FIGURE 12.14 Macro Expansion of Second Macro Call of Program in Fig. 12.13

 LABEL_PRINT_INT("tiger", t + 2)

 LABEL_PRINT_INT(label, num)

 parameter matching ➝

 "tiger" t + 2

 printf("%s = %d", (label), (num))

 parameter replacement in body ➝

 printf("%s = %d", ("tiger"), (t + 2))

 result of macro expansion

 FIGURE 12.15 Macro Calls Showing Importance of Parentheses in Macro Body

 Version 1 Version 2

 #define SQUARE(n) n * n #define SQUARE(n) ((n) * (n))

 . . .
 double x = 0.5, y = 2.0;
 int n = 4, m = 12;

 printf("(%.2f + %.2f)squared = %.2f\n\n",
 x, y, SQUARE(x + y));

 printf("%d squared divided by\n", m);
 printf("%d squared is %d\n", n,
 SQUARE(m) / SQUARE(n));
 (0.5 + 2.0)squared = 3.5 (0.5 + 2.0)squared = 6.25

 12 squared divided by 12 squared divided by
 4 squared is 144 4 squared is 9

688 Chapter 12 • Programming in the Large

 To avoid the problems illustrated in Figs. 12.15 and 12.16 , use parentheses
liberally in macro bodies. Specifically, parenthesize each occurrence of a param-
eter in the macro body, and enclose the entire body in parentheses if it produces a
result value. For instance, here is a macro for finding one real root of a quadratic
equation:

 #define ROOT1(a,b,c) ((-(b)+sqrt((b)*(b)-4*(a)*(c)))/(2*(a)))

 The black parentheses are those normally required for proper evaluation of the
expression. The parentheses in color are added in accordance with our guidelines
for parenthesizing a macro definition.

 One should avoid using operators with side effects in expressions passed as
arguments in a macro call, since these expressions may be evaluated multiple times.
For example, the statement

 r = ROOT1(++n1, n2, n3); /* error: applying ++ in a macro
 argument */

 would be expanded as

 r = ((-(n2)+sqrt((n2)*(n2)-4*(++n1)*(n3)))/(2*(++n1)));

 resulting in a statement that violates the principle that the object of an operator with
a side effect should not be reused in the expression.

 We urge you to use parentheses routinely in macro bodies as described earlier,
even if you cannot conceive of any circumstance when a given set of parentheses
could matter. One needs only to work with macros a short time to realize how lim-
ited is this ability of a programmer to foresee all possible situations!

 FIGURE 12.16 Macro Expansions of Macro Calls from Fig. 12.15

 Version 1 Version 2

 SQUARE(x + y) SQUARE(x + y)
 becomes becomes
 x + y * x + y ((x + y) * (x + y))

 Problem: Multiplication done
 before addition.

 SQUARE(m) / SQUARE(n) SQUARE(m) / SQUARE(n)
 becomes becomes
 m * m / n * n ((m) * (m)) / ((n) * (n))

 Problem: Multiplication and
 division are of equal precedence;
 they are performed left to right.

12.8 • Defining Macros with Parameters 689

 We also encourage you to use all capital letters in your macro names.
Remembering that you are calling a macro rather than a function is critical in help-
ing you avoid the use of operators with side effects in your actual arguments.

 Extending a Macro Over Two or More Lines

 The preprocessor assumes that a macro definition fits on a single line unless the
program indicates otherwise. To extend a macro over multiple lines, all but the last
line of the definition must end with the backslash character \ . For example, here is
a macro that implements the header of a for statement to count from the value of
 st up to, but not including, the value of end :

 #define INDEXED_FOR(ct, st, end) \
 for ((ct) = (st); (ct) < (end); ++(ct))

 The following code fragment uses INDEXED_FOR to display the first X_MAX elements
of array x :

 INDEXED_FOR(i, 0, X_MAX)
 printf("x[%2d] = %6.2f\n", i, x[i]);

 After macro expansion, the statement will be

 for ((i) = (0); (i) < (X_MAX); ++(i))
 printf("x[%2d] = %6.2f\n", i, x[i]);

 EXERCISES FOR SECTION 12.8

 Self-Check

 1. Given these macro definitions, write the macro expansion of each statement
that follows. If the expansion seems not to be what the macro definer intended
(you may assume the macro names are meaningful), indicate how you would
correct the macro definition.

 #define DOUBLE(x) (x) + (x)
 #define DISCRIMINANT (a,b,c) ((b) * (b) - 4 * (a) * (c))
 #define PRINT_PRODUCT(x, y) \
 printf("%.2f X %.2f = %.2f\n", (x), (y), (x) * (y));

 a. y = DOUBLE(a - b)*c;
 b. y = y - DOUBLE(p);
 c. if (DISCRIMINANT(a1, b1, c1) == 0)

 r1 = -b1 / (2 * a1);
 d. PRINT_PRODUCT(a + b, a - b);

690 Chapter 12 • Programming in the Large

 Programming

 1. Define a macro named F_OF_X that would evaluate the following polynomial
for the x value passed as its argument. You may assume that the math library
has been included.

 x5 � 3x3 � 4

 2. Define a macro to display its argument preceded by a dollar sign and with two
decimal places.

 12.9 Common Programming Errors
 The most common problem in the development of large systems by teams of
programmers is a lack of agreement regarding the details of a system’s design.
If you apply the software development method presented in earlier chapters,
you can achieve a rational, stepwise division of a large problem into smaller
subproblems that correspond to individual functions. Then, you can devise
detailed descriptions of what each function is to do and what type(s) of data it
is to manipulate. Only when representatives of all teams are in full agreement
about this fundamental interface information is it wise to proceed with a sys-
tem’s implementation.

 When developing personal libraries, it is easy to forget the long-range goal of
having reusable functions in the rush of completing a current project. An unneces-
sarily restrictive assumption built into a library function can quickly negate the func-
tion’s usefulness in another context.

 Although macros provide a quick and often quite readable shorthand for the
expressions they represent, they are also fertile ground for error growth. It is easy
to slip and type a blank after the macro name in the definition of a macro with
parameters, causing the preprocessor to misinterpret the definition. Operator prec-
edence mistakes are sure to crop up unless the programmer is absolutely meticu-
lous about parenthesizing every macro body that produces a result value as well as
parenthesizing every occurrence of a macro parameter within the body. Following
a consistent naming convention for macros can save hours of unnecessary debug-
ging resulting from the programmer’s erroneous assumption that a function, not a
macro, is being called.

 In the history of computing, the inappropriate use of global variables is notori-
ous for corrupting a system’s reliability. We cannot overemphasize the importance
of maintaining visible interfaces among functions through their parameter lists. Only
functions with visible interfaces are good candidates for reuse through inclusion in
a library.

691Chapter Review

 ■ Chapter Review

 1. C’s facility for creating a personal library provides a means of encapsulating
an abstract data type.

 2. Dividing a library definition into a header file and an implementation file
 provides a natural separation of the description of what the library functions
do from how they do it.

 3. Defining a macro gives a name to a frequently used statement or operation.
 4. The exit function allows premature termination of program execution.
 5. Conditional compilation provides a means of customizing code for different

implementations and of creating library header files that protect themselves
from duplicate inclusion.

 6. Designing function main with parameters argc and argv allows the use of
command line arguments.

 7. Library functions must have meaningful names, have clearly defined
 interfaces, and be as independent as possible from globally defined
 constants.

 NEW C CONSTRUCTS

 C Construct Meaning

 Header File (with #if . . . #endif directives)

 /* somelib.h */
 #if !defined (SOMELIB_H_INCL)
 #define SOMELIB_H_INCL

 #define SOMELIB_MAX 20
 typedef struct {
 int comp;
 char s[SOMELIB_MAX];
 } some_t;

 /* Purpose of function make_some
 */
extern some_t
 make_some(int n,
 const char str[]);

 /* other extern prototypes */

 #endif

 somelib.h is a header file to be included
(#include "somelib.h") in any program
desiring to use its facilities. somelib.h uses
conditional compilation (#if … #endif) to protect
its contents from duplicate inclusion.

(continued)

692 Chapter 12 • Programming in the Large

 C Construct Meaning

 Implementation File

 /* somelib.c */
 #include "somelib.h"
 #include <string.h>

 /* Purpose of function make_some
 */
 some_t
 make_some(int n,
 const char str[])
 {
 some_t result;

 result.comp = n;
 strcpy(result.s, str);

 return (result);
 }

 /* other function definitions */

 somelib.c is the implementation file associated with
 somelib.h . Its object file must be linked to any other
program that includes somelib.h .

 Macro Definition and Call

 #define AVG(x,y) (((x) + (y)) / 2.0)
 . . .

 ans = AVG(2*a, b);

 Preprocessor will replace each call to AVG by its
macro expansion. Statement shown becomes
 ans = (((2*a) + (b)) / 2.0);

 exit Function

 /* Compute decimal equivalent of a
 * common fraction
 */
 double
 dec_equiv(int num, int denom)
 {
 if (denom == 0) {
 printf("Zero-divide: %d/%d\n",
 num, denom);
 exit(1);
 } else {
 return ((double)num /
 (double)denom);
 }
 }

 Function causes premature program termination
if called with an invalid argument.

NEW C CONSTRUCTS (continued)

(continued)

693Quick-Check Exercises

 ■ Quick-Check Exercises

 1. A system designer who is breaking down a complex problem using
__________ __________ will focus first on what a function is to do, leaving
the details of how this is accomplished for later.

 2. To use a library function, one must know the function’s __________,
__________, and __________.

 3. Functions that can be used in a variety of applications are examples of
__________ code.

 4. In C, a(n) __________ file contains information about what a library’s
 functions do. The __________ file contains the details of how these actions
are accomplished.

 5. The keyword extern in a declaration notifies the __________ that the name
declared will be known by the __________.

 6. When defining an implementation file lib1.c , why is it advantageous to
 #include "lib1.h" ?

 7. Given this definition of macro ABSDF ,

 #define ABSDF(x, y) (fabs((x) - (y)))

 show what this statement will be after macro expansion:

 if (ABSDF(a + b, c) > ABSDF(b + c, a))
 lgdiff = ABSDF(a + b, c);

 8. Where are variables of storage class auto allocated and when? When are
they deallocated?

 9. When are variables of storage class static allocated? When are they
 deallocated?

NEW C CONSTRUCTS (continued)

 C Construct Meaning

 Arguments to Function main

 int
 main(int argc, char *argv[])
 {
 if (argc == 3)
 process(argv[1], argv[2]);
 else
 printf
 ("Wrong number of options\n");
 return (0);
 }

 Function main is expecting two command line
arguments to pass to function process .

694 Chapter 12 • Programming in the Large

 10. Which of the following fragments would be followed immediately by the code
of function mangle ?

 double extern double
 mangle(double x, double y) mangle(double x, double y);

 11. When generalizing a function for inclusion in a library, named constants are
often replaced by __________.

 12. What directives could we add to header file mylib.h so that no matter how
many #include "mylib.h" directives were processed, the contents of
 mylib.h would be compiled just once?

 ■ Answers to Quick-Check Exercises

 1. procedural abstraction
 2. name, purpose, parameter list
 3. reusable
 4. header, implementation
 5. compiler, linker
 6. Any necessary macros and data types are defined in just one file, the header

file, so modification of a macro or of a data type does not require changes in
more than one place.

 7. if ((fabs((a + b) - (c))) > (fabs((b + c) - (a))))
 lgdiff = (fabs((a + b) - (c)));
 8. The variables are allocated on the stack at the time when a function is entered.

They are deallocated when the function to which they belong returns.
 9. The variables are allocated before program execution. They are deallocated at

program termination.
 10. the fragment on the left
 11. function parameters
 12. #if !defined (MYLIB_H_INCL)
 #define MYLIB_H_INCL
 . . . rest of mylib.h . . .
 #endif

 ■ Review Questions

 1. Define procedural abstraction and data abstraction .
 2. What feature of C encourages the encapsulation of data objects and their

operators?
 3. Compare the typical contents of a library header file to the contents of an

implementation file. Which of these files defines the interface between a
library and a program?

695Programming Projects

 4. How does the C compiler know whether to look for an included file in
the system directory or in the program’s directory?

 5. Compare the execution of the macro call

 MAC(a, b)

 to the execution of an analogous function call

 mac(a, b)

 Which of the following two calls is sure to be valid and why?

 mac(++a, b) or MAC(++a, b)

 6. When you write the body of a macro definition, where should you use
 parentheses?

 7. What are C’s five storage classes? What are the default storage classes
for variables declared in each of the following environments?

 declared at the top level
 declared as function parameters
 declared as local variables of a function

 8. What is the purpose of storage class register ?
 9. Discuss this statement: If a program has five functions that manipulate

an array of data values, it makes more sense to declare this array at the
program’s top level so that each function does not need to have an array
parameter.

 10. Why is the argument value 1 used much more often than the argument
value 0 in calls to the exit function?

 11. Describe the purpose of the defined operator.
 12. When function main of a C program has a non void parameter list, why is

the value of its first parameter never less than 1?

 ■ Programming Projects

 1. Create a library that defines a structure type high_precision_t to represent
a number with 20 decimal digits of precision. Include a 20-element integer
array, a single integer to represent the position of the decimal point, and an
integer or character to represent the sign. For example, the value −8.127
might be stored as

8 1 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
–1

.digits

.decpt

.sign

696 Chapter 12 • Programming in the Large

 and 0.0094328 as

9 4 3 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
–2
1

.digits

.decpt

.sign
 Your library should also define functions add_high , subtract_high , and

 multiply_high to perform simple arithmetic on high-precision structures.
Include scan_high and print_high functions to facilitate I/O.

 2. Design a library of functions to use when writing a term paper. Define a
structure type in which to record bibliographic data about a source along
with a summary of the information obtained from the source. Include
an enumerated type component representing the source category (book,
 encyclopedia, newspaper, periodical, etc.). Allow the bibliographic data
stored to vary by source type: Use a multifield union component for this
information. Include a 200-character string in which to record a summary of
the information obtained and an int component in which the user can note
the order in which the sources will be used. Define functions that allow the
user to enter a new source, to modify an existing record, to access a source
by title or author, and to mark the source as to the order in which it will be
used. Also, include functions to store and reload the source database as a
file, and to display unused sources, used sources in order of selection, and
all sources in order by title.

 3. Many operational engineering systems require complex scheduling of
 people, machines, and supplies to provide a service or produce a prod-
uct. To schedule a system, one needs to know three things: The resources
 available to the system, the resources required to provide the desired
 service, and any constraints on the resources. Many sophisticated algorithms
are available to minimize the cost or time required to provide a service.
Here we will build a small library of functions useful for solving constrained
scheduling problems.

 You are head of maintenance scheduling for Brown Bag Airlines. You
have three crews, with different qualifications as follows:

 Crew Number Skill Level Cost of Crew Per Hour

 0 1 $200

 1 2 $300

 2 3 $400

 Crew 2 is certified to do all levels of maintenance work but costs more per
hour than the other crews. Crew 1 can do maintenance work requiring skills

697Programming Projects

1 and 2 but not skill 3. Crew 0 can do maintenance work only at level 1. You
need to schedule the following maintenance:

 Aircraft ID Level of Maintenance Number of Hours

 7899 1 8

 3119 1 6

 7668 1 4

 2324 2 4

 1123 2 8

 7555 2 4

 6789 3 2

 7888 3 10

 Write the following functions and create a scheduling library from them:

 a. A function to scan and store crew data in an appropriate structure.
 b. A function to scan and store in an appropriate structure the required

maintenance data.
 c. A function that checks maintenance level required against the crew

 abilities and returns the number of the lowest-cost crew that can perform
the maintenance.

 d. A function that checks the maintenance level required against the crew
abilities and current schedule and returns the number of the qualified
crew that will be free to perform the maintenance at the earliest time. If
more than one crew satisfies the function’s constraints, the number of the
lowest-cost qualified crew is returned.

 e. A function that accumulates hours required for each crew as each mainte-
nance task is scheduled.

 Write a main program that calls these functions and any others you feel are
needed for scheduling crews to do the listed maintenance jobs. Assume that
all three crews can work at the same time and that the crews are paid only
when they work. Jobs must be done in their entirety by one crew. Develop
one algorithm to find the quickest way to get the maintenance done and
another to find the cheapest way to get the work done. How big is the differ-
ence between these two solutions in time required to complete the given list
of maintenance jobs?

 4. You are developing a personal library of functions to assist in solving monthly
installment loan problems where simple interest is charged on the unpaid bal-
ance. You will include functions based on various forms of the formula

 m =
ip

1 - (i + 1)-12y

698 Chapter 12 • Programming in the Large

 where m is the monthly payment, i is the monthly interest rate (as a decimal
fraction, not a percentage), p is the principal amount, and y is the number of
years of the loan. Your library should have facilities for determining monthly
payment (to the next whole dollar, i.e., ceil(m)) given p, i, and y, for deter-
mining the maximum principal that can be borrowed given a certain interest
rate, monthly payment, and loan term, and also for determining the maximum
annual interest rate at which a certain principal can be borrowed and repaid in
 y years with a monthly payment of m .

 In addition, define a function that will print an amortization table for a
loan by displaying in columns the payment number, the payment, the interest
paid, the principal paid, and the remaining balance. The last payment must be
calculated separately.

 5. Write a program that takes a command line argument that is the name of a
text file and creates a new text file with a heading line

 ***************** file name ********************

 and the contents of the original file with line numbers added. If the file’s
name has a period, use the part of the name before the period concatenated
with .lis as the name of the new file. Otherwise, just concatenate .lis with
the whole file name.

 Dynamic Data
Structures

 CHAPTER OBJECTIVES
 • To understand dynamic allocation and the new operator

 • To learn how to use pointers to access structs

 • To learn how to use pointers to build linked data
 structures

 • To understand how to use and implement a linked list

 • To understand how to use and implement a stack

 • To learn how to use and implement a queue

 • To understand basic concepts of binary trees

 • To learn how to use and implement a binary tree

 C H A P T E R

13

 T his chapter discusses dynamic data structures , structures that expand and
contract as a program executes. C’s facilities for creating these structures allow a
program to defer until a later time its decision regarding how much space to use in
processing a data set. A program that can procrastinate in this way is far more flexible
than a comparable program that must make this decision on space earlier. In Chapter
 7 , we studied how to store a list of data in an array that we declared as a variable.
Although we could handle lists of different lengths by only partially filling the array,
the maximum list size had to be determined before the program was compiled.

 In this chapter, we will study how the use of one dynamic memory allocation
function allows us to delay the setting of the maximum list size until the program is
already running. Using another function permits us to allocate space separately for
each list member, so the program itself never actually sets an upper bound on the
list size. Since the program can call these functions to request memory at any time,
it can use information from the input data as the basis for determining how much
space to request and what data types are to be stored in the blocks.

 When allocating memory dynamically, a program can use the space to store any
of the simple and structured data types and any of the data structures presented in
earlier chapters. In addition, it can combine separately allocated structured blocks
called nodes to form composite structures that expand and contract as the program
executes. Such composite dynamic structures are extremely flexible. For example,
it is relatively easy to add new information by creating a new node and inserting it
between two existing nodes. It is also relatively easy to delete a node.

 In this chapter, we will examine how to create and manipulate a composite data
structure called a linked list and how to use this structure in forming lists, stacks,
and queues of varying lengths.

 13.1 Pointers
 Because the creation and manipulation of dynamic data structures requires sophis-
ticated use of pointers, we will begin by reviewing the nature of pointers and their
uses discussed in earlier chapters. We saw in Chapter 6 that a pointer variable con-
tains not a data value, but rather the address of another cell containing a data value.
 Figure 13.1 illustrates the difference between pointer variable nump and integer
variable num . The direct value of variable num is the integer 3, and the direct value
of variable nump is the address of the memory cell where the 3 is stored. If we fol-
low the pointer stored in nump , we can access the value 3, which means that 3 is the
 indirect value of nump . The reference nump means the direct value of nump . When

 dynamic data
structure a structure
that can expand and
contract as a program
executes

 nodes dynamically
allocated structures
that are linked together
to form a composite
structure

13.1 • Pointers 701

we apply the indirection or “pointer-following” operator as in the reference *nump ,
we access the indirect value of nump .

 Pointers as Function Parameters

 In Chapter 6 , we studied the use of pointers as output parameters of functions. By
passing the address of a variable to a function, we give the function a means of stor-
ing one of its results in that variable. C defines the & address-of operator that gives
the programmer access to the address of any simple variable or any array element.
 Figure 13.2 shows a long division function that has two input parameters, dividend
and divisor , and two output parameters, quotientp and remainderp . Variables
 quotientp and remainderp are both pointers to integer variables, so a call to
 long_division must pass the addresses of two integer variables, as is done in the
highlighted statement of function main :

 long_division(40, 3, ", &rem);

 Pointers Representing Arrays and Strings

 In Chapters 7 and 8 , we studied how C uses pointers in its representation of array
and string variables. Consider these variable declarations:

 double nums_list[30];
 char surname[25];

 When we wish to pass either of these arrays to a function, we use the array name
with no subscript. C interprets the array name as meaning the address of the initial
array element, so a whole array is always passed to a function as a pointer. For this
reason, if we were passing the string surname to a function, the corresponding for-
mal parameter might be declared as either

 char n[]

 or

 char *n

nump num

3

Explanation ValueReference

num

nump

*nump

Direct value of num

Direct value of nump

Indirect value of nump

3

Pointer to location containing 3

3

 FIGURE 13.1

 Comparison
of Pointer and
Nonpointer
Variables

702 Chapter 13 • Dynamic Data Structures

 Pointers to Structures

 In Chapter 10 , we saw that our own structure types were handled by C in exactly
the same manner as built-in types. Specifically, we implemented structured output
parameters as pointers to structures, and an array of structures was represented as a
pointer to the first array element.

 Summary of Pointer Uses

 Table 13.1 summarizes the ways in which we have used pointers in earlier chapters.
In addition to the uses noted above, it lists the fact that when we use program-
controlled files, each file is represented as a pointer to a FILE structure.

 FIGURE 13.2 Function with Pointers as Output Parameters

 1. #include <stdio.h>
 2.
 3. void long_division(int dividend, int divisor, int *quotientp,
 4. int *remainderp);
 5.
 6. int
 7. main(void)
 8. {
 9. int quot, rem;
 10.
 11. long_division(40, 3, ", &rem);
 12. printf("40 divided by 3 yields quotient %d ", quot);
 13. printf("and remainder %d\n", rem);
 14. return (0);
 15. }
 16.
 17. /*
 18. * Performs long division of two integers, storing quotient
 19. * in variable pointed to by quotientp and remainder in
 20. * variable pointed to by remainderp
 21. */
 22. void long_division(int dividend, int divisor, int *quotientp,
 23. int *remainderp)
 24. {
 25. *quotientp = dividend / divisor;
 26. *remainderp = dividend % divisor;
 27. }

13.1 • Pointers 703

 EXERCISES FOR SECTION 13.1

 Self-Check

 1. The incomplete program below uses several pointer variables. Indicate which
of the names listed are pointers, and for each pointer note whether it is a file
pointer, an output parameter, or an array.

 TABLE 13.1 Pointer Uses Already Studied

 Use Implementation

 Function output
parameters

 1. Function formal parameter declared as a pointer type.
 2. Actual parameter in a call is the address of a variable.

 Arrays (strings) 1. Declaration of array variable shows array size.
 2. Name of array with no subscript is a pointer: It means the address of

initial array element.

 File access 1. Variable declared of type FILE * is a pointer to a structure that is to
contain access information for a file.

 2. File I/O functions such as fscanf , fprintf , fread , and fwrite
expect as arguments file pointers of type FILE * .

 a. num_list
 b. den_list
 c. i

 d. fracp
 e. inp
 f. nump

 g. denomp
 h. slash
 i. status

 #include <stdio.h>
 #define SIZE 15
 int fscan_frac(FILE *inp, int *nump, int *denomp);

 int
 main(void)
 {
 int num_list[SIZE], den_list[SIZE], i;
 FILE *fracp;

 fracp = fopen("fracfile.txt", "r");

 for (i = 0; i < SIZE; ++i)
 fscan_frac(fracp, &num_list[i], &den_list[i]);
 . . .
 }

 int
 fscan_frac(FILE *inp, int *nump, int *denomp)

704 Chapter 13 • Dynamic Data Structures

 {
 char slash;
 int status;

 status = fscanf(inp, "%d %c%d", nump, &slash, denomp);
 if (status == 3 && slash == '/')
 status = 1;
 else if (status != EOF)
 status = 0;

 return (status);
 }

 13.2 Dynamic Memory Allocation
 In this section, we meet another context in which C uses pointers—as a means of
accessing a memory block allocated in response to an explicit program request. We
have seen that declarations such as

 int *nump;
 char *letp;
 planet_t *planetp;

 allocate variables of types “pointer to int ,” “pointer to char ,” and “pointer to
 planet_t ” where planet_t is a user-defined structure type like the one we defined
in Chapter 10 . If nump , letp , and planetp are local variables of a function, then
they are allocated at the time the function block is entered, as shown in Fig. 13.3 .

 In order to allocate an integer variable, a character variable, and a structured
 planet_t variable dynamically, we call the C memory allocation function malloc ,
which resides in the stdlib library. This function requires a single argument, that is,
a number indicating the amount of memory space needed. Applying the sizeof

nump

?

letp

?

planetp

?

Function data area FIGURE 13.3

 Data Area of a
Function with
Three Pointer-Type
Local Variables

13.2 • Dynamic Memory Allocation 705

operator to the data type we plan to store in the dynamic block gives us precisely the
needed number. Thus,

 malloc(sizeof (int))

 allocates exactly enough space to hold one type int value and returns a pointer to
(the address of) the block allocated.

 Of course, when we work with pointers in C, we always deal with a “pointer to
some specific type,” rather than simply a “pointer.” Therefore, the data type (void *)
of the value returned by malloc should always be cast to the specific type we need,
such as

 nump = (int *)malloc(sizeof (int));
 letp = (char *)malloc(sizeof (char));
 planetp = (planet_t *)malloc(sizeof (planet_t));

 The result of these three assignment statements is shown in Fig. 13.4 . Notice that
the area in which the new memory blocks are allocated is called the heap . This
 storage area is separate from the stack , the region of memory in which function
data areas are allocated and reclaimed as functions are entered and exited.

 Values may be stored in the newly allocated memory using the indirection
operator (*), the same operator we used to follow pointers representing function
output parameters. The statements

 *nump = 307;
 *letp = 'Q';
 *planetp = blank_planet;

 heap region of
memory in which
function malloc
dynamically allocates
blocks of storage

 stack region of
memory in which
function data areas are
allocated and reclaimed

nump

letp

planetp

Function data area
Heap

?

?

?

?

?

?

?

 FIGURE 13.4

 Dynamic Allocation
of Variables for an
int, a char, and a
Five-Component
planet_t Structure

706 Chapter 13 • Dynamic Data Structures

 would lead to the memory snapshot in Fig. 13.5 if we assume the following declara-
tion of blank_planet :

 planet_t blank_planet = {"", 0, 0, 0, 0};

 Accessing a Component of a Dynamically

Allocated Structure

 In Chapter 10 , we saw that a component of a structure accessed through a pointer
could be referenced using a combination of the indirection (*) and direct compo-
nent selection (.) operators such as

 (*planetp).name

 We also met C’s single operator that combines the function of these two operators.
This indirect component selection operator is represented by the character sequence
 -> (a minus sign followed by a greater-than symbol). Thus, these two expressions
are equivalent.

 (*structp).component structp->component

 Either notation could be used to access a component of a dynamically allocated
structure. We will use the more concise -> .

 In Fig. 13.6 are statements that display our dynamically allocated planet
(assuming the planet_t definition in Section 10.1).

nump

letp

planetp

Function data area
Heap

307

Q

\0

0.0

0

0.0

0.0

 FIGURE 13.5

 Assignment
of Values to
Dynamically
Allocated Variables

13.2 • Dynamic Memory Allocation 707

 Dynamic Array Allocation with calloc

 We can use function malloc to allocate a single memory block of any built-in or
user-defined type. To dynamically create an array of elements of any built-in or
user-defined type, we use the contiguous allocation function from stdlib, calloc .
Function calloc takes two arguments: The number of array elements needed and
the size of one element. Function calloc initializes the array elements to zero.
 Figure 13.7 allocates and fills three arrays—an array of characters accessed through
 string1 , an array of integers accessed through array_of_nums , and an array of
planets accessed through array_of_planets . Figure 13.8 shows memory as we
reach the end of the fragment in Fig. 13.7 .

 FIGURE 13.6 Referencing Components of a Dynamically Allocated Structure

 1. printf("%s\n", planetp->name);
 2. printf(" Equatorial diameter: %.0f km\n", planetp->diameter);
 3. printf(" Number of moons: %d\n", planetp->moons);
 4. printf(" Time to complete one orbit of the sun: %.2f years\n",
 5. planetp->orbit_time);
 6. printf(" Time to complete one rotation on axis: %.4f hours\n",
 7. planetp->rotation_time);

 FIGURE 13.7 Allocation of Arrays with calloc

 1. #include <stdlib.h> /* gives access to calloc */
 2. int scan_planet(planet_t *plnp);
 3.
 4. int
 5. main(void)
 6. {
 7. char *string1;
 8. int *array_of_nums;
 9. planet_t *array_of_planets;
 10. int str_siz, num_nums, num_planets, i;
 11. printf("Enter string length and string> ");
 12. scanf("%d", &str_siz);
 13. string1 = (char *)calloc(str_siz, sizeof (char));
 14. scanf("%s", string1);
 15.
 16. printf("\nHow many numbers?> ");
 17. scanf("%d", &num_nums);

(continued)

708 Chapter 13 • Dynamic Data Structures

 Returning Cells to the Heap

 Execution of a call to the function free returns memory cells to the heap so they
can be reused later in response to calls to calloc and malloc . For example,

 free(letp);

 returns to the heap the cell whose address is in letp, that is, the cell in which we
stored a ‘Q’ (see Fig. 13.5);

 free(planetp);

 returns the entire structure pointed to by planetp.
 Often, more than one pointer points to the same memory block. For example,

the following statements result in the situation pictured in Fig. 13.9 .

 double *xp, *xcopyp;

 xp = (double *)malloc(sizeof (double));
 *xp = 49.5;
 xcopyp = xp;
 free(xp);
 . . .

 18. array_of_nums = (int *)calloc(num_nums, sizeof (int));
 19. array_of_nums[0] = 5;
 20. for (i = 1; i < num_nums; ++i)
 21. array_of_nums[i] = array_of_nums[i - 1] * i;
 22.
 23. printf("\nEnter number of planets and planet data> ");
 24. scanf("%d", &num_planets);
 25. array_of_planets = (planet_t *)calloc(num_planets,
 26. sizeof (planet_t));
 27. for (i = 0; i < num_planets; ++i)
 28. scan_planet(&array_of_planets[i]);
 29. . . .
 30. }

 Enter string length and string> 9 enormous

 How many numbers?> 4

 Enter number of planets and planet data> 2
 Earth 12713.5 1 1.0 24.0
 Jupiter 142800.0 4 11.9 9.925

FIGURE 13.7 (continued)

13.2 • Dynamic Memory Allocation 709

 After the call to free, the cell containing 49.5 may be allocated as part of another
structure. Pointer xcopyp should not be used to reference the cell after it is freed,
or errors can result. Make sure you have no further need for a particular memory
block before you free it.

string1

array_of_nums

array_of_planets

Function data area
Heap

e

5

E a r t h \0

1

1.0

24.0

n o r m o u s \0

5

10

30

1.428e+5

11.9

4

9.925

J u p i t e r \0

1.27135e+4

 FIGURE 13.8

 Stack and Heap
After Program
Fragment in
 Fig. 13.7

xp

xcopyp

Heap

49.5

 FIGURE 13.9

 Multiple Pointers
to a Cell in the
Heap

710 Chapter 13 • Dynamic Data Structures

 EXERCISES FOR SECTION 13.2

 Self-Check

 Consider Fig. 13.5 . Write statements to accomplish the following:

 1. Print the character accessed through letp .
 2. Scan a new value into the location whose value is currently 307 .
 3. Store the value "Uranus" in the name component of the structure.
 4. Store in nump the address of a dynamically allocated array of 12 integers,

and initialize all the array elements to zero.
 5. Store in letp the address of a 30-character dynamically allocated string

variable.

 13.3 Linked Lists
 A linked list is a sequence of nodes in which each node is linked, or connected,
to the node following it. Linked lists are like chains of children’s “pop beads,”
where each bead has a hole at one end and a plug at the other (see Fig. 13.10).
We can connect the beads in the obvious way to form a chain and easily modify
it. We can remove the color bead by disconnecting the two beads at both its
ends and reattaching this pair of beads, add a new bead by connecting it to the
bead at either end of the chain, or break the chain somewhere in the middle
(between beads A and B) and insert a new bead by connecting one end to bead
A and the other end to bead B. The following is a linked list of three nodes. In
all nodes but the last, the linkp component contains the address of the next
node in the list.

 A C \0 115

current volts linkp

D C \0 12

current volts linkp

A C \0 220

current volts linkp

 linked list a sequence
of nodes in which
each node but the last
contains the address of
the next node

A B

Pop bead Chain of pop beads

 FIGURE 13.10 Children’s Pop Beads in a Chain

13.3 • Linked Lists 711

 Structures with Pointer Components

 To construct a dynamic linked list, we will need to use nodes that have pointer com-
ponents. Because we may not know in advance how many elements will be in our
lists, we can allocate storage for each node as needed and use its pointer component
to connect it to the next node. A definition of a type appropriate for a node of the
linked list pictured earlier is

 typedef struct node_s {
 char current[3];
 int volts;
 struct node_s *linkp;
 } node_t;

 When defining a structure type in C, we have the option of including a
 structure tag such as node_s after the reserved word struct . Then the phrase
 struct node_s is an alternative name for type node_t . Here we use the type
 struct node_s * in the declaration of one component to indicate that the linkp
 component of our node points to another node of the same type. We use struct
node_s * rather than node_t * because the compiler has not yet seen the name
 node_t .

 We can allocate and initialize the data components of two nodes as follows:

 node_t *n1_p, *n2_p, *n3_p;
 n1_p = (node_t *)malloc(sizeof (node_t));
 strcpy(n1_p->current, "AC");
 n1_p->volts = 115;
 n2_p = (node_t *)malloc(sizeof (node_t));
 strcpy(n2_p->current, "DC");
 n2_p->volts = 12;

 If we then copy the pointer value of n2_p into n3_p ,

 n3_p = n2_p;

 we will have the memory values shown in Fig. 13.11 .

n2_p

n3_p

12

current volts linkp

?

n1_p

115 ?

current volts linkp FIGURE 13.11

 Multiple Pointers
to the Same
Structure

712 Chapter 13 • Dynamic Data Structures

 We can compare two pointer expressions using the equality operators == and
 != . The following conditions are all true for our node_t * variables n1_p , n2_p ,
and n3_p .

 n1_p != n2_p n1_p != n3_p n2_p == n3_p

 Connecting Nodes

 One purpose of using dynamically allocated nodes is to enable us to grow data
 structures of varying size. We accomplish this by connecting individual nodes.
If you look at the nodes allocated in the last section, you will see that their linkp
components are undefined. Because the linkp components are of type node_t * ,
they can be used to store a memory cell address. The pointer assignment
statement

 n1_p->linkp = n2_p;

 copies the address stored in n2_p into the linkp component of the node accessed
through n1_p , thereby connecting the white and light-colored nodes as pictured in
 Fig. 13.12 .

 We now have three ways to access the 12 in the volts component of the sec-
ond node: The two references that were also valid in Fig. 13.11 ,

 n2_p->volts

 and

 n3_p->volts

 as well as one through the linkp pointer just assigned:

 n1_p->linkp->volts

 In Table 13.2 , we analyze this third reference a section at a time.

n2_p

n3_p

12 ?

n1_p

115

D C \0

A C \0

current volts linkp

current volts linkp

 FIGURE 13.12

 Linking Two Nodes

13.3 • Linked Lists 713

 The linkp component of our structure with three access paths is still unde-
fined, so we will allocate a third node, storing its pointer in this link. Then we will
initialize the new node’s data components.

 n2_p->linkp = (node_t *)malloc(sizeof (node_t));
 strcpy(n2_p->linkp->current, "AC");
 n2_p->linkp->volts = 220;

 Now we have the three-node linked list shown in Fig. 13.13 .
 However, we still have an undefined linkp component at the end. Clearly, we

cannot continue allocating nodes indefinitely. At some point our list must end, and
we need a special value to mark the end showing that the linked list of nodes follow-
ing the current node is empty. In C, the empty list is represented by the pointer
 NULL , which we will show in our memory diagrams as a diagonal line through a
pointer variable or component. Executing the assignment

 n2_p->linkp->linkp = NULL;

 marks the end of the data structure pictured in Fig. 13.14 , a complete linked list
whose length is three. The pointer variable n1_p points to the first list element, or
 list head . Any function that knows this address in n1_p would have the ability to
access every element of the list.

 TABLE 13.2 Analyzing the Reference n1_p->linkp->volts

 Section of Reference Meaning

 n1_p->linkp Follow the pointer in n1_p to a structure and select the
 linkp component.

 linkp->volts Follow the pointer in the linkp component to another
 structure and select the volts component.

n2_p

n3_p

n1_p

115

D C \0

A C \0

220 ?

12

A C \0

current volts linkp

current volts linkp

current volts linkp

 FIGURE 13.13

 Three-Node Linked
List with Undefined
Final Pointer

 empty list a list of no
nodes; represented in
C by the pointer NULL ,
whose value is zero

 list head the first
element in a linked list

714 Chapter 13 • Dynamic Data Structures

 Advantages of Linked Lists

 A linked list is an important data structure because it can be modified easily. For
example, a new node containing DC 9 can be inserted between the nodes DC 12 and
 AC 220 by changing only one pointer value (the one from DC 12) and setting the
pointer from the new node to point to AC 220 . This means of modifying a linked list
works regardless of how many elements are in the list. The list shown in Fig. 13.15
is after the insertion; the new pointer values are shown in color.

 Similarly, it is quite easy to delete a list element. Only one pointer value within
the list must be changed, specifically, the pointer that currently points to the ele-
ment being deleted. The linked list is redrawn as is shown in Fig. 13.16 after the
node containing DC 12 is deleted by changing the pointer from the node AC 115 .
The deleted node is effectively disconnected from the list and could be returned to
the heap (if we had another pointer through which to access the node). The new list
consists of AC 115 , DC 9 , and AC 220 .

n1_p

115A C \0

12D C \0

220A C \0

current volts linkp

current volts linkp

current volts linkp FIGURE 13.14

 Three-Element
Linked List
Accessed Through
n1_p

n1_p

115A C \0

12D C \0

220A C \0

D C \0 9

current volts linkp

current volts linkpcurrent volts linkp

current volts linkp FIGURE 13.15

 Linked List After
an Insertion

13.3 • Linked Lists 715

 EXERCISES FOR SECTION 13.3

 Self-Check

 1. Here is the final linked list created in this section. What is displayed by the
code fragment that follows it?

n1_p

A C \0 115 D C \0 9 A C \0 220

 n2_p = n1_p->linkp->linkp;
 printf(" %s %s %s\n", n2_p->current,
 n1_p->linkp->current, n1_p->current);
 printf("%3d%4d%4d\n", n1_p->linkp->volts,
 n1_p->volts, n2_p->volts);

 2. Complete the given code fragment so it will create a linked list containing the
musical scale if the input is

 do re mi fa sol la ti do

 typedef struct scale_node_s {
 char note[4];
 struct scale_node_s *linkp;
 } scale_node_t;
 . . .
 scale_node_t *scalep, *prevp, *newp;
 int i;

 scalep = (scale_node_t *)malloc(sizeof (scale_node_t));
 scanf("%s", scalep->note);

n1_p

115

9 220

12A C \0 D C \0

A C \0D C \0

 FIGURE 13.16 Linked List After a Deletion

716 Chapter 13 • Dynamic Data Structures

 prevp = scalep;
 for (i = 0; i < 7; ++i) {

 newp = ___________________________;

 scanf("%s", _______________note);

 prevp->linkp = ________________________;
 prevp = newp;
 }

 ___________________________ = NULL;

 13.4 Linked List Operators
 This section and the ones that follow consider some common list-processing opera-
tions and show how to implement them using pointer variables. We assume that the
structure of each list node corresponds to type list_node_t , declared as shown.
Pointer variable pi_fracp points to the list head.

 typedef struct list_node_s {
 int digit;
 struct list_node_s *restp;
 } list_node_t;
 . . .
 {
 list_node_t *pi_fracp;

 Traversing a List

 In many list-processing operations, we must process each node in the list in
sequence; this is called traversing a list . To traverse a list, we must start at the list
head and follow the list pointers.

 One operation that we must perform on any data structure is displaying its
contents. To display the contents of a list, we traverse the list and display only the
values of the information components, not the pointer fields. Function print_list
in Fig. 13.17 displays the digit component of each node in the existing list whose list
head is passed as an input parameter (of type list_node_t *). If pi_fracp points
to the list

pi_fracp

1 4 1 5 9

 traversing a list
processing each node
in a linked list in
sequence, starting at
the list head

13.4 • Linked List Operators 717

 the function call statement

 print_list(pi_fracp);

 displays the output line

 14159

 We have chosen a linked list to store the decimal representation of the fractional
part of p because this would permit us to save many more digits of this fraction than
we could represent in an int or a double.

 We observed in Chapter 9 that problems involving varying-length lists were
well suited to recursive solutions, so we have written a recursive print_list . This
function takes a typical recursive approach: “If there’s anything in this list, I’ll be
happy to take care of the first element; but somebody else (i.e., another call to the
function) will have to deal with the rest of the list.”

 Figure 13.18 compares recursive and iterative versions of print_list .
The type of recursion we see in print_list is termed tail recursion because
the recursive call is executed as the function’s last step, if it is executed at all. Tail
recursion is relatively easy to convert to iteration. Compilers for languages specifi-
cally developed for list processing even do such conversions automatically.

 Let’s examine the header of the iterative version’s for loop. This header makes
traversing every element of a linked list as easy as a counting for loop makes
processing every element of an array.

 We want to begin by examining the linked list’s first node, so we initialize our
loop control pointer variable cur_nodep to the value of headp . We want to stay in
the loop as long as there remain nodes to process, that is, as long as cur_nodep does
not contain the NULL “end-of-list” pointer. Our loop control update effectively gets

 FIGURE 13.17 Function print_list

 1. /*
 2. * Displays the list pointed to by headp
 3. */
 4. void
 5. print_list(list_node_t *headp)
 6. {
 7. if (headp == NULL) { /* simple case - an empty list */
 8. printf("\n");
 9. } else { /* recursive step - handles first element */
 10. printf("%d", headp->digit); /* leaves rest to */
 11. print_list(headp->restp); /* recursion */
 12. }
 13. }

 tail recursion any
recursive call that is
executed as a function’s
last step

718 Chapter 13 • Dynamic Data Structures

us to the next node of the list. Figure 13.19 shows how cur_nodep might appear
before and after one such update.

 Getting an Input List

 Function get_list in Fig. 13.20 creates a linked list from a sequence of integers
entered as input. Entry of the sentinel −1 marks the end of the data. The function’s
recursive algorithm recognizes the sentinel value as an empty data list and returns
 NULL , which is automatically converted to type list_node_t * upon assignment to
 ansp . Function get_list views a nonsentinel data item as the first value in the list
it is creating, so it allocates a node and places the integer in the digit component.
The problem is that the other component, restp , should point to the linked list
constructed from the rest of the input. Like all good recursive algorithms, this one
knows when it’s time to call in an expert: It simply trusts that a function whose pur-
pose is to form a linked list from some input data will do its job as advertised and
calls get_list (i.e., itself) to find out the pointer value to store in restp .

 FIGURE 13.18 Comparison of Recursive and Iterative List Printing

 /* Displays the list pointed to by headp */
 void
 print_list(list_node_t *headp)
 { { list_node_t *cur_nodep;
 if (headp == NULL) {/* simple case */
 printf("\n"); for (cur_nodep = headp; /* start at
 } else { /* recursive step */ beginning */
 printf("%d", headp->digit); cur_nodep != NULL; /* not at
 print_list(headp->restp); end yet */
 } cur_nodep = cur_nodep->restp)
 } printf("%d", cur_nodep->digit);
 printf("\n");
 }

cur_nodep

1 6

digit restp digit restp

cur_nodep

before

after

cur_nodep = cur_nodep–>restp

...

 FIGURE 13.19

 Update of
List-Traversing
Loop Control
Variable

13.4 • Linked List Operators 719

 Figure 13.21 shows an iterative version of get_list .

 Searching a List for a Target

 Another common operation is searching for a target value in a list. A list search is
similar to an array search in that we must examine the list elements in sequence until
we find the value we are seeking or until we examine all list elements without success.
The latter is indicated by advancing past the list node whose pointer field is NULL .

 Function search in Fig. 13.22 returns a pointer to the first list node that con-
tains the target value. If the target value is missing, search returns a value of NULL .

 Avoid Following a NULL Pointer

 Observe carefully that the order of the tests in the loop repetition condition of search
is critical. If the order of the tests were reversed and if cur_nodep were NULL ,

 cur_nodep->digit != target && cur_nodep != NULL

 FIGURE 13.20 Recursive Function get_list

 1. #include <stdlib.h> /* gives access to malloc */
 2. #define SENT -1
 3. /*
 4. * Forms a linked list of an input list of integers
 5. * terminated by SENT
 6. */
 7. list_node_t *
 8. get_list(void)
 9. {
 10. int data;
 11. list_node_t *ansp;
 12.
 13. scanf("%d", &data);
 14. if (data == SENT) {
 15. ansp = NULL;
 16. } else {
 17. ansp = (list_node_t *)malloc(sizeof (list_node_t));
 18. ansp->digit = data;
 19. ansp->restp = get_list();
 20. }
 21.
 22. return (ansp);
 23. }

720 Chapter 13 • Dynamic Data Structures

 FIGURE 13.21 Iterative Function get_list

 1. /*
 2. * Forms a linked list of an input list of integers terminated by SENT
 3. */
 4. list_node_t *
 5. get_list(void)
 6. {
 7. int data;
 8. list_node_t *ansp,
 9. *to_fillp, /* pointer to last node in list whose
 10. restp component is unfilled */
 11. *newp; /* pointer to newly allocated node */
 12.
 13. /* Builds first node, if there is one */
 14. scanf("%d", &data);
 15. if (data == SENT) {
 16. ansp = NULL;
 17. } else {
 18. ansp = (list_node_t *)malloc(sizeof (list_node_t));
 19. ansp->digit = data;
 20. to_fillp = ansp;
 21.
 22. /* Continues building list by creating a node on each
 23. iteration and storing its pointer in the restp component of the
 24. node accessed through to_fillp */
 25. for (scanf("%d", &data);
 26. data != SENT;
 27. scanf("%d", &data)) {
 28. newp = (list_node_t *)malloc(sizeof (list_node_t));
 29. newp->digit = data;
 30. to_fillp->restp = newp;
 31. to_fillp = newp;
 32. }
 33.
 34. /* Stores NULL in final node's restp component */
 35. to_fillp->restp = NULL;
 36. }
 37. return (ansp);
 38. }

13.5 • Representing a Stack with a Linked List 721

 our program would attempt to follow the NULL pointer, an action that usually causes
a run-time error. Because C always does short-circuit evaluation of logical expres-
sions, we can be certain that in the original expression, there will be no attempt to
follow cur_nodep if it is found to be NULL .

 EXERCISES FOR SECTION 13.6

 Self-Check

 1. Trace the execution of function search for a list that contains the three
 numbers 4, 1, and 5. Show the value of pointer cur_nodep after the update of
each iteration of the for loop. Do this for the target values 5 , 2 , and 4 .

 Programming

 1. Write a function that finds the length of a list of list_node_t nodes.
 2. Write a recursive version of function search .

 13.5 Representing a Stack with a Linked List
 In Chapter 7 we implemented the stack data structure as an array. We saw in
 Chapter 9 how a stack could be used to track multiple parameter and local variable
values created by recursive function calls. Stacks are used extensively in computer
system software such as compilers and operating systems.

 FIGURE 13.22 Function search

 1. /*
 2. * Searches a list for a specified target value. Returns a pointer to
 3. * the first node containing target if found. Otherwise returns NULL.
 4. */
 5. list_node_t *
 6. search(list_node_t *headp, /* input - pointer to head of list */
 7. int target) /* input - value to search for */
 8. {
 9. list_node_t *cur_nodep; /* pointer to node currently being checked */
 10.
 11. for (cur_nodep = headp;
 12. cur_nodep != NULL && cur_nodep->digit != target;
 13. cur_nodep = cur_nodep->restp) {}
 14.
 15. return (cur_nodep);
 16. }

 stack a list data
structure in which
elements are inserted in
and removed from the
same end, the top of
the stack

722 Chapter 13 • Dynamic Data Structures

 We have seen that in a stack, elements are inserted (pushed) and removed
(popped) at the same end of the list, the top of the stack. Since the element that is
removed first is the one that has been waiting the shortest length of time, a stack is
called a last-in, first-out (LIFO) list.

 EXAMPLE 13.1 A stack can also be implemented as a linked list in which all insertions and deletions
are performed at the list head. List representations of two stacks are shown on the left
side of Fig. 13.23 . The nodes that hold elements of the stack are typical linked list node
structures with an information field plus a pointer field that points to the next node.

 The stack s can be represented by a structure with a single pointer component, topp ,
that points to the top of the stack. The typedef s of Fig. 13.24 define such a stack type.

 last-in, first-out (LIFO)
structure a data
structure in which the
last element stored is
the first to be removed

s.topp

Stack after insertion (push) of '/'

C + 2
C
+
2

s

Stack of three characters

s.topp

/ C + 2

/
C
+
2

s

 FIGURE 13.23

 Linked List
Representation of
Stacks

 FIGURE 13.24 Structure Types for a Linked List Implementation of a Stack

 1. typedef char stack_element_t;
 2.
 3. typedef struct stack_node_s {
 4. stack_element_t element;
 5. struct stack_node_s *restp;
 6. } stack_node_t;
 7.
 8. typedef struct {
 9. stack_node_t *topp;
 10. } stack_t;

13.5 • Representing a Stack with a Linked List 723

 Figure 13.25 shows implementations of the functions push and pop and a driver
program that first builds the stacks illustrated in Fig. 13.23 and then repeatedly
pops and prints stack elements until the stack is empty.

 FIGURE 13.25 Stack Manipulation with Functions push and pop

 1. /*
 2. * Creates and manipulates a stack of characters
 3. */
 4.
 5. #include <stdio.h>
 6. #include <stdlib.h>
 7.
 8. /* Include typedefs from Fig. 13.24 */
 9. void push(stack_t *sp, stack_element_t c);
 10. stack_element_t pop(stack_t *sp);
 11. int
 12. main(void)
 13. {
 14. stack_t s = {NULL}; /* stack of characters - initially empty */
 15.
 16. /* Builds first stack of Fig. 13.23 */
 17. push(&s, '2');
 18. push(&s, '+');
 19. push(&s, 'C');
 20.
 21. /* Completes second stack of Fig. 13.23 */
 22. push(&s, '/');
 23.
 24. /* Empties stack element by element */
 25. printf("\nEmptying stack: \n");
 26. while (s.topp != NULL) {
 27. printf("%c\n", pop(&s));
 28. }
 29.
 30. return (0);
 31. }
 32.
 33. /*
 34. * The value in c is placed on top of the stack accessed through sp
 35. * Pre: the stack is defined
 36. */

(continued)

724 Chapter 13 • Dynamic Data Structures

 37. void
 38. push(stack_t *sp, /* input/output - stack */
 39. stack_element_t c) /* input - element to add */
 40. {
 41. stack_node_t *newp; /* pointer to new stack node */
 42.
 43. /* Creates and defines new node */
 44. newp = (stack_node_t *)malloc(sizeof (stack_node_t));
 45. newp->element = c;
 46. newp->restp = sp->topp;
 47. /* Sets stack pointer to point to new node */
 48. sp->topp = newp;
 49. }
 50.
 51. /*
 52. * Removes and frees top node of stack, returning character value
 53. * stored there.
 54. * Pre: the stack is not empty
 55. */
 56. stack_element_t
 57. pop(stack_t *sp) /* input/output - stack */
 58. {
 59. stack_node_t *to_freep; /* pointer to node removed */
 60. stack_element_t ans; /* value at top of stack */
 61.
 62. to_freep = sp->topp; /* saves pointer to node being deleted */
 63. ans = to_freep->element; /* retrieves value to return */
 64. sp->topp = to_freep->restp; /* deletes top node */
 65. free(to_freep); /* deallocates space */
 66.
 67. return (ans);
 68. }
 69.
 70. Emptying stack:
 71. /
 72. C
 73. +
 74. 2

FIGURE 13.25 (continued)

 Function push allocates a new stack node, storing the pointer to the current stack in
the new node’s restp component and setting the stack top to point to the new node.

13.6 • Representing a Queue with a Linked List 725

 EXERCISES FOR SECTION 13.5

 Self-Check

 1. Draw the stack resulting from execution of the following fragment. Assume
you are working with a linked list implementation of a stack of individual
 characters, as illustrated in Fig. 13.23 .

 { stack_t stk = {NULL};
 push(&stk, 'a');
 push(&stk, 'b');
 pop(&stk);
 push(&stk, 'c');

 13.6 Representing a Queue with a Linked List
 A queue is a data abstraction that can be used, for example, to model a line of cus-
tomers waiting at a checkout counter or a stream of jobs waiting to be printed by a
printer in a computer center. In a queue, new elements are inserted at one end (the
rear of the queue), and existing elements are removed from the other end (the front
of the queue). In this way, the element that has been waiting longest is removed
first. A queue is called a first-in, first-out (FIFO) list.

 We can implement a queue using a linked list that grows and shrinks as ele-
ments are inserted and deleted. We will need to keep track of both the first node of
the linked list, which is the front of the queue, and the last node, which is the rear,
since removing a node from the queue requires access to the front and adding a
node requires access to the rear. In addition, we need to be able to find out the size
of the queue, preferably without having to traverse the entire list-counting nodes.
The typedef s in Fig. 13.26 define a queue type with the desired features.

 queue a list data
structure in which
elements are inserted at
one end and removed
from the other end

 first-in, first-out
(FIFO) structure
a data structure in
which the first element
stored is the first to be
removed

 FIGURE 13.26 Structure Types for a Linked List Implementation of a Queue

 1. /* Insert typedef for queue_element_t */
 2.
 3. typedef struct queue_node_s {
 4. queue_element_t element;
 5. struct queue_node_s *restp;
 6. } queue_node_t;
 7.
 8. typedef struct {
 9. queue_node_t *frontp,
 10. *rearp;
 11. int size;
 12. } queue_t;

726 Chapter 13 • Dynamic Data Structures

 One queue we might wish to model is a line of passengers waiting to be served
by a ticket agent. Figure 13.27 shows such a queue. The two primary operations
required to maintain a queue are addition and removal of elements. The ability to
display the queue is also helpful. Figure 13.28 shows a main function that creates
and maintains a queue of passengers based on the user’s input. The function’s main
control structure is a do-while loop to get user choices and an embedded switch
statement to process each choice.

2

q.frontp

q.rearp

q.size

2

3

B(usiness)

Watson

22

F(irstClass)E(conomy)

Brown Carson

1

 FIGURE 13.27

 A Queue of
Passengers in a
Ticket Line

 FIGURE 13.28 Creating and Maintaining a Queue

 1. /*
 2. * Creates and manipulates a queue of passengers.
 3. */
 4.
 5. int scan_passenger(queue_element_t *passp);
 6. void print_passenger(queue_element_t pass);
 7. void add_to_q(queue_t *qp, queue_element_t ele);
 8. queue_element_t remove_from_q(queue_t *qp);
 9. void display_q(queue_t q);
 10.
 11. int
 12. main(void)
 13. {
 14. queue_t pass_q = {NULL, NULL, 0}; /* passenger queue - initialized to
 15. empty state */
 16. queue_element_t next_pass, fst_pass;
 17. char choice; /* user's request */
 18.
 19. /* Processes requests */
 20. do {

(continued)

13.6 • Representing a Queue with a Linked List 727

 21. printf("Enter A(dd), R(emove), D(isplay), or Q(uit)> ");
 22. scanf(" %c", &choice);
 23. switch (toupper(choice)) {
 24. case 'A':
 25. printf("Enter passenger data> ");
 26. scan_passenger(&next_pass);
 27. add_to_q(&pass_q, next_pass);
 28. break;
 29.
 30. case 'R':
 31. if (pass_q.size > 0) {
 32. fst_pass = remove_from_q(&pass_q);
 33. printf("Passenger removed from queue: \n");
 34. print_passenger(fst_pass);
 35. } else {
 36. printf("Queue empty - noone to delete\n");
 37. }
 38. break;
 39.
 40. case 'D':
 41. if (pass_q.size > 0)
 42. display_q(pass_q);
 43. else
 44. printf("Queue is empty\n");
 45. break;
 46.
 47. case 'Q':
 48. printf("Leaving passenger queue program with %d \n",
 49. pass_q.size);
 50. printf("passengers in the queue\n");
 51. break;
 52.
 53. default:
 54. printf("Invalid choice -- try again\n");
 55. }
 56. } while (toupper(choice) != 'Q');
 57.
 58. return (0);
 59. }

FIGURE 13.28 (continued)

728 Chapter 13 • Dynamic Data Structures

 Figure 13.29 shows functions add_to_q and remove_from_q . Because queue
elements are always added at the end of the queue, add_to_q works primarily with
the pointer rearp . The pointer frontp would be affected by an addition to the
queue only if the queue were previously empty. On the other hand, elements are
always removed from the front of a queue, so remove_from_q deals exclusively with
the pointer frontp unless the element being removed is the only one remaining.
Since queue nodes are dynamically allocated, we must explicitly free their memory
when it is no longer needed. Function remove_from_q saves a copy of the frontp
pointer in the variable to_freep before placing a new value in frontp . Then it uses
 to_freep to free the space allocated for the node being removed.

 Figure 13.30 shows the addition of passenger Carson to a queue that already con-
tains passengers Brown and Watson. The “After” diagram shows the changes in color.

 Figure 13.31 shows the removal of passenger Brown from the queue.

 FIGURE 13.29 Functions add_to_q and remove_from_q

 1. /*
 2. * Adds ele at the end of queue accessed through qp
 3. * Pre: queue is not empty
 4. */
 5. void
 6. add_to_q(queue_t *qp, /* input/output - queue */
 7. queue_element_t ele) /* input - element to add */
 8. {
 9. if (qp->size == 0) { /* adds to empty queue */
 10. qp->rearp = (queue_node_t *)malloc(sizeof (queue_node_t));
 11. qp->frontp = qp->rearp;
 12. } else { /* adds to nonempty queue */
 13. qp->rearp->restp =
 14. (queue_node_t *)malloc(sizeof (queue_node_t));
 15. qp->rearp = qp->rearp->restp;
 16. }
 17. qp->rearp->element = ele; /* defines newly added node */
 18. qp->rearp->restp = NULL;
 19. ++(qp->size);
 20. }
 21.
 22. /*
 23. * Removes and frees first node of queue, returning value stored there.
 24. * Pre: queue is not empty
 25. */
 26. queue_element_t
 27. remove_from_q(queue_t *qp) /* input/output - queue */

(continued)

13.6 • Representing a Queue with a Linked List 729

 28. {
 30. queue_node_t *to_freep; /* pointer to node removed */
 31. queue_element_t ans; /* initial queue value which is to
 32. be returned */
 33. to_freep = qp->frontp; /* saves pointer to node being deleted */
 34. ans = to_freep->element; /* retrieves value to return */
 35. qp->frontp = to_freep->restp; /* deletes first node */
 36. free(to_freep); /* deallocates space */
 37. --(qp->size);
 38.
 39. if (qp->size == 0) /* queue's ONLY node was deleted */
 40. qp->rearp = NULL;
 41.
 42. return (ans);
 43. }

FIGURE 13.29 (continued)

2

q.frontp

q.rearp

q.size

2

2

B(usiness)

Watson
Before

E(conomy)

Brown

1

2

q.frontp

q.rearp

q.size 3

B(usiness)

Watson

22

F(irstClass)

After

E(conomy)

Br own Carson

1

add_to_q(&q, next_pass);

 FIGURE 13.30

 Addition of One
Passenger to a
Queue

730 Chapter 13 • Dynamic Data Structures

 EXERCISES FOR SECTION 13.6

 Self-Check

 1. What does the following segment do to the final queue q , as shown in
 Fig. 13.31 ? Draw the result.

 {
 queue_element_t one_pass = {"Johnson", 'E', 5};
 . . .

2

q.frontp

q.rearp

q.size

2

3

B(usiness)

Watson
Before

E(conomy)

Brown

1

2

q.frontp

q.rearp

q.size 2

B(usiness)

Watson

22

F(irstClass)

During
function
cal l

E(conomy)

Brown Carson

1

22

F(irstClass)

Carson

to_freep

2 2

E(conomy)

Brown

by remove_from_q

remove_fr om_q(&q);

Value returned

 FIGURE 13.31

 Removal of One
Passenger from a
Queue

13.7 • Ordered Lists 731

 q.rearp->restp =
 (queue_node_t *)malloc(sizeof (queue_node_t));
 q.rearp = q.rearp->restp;
 q.rearp->element = one_pass;
 q.rearp->restp = NULL;
 ++(q.size);

 2. Draw the queue resulting from executing

 one = remove_from_q(&pass_q);

 if pass_q is

22

E(conomy)

Jones

pass_q.frontp

pass_q.rearp

pass_q.size 1

 13.7 Ordered Lists
 In queues and stacks, the time when a node was inserted in the list determines the
position of the node in the list. The data in a node of an ordered list include a key
component that identifies the structure (for example, an ID number). An ordered
list is a list in which each node’s position is determined by the value of its key com-
ponent, so that the key values form an increasing or decreasing sequence as we
move down the list.

 Maintaining an ordered list is a problem in which linked lists are particu-
larly helpful because of the ease with which one can insert and delete nodes
without disturbing the overall list. As you might expect, we can use an ordered
list to maintain a list of integers, real numbers, or airline passengers. We could
modify the menu-driven program in Fig. 13.28 to maintain an ordered list of
passengers instead of placing the passengers in a queue. By using the passen-
ger’s name as the key component, we would keep the list in alphabetical order.
An advantage of using an ordered list is that we can delete any passenger from
the list, whereas in a queue only the passenger at the front can be removed.
Also, we can easily display the passengers in an ordered list in sequence by key
field. Programming Project 1 at the end of this chapter asks you to modify the
menu-driven program to use an ordered list of passenger data. We solve a sim-
pler problem next.

 ordered list a data
structure in which each
element’s position is
determined by the value
of its key component;
the keys form an
increasing or decreasing
sequence

732 Chapter 13 • Dynamic Data Structures

 CASE STUDY Maintaining an Ordered List of Integers

 PROBLEM

 To illustrate some common operations on ordered lists, we will write a program
that builds an ordered list of integer values by repeated insertions and then displays
the size of and values in the list. The next section of the program deletes values as
requested, redisplaying the list after each deletion.

 ANALYSIS

 The representation of an ordered list should have a component to represent the list
size so that we will not need to traverse all the nodes to count them whenever we
need the size. Let’s sketch a couple of ordered lists, and then we will specify our
data requirements.

 A nonempty ordered list would be

my_list

1234 2222 5669

3

 An empty ordered list would be

my_list

0

 DATA REQUIREMENTS

 Structure Types

 ordered_list_t
 components:
 headp /* pointer to first of a linked list
 of nodes */
 size /* number of nodes currently in list */

 list_node_t
 components:
 key /* integer used to determine node order */
 restp /* pointer to rest of linked list */

13.7 • Ordered Lists 733

 Problem Constant
 SENT -999 /* sentinel value */

 Problem Input
 int next_key /* each record key */

 Problem Output
 ordered_list_t my_list /* the ordered list */

 DESIGN

 ALGORITHM

 1. Create an empty ordered list.
 2. for each nonsentinel input key
 3. Insert the key in the ordered list.
 4. Display the ordered list and its size.
 5. for each nonsentinel input key
 6. Delete node marked by key.
 7. if deletion is successful
 8. Display the ordered list and its size.
 else
 9. Display error message.

 IMPLEMENTATION

 The type definitions and main function are shown in Fig. 13.32 . Algorithm step 1 is
accomplished through initialization of an ordered list variable at declaration. Steps
2 and 5 use typical sentinel-controlled for loops. Steps 6 and 7 are combined since
we can design function delete to return as the function value a flag indicating the
success or failure of its attempt to delete a node.

 FUNCTIONS INSERT, DELETE, AND PRINT_LIST

 Function insert is similar to our add_to_queue function in that both the size
and pointer components of our ordered list structure will require modification.
However, function insert differs from our queue functions in that we must first
search our linked list of nodes for the proper place to insert. Finding the right place
to insert is quite simple to conceptualize if we use a recursive approach. We use
recursion in our design of helper function insert_in_order , the function that
handles the linked list aspect of element insertion. Then function insert can simply
increment the list size and update the value of the list head pointer with the value
resulting from a call to insert_in_order .

734 Chapter 13 • Dynamic Data Structures

 FIGURE 13.32 Building an Ordered List through Insertions and Deletions

 1. /*
 2. * Program that builds an ordered list through insertions and then modifies
 3. * it through deletions.
 4. */
 5.
 6. typedef struct list_node_s {
 7. int key;
 8. struct list_node_s *restp;
 9. } list_node_t;
 10.
 11. typedef struct {
 12. list_node_t *headp;
 13. int size;
 14. } ordered_list_t;
 15.
 16. list_node_t *insert_in_order(list_node_t *old_listp, int new_key);
 17. void insert(ordered_list_t *listp, int key);
 18. int delete(ordered_list_t *listp, int target);
 19. void print_list(ordered_list_t list);
 20.
 21. #define SENT -999
 22.
 23. int
 24. main(void)
 25. {
 26. int next_key;
 27. ordered_list_t my_list = {NULL, 0};
 28.
 29. /* Creates list through in-order insertions */
 30. printf("Enter integer keys--end list with %d\n", SENT);
 31. for (scanf("%d", &next_key);
 32. next_key != SENT;
 33. scanf("%d", &next_key)) {
 34. insert(&my_list, next_key);
 35. }
 36.
 37. /* Displays complete list */
 38. printf("\nOrdered list before deletions:\n");
 39. print_list(my_list);

(continued)

13.7 • Ordered Lists 735

 40.
 41. /* Deletes nodes as requested */
 42. printf("\nEnter a value to delete or %d to quit> ", SENT);
 43. for (scanf("%d", &next_key);
 44. next_key != SENT;
 45. scanf("%d", &next_key)) {
 46. if (delete(&my_list, next_key)) {
 47. printf("%d deleted. New list:\n", next_key);
 48. print_list(my_list);
 49. } else {
 50. printf("No deletion. %d not found\n", next_key);
 51. }
 52. }
 53.
 54. return (0);
 55. }

 Enter integer keys--end list with -999
 5 8 4 6 -999
 Ordered list before deletions:
 size = 4
 list = 4
 5
 6
 8

 Enter a value to delete or -999 to quit> 6
 6 deleted. New list:
 size = 3
 list = 4
 5
 8

 Enter a value to delete or -999 to quit> 4
 4 deleted. New list:
 size = 2
 list = 5
 8

 Enter a value to delete or -999 to quit> -999

FIGURE 13.32 (continued)

736 Chapter 13 • Dynamic Data Structures

 Algorithm for insert_in_order
 1. if the list is empty /* simple case 1 */
 2. The new list is just a new node containing the new key and an empty

 restp component.
 else if the key to insert should precede /* simple case 2 */
 the list’s first node
 3. The new list is a new node containing the new key and with the old

list as the restp component.
 else /* recursive step */
 4. The new list starts with the first value of the old list. The restp compo-

nent is the rest of the old list with the new node correctly inserted.

 Figure 13.33 illustrates the three possibilities, and Fig. 13.34 shows the
 implementation.

old_listp

4

new_key

4

old_listp

4

new_key

4

Simple Case 2

5 8

old_listp

6

new_key

Recursive Step

5 8

6

8

8

new_listp is old_listp
with circled component
changed to

which is the result of inserting
6 in order in

Simple Case 1

new_listp

new_listp

 FIGURE 13.33

 Cases for
Recursive Function
insert_in_order

13.7 • Ordered Lists 737

 FIGURE 13.34 Function Insert and Recursive Function insert_in_order

 1. /*
 2. * Inserts a new node containing new_key in order in old_list, returning as
 3. * the function value a pointer to the first node of the new list
 4. */
 5. list_node_t *
 6. insert_in_order(list_node_t *old_listp, /* input/output */
 7. int new_key) /* input */
 8. {
 9. list_node_t *new_listp;
 10.
 11. if (old_listp == NULL) {
 12. new_listp = (list_node_t *)malloc(sizeof (list_node_t));
 13. new_listp->key = new_key;
 14. new_listp->restp = NULL;
 15. } else if (old_listp->key >= new_key) {
 16. new_listp = (list_node_t *)malloc(sizeof (list_node_t));
 17. new_listp->key = new_key;
 18. new_listp->restp = old_listp;
 19. } else {
 20. new_listp = old_listp;
 21. new_listp->restp = insert_in_order(old_listp->restp, new_key);
 22. }
 23.
 24. return (new_listp);
 25. }
 26.
 27. /*
 28. * Inserts a node in an ordered list.
 29. */
 30. void
 31. insert(ordered_list_t *listp, /* input/output - ordered list */
 32. int key) /* input */
 33. {
 34. ++(listp->size);
 35. listp->headp = insert_in_order(listp->headp, key);
 36. }

738 Chapter 13 • Dynamic Data Structures

 For function delete , we need to traverse the list until we find the node to
delete. Always on the lookout for an opportunity to reuse code previously devel-
oped and tested, we might expect that our function search from Fig. 13.22 would
provide a good starting point. Let’s consider the result of applying the algorithm of
 search ’s for loop to our longest ordered list in search of the value 6 to delete.

 for (cur_nodep = headp;
 cur_nodep != NULL && cur_nodep->digit != target;
 cur_nodep = cur_nodep->restp) {}

 At loop exit, our memory status will be

headp

4 5 6 8

cur_nodep

 This memory status is a good news/bad news situation. The good news is that
we did find the node to delete. The bad news is that we have no way of accessing
the node whose restp component will need to be changed to carry out the deletion!
Clearly, what we really need to search for is not the node we wish to delete, but
rather the node that precedes the node we wish to delete. This immediately suggests
that deleting the list’s first node is a special case, leading us to the initial algorithm
that follows.

 Initial Algorithm for delete

 1. if target is found in the list’s first node
 2. Copy headp into to_freep .
 3. Change headp to point to rest of list.
 4. Free to_freep ’s memory block.
 5. Decrement list size.
 6. Set is_deleted to 1 .
 else
 7. Initialize cur_nodep to frontp and traverse list as long as the node

cur_nodep accesses is not the last in the list, and the node after it
does not contain the target.

13.7 • Ordered Lists 739

 8. if target is found
 9. Copy the address of the node to delete into to_freep .
 10. Move the restp pointer of the node being deleted into the

 restp component of the node accessed by cur_nodep .
 11. Free to_freep ’s memory block.
 12. Decrement list size.
 13. Set is_deleted to 1 .
 else
 14. Set is_deleted to 0 .
 15. Return is_deleted.

 If we trace this algorithm on a few lists, we find that this algorithm is actually a
generic “delete from linked list” algorithm that does not take advantage of the fact
that our list is ordered. Since the list is ordered, we actually do not always need to
search all the way to the end of the list to know that our target is not present. As
soon as we encounter a key greater than the target, we can give up. To do this, we
need only to modify the last phrase of step 7 to read “and the node after it does not
contain the target or a key greater than the target.” In addition, we must add a test
that allows us to handle a deletion request for an empty list. Figure 13.35 shows an
implementation of this algorithm.

 FIGURE 13.35 Iterative Function delete

 1. /*
 2. * Deletes first node containing the target key from an ordered list.
 3. * Returns 1 if target found and deleted, 0 otherwise.
 4. */
 5. int
 6. delete(ordered_list_t *listp, /* input/output - ordered list */
 7. int target) /* input - key of node to delete */
 8. {
 9. list_node_t *to_freep, /* pointer to node to delete */
 10. *cur_nodep; /* pointer used to traverse list until it
 11. points to node preceding node to delete */
 12. int is_deleted;
 13.
 14. /* If list is empty, deletion is impossible */
 15. if (listp->size == 0) {
 16. is_deleted = 0;
 17.

(continued)

740 Chapter 13 • Dynamic Data Structures

 18. /* If target is in first node, delete it */
 19. } else if (listp->headp->key == target) {
 20. to_freep = listp->headp;
 21. listp->headp = to_freep->restp;
 22. free(to_freep);
 23. --(listp->size);
 24. is_deleted = 1;
 25.
 26. /* Otherwise, look for node before target node; delete target */
 27. } else {
 28. for (cur_nodep = listp->headp;
 29. cur_nodep->restp != NULL && cur_nodep->restp->key < target;
 30. cur_nodep = cur_nodep->restp) {}
 31. if (cur_nodep->restp != NULL && cur_nodep->restp->key == target) {
 32. to_freep = cur_nodep->restp;
 33. cur_nodep->restp = to_freep->restp;
 34. free(to_freep);
 35. --(listp->size);
 36. is_deleted = 1;
 37. } else {
 38. is_deleted = 0;
 39. }
 40. }
 41.
 42. return (is_deleted);
 43. }

FIGURE 13.35 (continued)

 By the time we handle all the special cases, our simple little search loop has
become a fairly complex algorithm. Let’s investigate to what extent writing a
recursive delete_ordered_node helper function would simplify the process. Our
 insert_in_order helper function was quite straightforward, but then we did
not have to deal with the possibility that the insertion might fail. We will pattern
 delete_ordered_node after insert_in_order with respect to its returning as
its value a pointer to the first node of the revised list. We will also need an output
parameter that is a flag indicating whether the deletion has occurred. Assuming the
existence of our helper function makes delete ’s algorithm very simple, as shown
in Fig. 13.36 .

 We can use the algorithm we developed for our iterative delete as a guide in
identifying the cases to handle in function delete_ordered_node .

13.7 • Ordered Lists 741

 FIGURE 13.36 Function delete Using Recursive Helper Function

 1. /*
 2. * Deletes first node containing the target key from an ordered list.
 3. * Returns 1 if target found and deleted, 0 otherwise.
 4. */
 5. int
 6. delete(ordered_list_t *listp, /* input/output - ordered list */
 7. int target) /* input - key of node to delete */
 8. {
 9. int is_deleted;
 10.
 11. listp->headp = delete_ordered_node(listp->headp, target,
 12. &is_deleted);
 13. if (is_deleted)
 14. --(listp->size);
 15.
 16. return (is_deleted);
 17. }

 Algorithm for delete_ordered_node

 1. if listp is NULL /* simple case 1 */
 2. Set is_deleted output parameter to 0 .
 3. Set ansp to NULL .
 else if first node contains target /* simple case 2 */
 4. Set is_deleted output parameter to 1 .
 5. Copy listp into to_freep .
 6. Set ansp to restp pointer of first node.
 7. Free memory block accessed by to_freep .
 else if key in first node > target key /* simple case 3 */
 8. Set is_deleted output parameter to 0 .
 9. Copy listp into ansp .
 else /* recursive step */
 10. Copy listp into ansp .
 11. Use a recursive call to delete target from rest of list and store result in

 restp pointer of first node.
 12. Return ansp .

 Figure 13.37 shows an implementation of this algorithm. We will leave our print_
list function as an exercise for you to do.

742 Chapter 13 • Dynamic Data Structures

 FIGURE 13.37 Recursive Helper Function delete_ordered_node

 1. /*
 2. * If possible, deletes node containing target key from list whose first
 3. * node is pointed to by listp, returning pointer to modified list and
 4. * freeing deleted node. Sets output parameter flag to indicate whether or
 5. * not deletion occurred.
 6. */
 7. list_node_t *
 8. delete_ordered_node(list_node_t *listp, /* input/output - list to modify */
 9. int target, /* input - key of node to delete */
 10. int *is_deletedp) /* output - flag indicating
 11. whether or not target node
 12. found and deleted */
 13. {
 14. list_node_t *to_freep, *ansp;
 15.
 16. /* if list is empty - can't find target node - simple case 1 */
 17. if (listp == NULL) {
 18. *is_deletedp = 0;
 19. ansp = NULL;
 20.
 21. /* if first node is the target, delete it - simple case 2 */
 22. } else if (listp->key == target) {
 23. *is_deletedp = 1;
 24. to_freep = listp;
 25. ansp = listp->restp;
 26. free(to_freep);
 27.
 28. /* if past the target value, give up - simple case 3 */
 29. } else if (listp->key > target) {
 30. *is_deletedp = 0;
 31. ansp = listp;
 32.
 33. /* in case target node is farther down the list, - recursive step
 34. have recursive call modify rest of list and then return list */
 35. } else {
 36. ansp = listp;
 37. ansp->restp = delete_ordered_node(listp->restp, target,
 38. is_deletedp);
 39. }
 40.
 41. return (ansp);
 42. }

13.8 • Binary Trees 743

 EXERCISES FOR SECTION 13.7

 Self-Check

 1. Compare the original call to delete_ordered_node (from function delete)

 listp->headp =
 delete_ordered_node(listp->headp, target, &is_deleted);

 and the recursive call to the same function

 ansp->restp =
 delete_ordered_node(listp->restp, target, is_deletedp);

 Why does one call apply the address-of operator to the third argument and the
other does not?

 2. Modify helper function insert_in_order so that it will not insert a duplicate
key. Use an output parameter to signal the success or failure of the insertion.

 Programming

 1. Write the print_list function called by the program in Fig. 13.32 .
 2. Write a function retrieve_node that returns a pointer to the node contain-

ing a specific key. The function should take a single ordered_list_t input
parameter. If the desired node is not found, retrieve_node should return
the NULL pointer.

 13.8 Binary Trees
 We can extend the concept of linked data structures to structures containing nodes
with more than one pointer field. One such structure is a binary tree (or tree) whose
nodes contain two pointer fields. Because one or both pointers can have the value
 NULL , each node in a binary tree can have 0, 1, or 2 successor nodes.

 Figure 13.38 shows two binary trees. For tree (a), each node stores a three-let-
ter string. The nodes on the bottom of this tree have zero successors and are called
 leaf nodes ; all other nodes have two successors. For tree (b), each node stores an
integer. The nodes containing 40 and 45 have a single successor; all other nodes
have no or two successors. A recursive definition of a binary tree is: A binary tree
is either empty (no nodes) or it consists of a node, called the root , and two disjoint
binary trees called its left subtree and right subtree , respectively.

 In the definition for binary tree, the phrase disjoint subtrees means that a node
cannot be in both a left and a right subtree of the same root node. For the trees
shown in Fig. 13.38 , the nodes containing FOX and 35 are the root nodes for each
tree. The node containing DOG is the root of the left subtree of the tree whose root

 leaf node a binary
tree node with no
successors

 root node the first
node in a binary tree

 left subtree the part
of a tree pointed to by
the left pointer of the
root node

 right subtree the
part of a tree pointed
to by the right pointer
of the root node

744 Chapter 13 • Dynamic Data Structures

is FOX ; the node containing CAT is the root of the left subtree of the tree whose root is
 DOG ; the node containing CAT is a leaf node because both its subtrees are empty trees.

 A binary tree resembles a family tree, and the relationships among its members
are described using the same terminology as for a family tree. In Fig. 13.38 the
node containing HEN is the parent of the nodes containing HAT and HOG . Similarly,
the nodes containing HAT and HOG are siblings, because they are both children of the
same parent node. The root of a tree is an ancestor of all other nodes in the tree,
and they in turn are descendants of the root node.

 For simplicity, we did not show the pointer fields in Fig. 13.38 . Be aware that
each node has two pointer fields and that the nodes in (b) containing integers 45
and 42 are stored as follows.

 42

45

 Binary Search Tree

 In the rest of this section, we focus our attention on a particular kind of binary tree
called a binary search tree—a tree structure that stores data in such a way that they
can be retrieved very efficiently. Every item stored in a binary search tree has a
unique key.

 A binary search tree is either empty or has the property that the item in its root
has a larger key than each item in its left subtree and a smaller key than each item in
its right subtree. Also, its left and right subtrees must be binary search trees.

FOX

HENDOG

CAT HOGHATELF

(a)

35

4025

15 45

42

30

(b)

 FIGURE 13.38

Binary Trees

13.8 • Binary Trees 745

 The trees in Fig. 13.38 are examples of binary search trees; each node has a
single data field that is its key. For tree (a), the string stored in every node is alpha-
betically larger than all strings in its left subtree and alphabetically smaller than all
strings in its right subtree. For tree (b), the number stored in every node is larger
than all numbers in its left subtree and smaller than all numbers in its right subtree.
Notice that this must be true for every node in a binary search tree, not just the root
node. For example, the number 40 must be smaller than both numbers stored in its
right subtree (45 , 42).

 Searching a Binary Search Tree

 Next, we explain how to search for an item in a binary search tree. To find a particu-
lar item, say e1 , we compare el ’s key to the root item’s key. If el ’s key is smaller,
we know that e1 can only be in the left subtree so we search it. If el ’s key is larger,
we search the root’s right subtree. We now write this recursive algorithm in pseu-
docode; the first two cases are simple cases.

 Algorithm for Searching a Binary Search Tree
 1. if the tree is empty

 2. The target key is not in the tree.
 else if the target key is in the root item

 3. The target key is found in the root item.
 else if the target key is smaller than the root’s key

 4. Search the left subtree.
 else

 5. Search the right subtree.

 Figure 13.39 traces the search for 42 in a binary search tree containing integer keys.
The pointer labeled Root indicates the root node whose key is being compared to
 42 at each step. The colored arrows show the search path. The search proceeds
from the top (node 35) down to the node containing 42 .

 Building a Binary Search Tree

 Before we can retrieve an item from a binary search tree, we must, of course, build
the tree. This process requires that we scan a collection of data items that is in no
particular order and insert each one individually, making sure that the expanded
tree is a binary search tree. A binary search tree builds from the root node down,
so we must store the first data item in the root node. To store each subsequent data
item, we must find the appropriate node to be its parent, attach a new node to the
parent, and then store that data item in the new node.

 When inserting an item, we must search the existing tree to find that item’s key
or to locate its parent node. If our search is successful, the item’s key is already in

746 Chapter 13 • Dynamic Data Structures

the tree, so we will not insert the item. (Duplicate keys are not allowed.) If unsuc-
cessful, the search will terminate at the parent of the item. If the item’s key is
smaller than its parent’s key, we attach a new node as the parent’s left subtree and
insert the item in this node. If the item’s key is larger than its parent’s key, we attach
a new node as the parent’s right subtree and insert the item in this node. The fol-
lowing recursive algorithm maintains the binary search tree property; the first two
cases are simple cases.

35

4025

15 45

42

30

(b)

Root
35

4025

15 45

42

30

(a)

Root

35

4025

15 45

42

30

(c)

Root

35

4025

15 45

42

30

(d)

Root

 FIGURE 13.39 Binary Tree Search for 42

13.8 • Binary Trees 747

 Algorithm for Insertion in a Binary Search Tree
 1. if the tree is empty

 2. Insert the new item in the tree’s root node.
 else if the root’s key matches the new item’s key

 3. Skip insertion—duplicate key.
 else if the new item’s key is smaller than the root’s key

 4. Insert the new item in the root’s left subtree.
 else

 5. Insert the new item in the root’s right subtree.

 Figure 13.40 builds a tree from the list of keys: 40 , 20 , 10 , 50 , 65 , 45 , 30 . The
search path followed when inserting each key is shown in color.

 The last node inserted (bottom-right diagram) contains the key 30 and is
inserted in the right subtree of node 20 . Let’s trace how this happens. Target key
 30 is smaller than 40 , so we insert 30 in the left subtree of node 40 ; this tree has 20
in its root. Target key 30 is greater than 20 , so we insert 30 in the right subtree of
node 20 , an empty tree. Because node 20 has no right subtree, we allocate a new
node and insert target 30 in it; the new node becomes the root of 20 ’s right subtree.

 Be aware that we would get a very different tree if we changed the order in which
we inserted the keys. For example, if we inserted the keys in increasing order (10 , 20 ,
 30 , . . .), each new key would be inserted in the right subtree of the previous key and
all left pointers would be NULL . The resulting tree would resemble a linked list.

40

5020

10 654530

Insert 30

40

5020

10 6545

Insert 45

40

5020

10 65

Insert 65

40

5020

10

Insert 50

40

20

10

Insert 10

40

20

Insert 20

40

Insert 40

 FIGURE 13.40 Building a Binary Search Tree

748 Chapter 13 • Dynamic Data Structures

 In Fig. 13.41 , we show an implementation of our algorithm for insertion in a
binary tree. The main function repeatedly scans integers and calls tree_insert to
insert them in a binary search tree. In this implementation we define a macro that
formalizes a standard pattern in dynamic allocation of nodes. If we are allocating a
node of type node_t , we always cast the pointer to type node_t * . Using the macro

 #define TYPED_ALLOC(type) (type *)malloc(sizeof (type))

 we could give nodep the desired value simply by writing:

 nodep = TYPED_ALLOC(node_t);

 Function main displays the resulting ordered list after each insertion by calling
function tree_inorder . Next, we study an algorithm that could be the basis of this
display function.

 FIGURE 13.41 Creating a Binary Search Tree

 1. /*
 2. * Create and display a binary search tree of integer keys.
 3. */
 4.
 5. #include <stdio.h>
 6. #include <stdlib.h>
 7.
 8. #define TYPED_ALLOC(type) (type *)malloc(sizeof (type))
 9.
 10. typedef struct tree_node_s {
 11. int key;
 12. struct tree_node_s *leftp, *rightp;
 13. } tree_node_t;
 14.
 15. tree_node_t *tree_insert(tree_node_t *rootp, int new_key);
 16. void tree_inorder(tree_node_t *rootp);
 17.
 18. int
 19. main(void)
 20. {
 21. tree_node_t *bs_treep; /* binary search tree */
 22. int data_key; /* input - keys for tree */
 23. int status; /* status of input operation */
 24.
 25. bs_treep = NULL; /* Initially, tree is empty */
 26.

(continued)

13.8 • Binary Trees 749

 27. /* As long as valid data remains, scan and insert keys,
 28. displaying tree after each insertion. */
 29. for (status = scanf("%d", &data_key);
 30. status == 1;
 31. status = scanf("%d", &data_key)) {
 32. bs_treep = tree_insert(bs_treep, data_key);
 33. printf("Tree after insertion of %d:\n", data_key);
 34. tree_inorder(bs_treep);
 35. }
 36.
 37. if (status == 0) {
 38. printf("Invalid data >>%c\n", getchar());
 39. } else {
 40. printf("Final binary search tree:\n");
 41. tree_inorder(bs_treep);
 42. }
 43.
 44. return (0);
 45. }
 46.
 47. /*
 48. * Insert a new key in a binary search tree. If key is a duplicate,
 49. * there is no insertion.
 50. * Pre: rootp points to the root node of a binary search tree
 51. * Post: Tree returned includes new key and retains binary
 52. * search tree properties.
 53. */
 54. tree_node_t *
 55. tree_insert(tree_node_t *rootp, /* input/output - root node of
 56. binary search tree */
 57. int new_key) /* input - key to insert */
 58. {
 59. if (rootp == NULL) { /* Simple Case 1 - Empty tree */
 60. rootp = TYPED_ALLOC(tree_node_t);
 61. rootp->key = new_key;
 62. rootp->leftp = NULL;
 63. rootp->rightp = NULL;
 64. } else if (new_key == rootp->key) { /* Simple Case 2 */
 65. /* duplicate key - no insertion */
 66. } else if (new_key < rootp->key) { /* Insert in */
 67. rootp->leftp = tree_insert /* left subtree */

FIGURE 13.41 (continued)

(continued)

750 Chapter 13 • Dynamic Data Structures

 Displaying a Binary Search Tree

 To display the contents of a binary search tree so that its items are listed in order by
key value, use the next recursive algorithm.

 Algorithm for Displaying a Binary Search Tree
 1. if the tree is not empty

 2. Display left subtree.
 3. Display root item.
 4. Display right subtree.

 For each node, the keys in its left subtree are displayed before the key in its root;
the keys in its right subtree are displayed after the key in its root. Because the root
key value lies between the key values in its left and right subtrees, the algorithm dis-
plays the items in order by key value as desired. Because the nodes’ data components
are displayed in order, this algorithm is also called an inorder traversal .

 Table 13.3 traces the sequence of calls generated by the display algorithm
for the last tree in Fig. 13.40 . Completing the sequence of calls for the last step
shown—“Display right subtree of node 40. ”—is left as an exercise at the end of this
section. The trace so far displays the item keys in the sequence 10 , 20 , 30 , 40 .

 68. (rootp->leftp, new_key);
 69. } else { /* Insert in right subtree */
 70. rootp->rightp = tree_insert(rootp->rightp,
 71. new_key);
 72. }
 73.
 74. return (rootp);
 75. }

FIGURE 13.41 (continued)

 inorder traversal
displaying the items in
a binary search tree in
order by key value

 TABLE 13.3 Trace of Tree Display Algorithm

 Display left subtree of node 40 .

 Display left subtree of node 20 .

 Display left subtree of node 10 .

 Tree is empty—return from displaying left subtree of node 10 .

 Display item with key 10 .

 Display right subtree of node 10 .

 Tree is empty—return from displaying right subtree of node 10 .

 Return from displaying left subtree of node 20 .
(continued)

13.8 • Binary Trees 751

 Display item with key 20 .

 Display right subtree of node 20 .

 Display left subtree of node 30 .

 Tree is empty—return from displaying left subtree of node 30 .

 Display item with key 30 .

 Display right subtree of node 30 .

 Tree is empty—return from displaying right subtree of node 30 .

 Return from displaying right subtree of node 20 .

 Return from displaying left subtree of node 40 .

 Display item with key 40 .

 Display right subtree of node 40 .

TABLE 13.3 (continued)

 Videoconferencing from
Your PC

 Videoconferencing, which was long a feature of
futuristic movies, today, is one of the most rapidly
growing sectors of the computer industry. The C
language has played a major role in making videocon-
ferencing an affordable and sought after technology.

 In 1992 Dr. Staffan Ericsson realized that it was
possible to perform all the video, audio, and com-
munications processing necessary for videoconferenc-
ing in a high-end personal computer such as an Intel
Pentium or Motorola PowerPC. This realization led
him to found Vivo Software, Inc., a company that pro-
duces standards-based software that allows personal
computers to serve as tools for visual communications.

 It was when Ericsson, Dr. Bernd Girod, and Oliver
Jones started to sort out the implementation issues
that the videoconferencing project moved from
the conceptual to the design phase. After buying a
486-based laptop computer and a copy of a highly
efficient Watcom 32-bit C compiler, Ericsson and
Girod programmed a prototype of the video compres-
sion and decompression software in about a month.

Drawing on their experience in signal processing,
they used the C language as a high-level assembly
language, getting the compiler to generate clever
sequences of machine instructions to do the com-
putations efficiently. Within a couple of months, the
design team consisted of Mary Deshon, Ted Mina,
Joseph Kluck, John Bruder, Gerry Hall, David Markun,
Ericsson, and Jones.

 The team anticipated difficulties in several areas.
First, they knew the videoconferencing protocols
required hard real-time performance and that ordinary
PCs at that time would have a difficult time delivering
this performance. Second, they knew that the video
compression would consume as much computing
power as they could dedicate to it; they were going to
have to implement this part of the system extremely
efficiently. Third, they knew this incredibly demanding
software package would have to be Windows friendly.

 To handle the need for hard real-time processing,
the team wanted to design a virtual device driver for
the Windows environment. This virtual device driver
needed to contain the software for handling the com-
munications aspects of the videoconferencing system.
With Markun’s help, the team decided to imple-
ment the driver using the C language. Because it was

 C IN FOCUS VIVO 320

752 Chapter 13 • Dynamic Data Structures

implemented in C, the team could test and debug the
25,000 lines of code quite easily.

 Throughout the development process, the C lan-
guage demonstrated its strengths as a very good
general-purpose language. It gave the team enough
control over bits and bytes to allow them to imple-
ment international standard protocols exactly, yet had
enough power and abstraction to allow large chunks
of application code to be implemented rapidly. It also
gave the programmers enough control over the gen-
eration of machine code to allow the development
of computationally demanding algorithms. Finally, it
allowed the creation of portable code. The develop-
ment team not only achieved the goals of the original

plan but also added many convenient user-interface
features (programmed in Visual C++) to the Vivo 320
product once the basic communications and video
components were working.

 Today, videoconferencing is becoming an increas-
ingly larger part of our lives. It has made possible 3G
video cell-phone roaming, the online classroom, and
has given news reporters the capacity to broadcast
real time events from even the most remote locations
of the world. Because of the success of the Vivo 320
design team and with recent developments in technol-
ogy that have made videoconferencing more afford-
able, videoconferencing is no longer restricted to the
world of science fiction and fantasy.

C IN FOCUS VIVO 320 (continued)

 EXERCISES FOR SECTION 13.8

 Self-Check

 1. Are the following trees binary search trees? Show the list of keys as they would
be displayed by an inorder traversal of each tree. If these trees were binary
search trees, what key values could be stored in the left subtree of the node
containing key 50?

40

30

25 45 60

50

55

40

15

10 20 60

50

55

 2. Complete the trace started in Table 13.3 .
 3. Show the binary search trees that would be created from the following lists

of keys. What can you say about the binary search tree formed in parts (a)
and (b)? Which of the four trees do you think would be most efficient to
search? What can you say about the binary search tree formed in part (d)?

13.9 • Common Programming Errors 753

How do you think searching it would compare to searching a linked list with
the same keys?

 a. 25 , 45 , 15 , 10 , 60 , 55 , 12
 b. 25 , 15 , 10 , 45 , 12 , 60 , 55
 c. 25 , 12 , 10 , 15 , 55 , 60 , 45
 d. 10 , 12 , 15 , 25 , 45 , 55 , 60

 4. What would be displayed by an inorder traversal of each tree in Question 3?

 Programming

 1. Write function tree_inorder that is called in Fig. 13.41 .

 13.9 Common Programming Errors
 Remember that the indirect selection operator -> is correctly used to reference a
component of a structure that is accessed through a pointer, so

 var->component

 is valid only if var is of a pointer-to-structure type.
 There are a number of run-time errors that can occur when you are traversing

linked data structures with pointers. The most common error is an attempt to follow
a NULL pointer. This error can happen easily when traversing a list in a loop whose
repetition condition does not explicitly check for the NULL . Any attempt to follow a
pointer in an undefined variable will usually cause a run-time error as well.

 Problems with heap management can also cause run-time errors. If your pro-
gram gets stuck in an infinite loop while you are creating a dynamic data structure, it
is possible for your program to consume all memory cells on the storage heap. This
situation will lead to a heap overflow or stack overflow run-time error message.

 Make sure your program does not attempt to reference a list node after the
node is returned to the heap. Also, be careful to return a storage block to the heap
before losing all pointers to it.

 Because displaying the value of a pointer variable is not very informative, it can
be difficult to debug programs that manipulate pointers. To trace the execution of
such a program, you must display an information component that uniquely identifies
a list element instead of displaying the pointer value itself.

 When you are writing driver programs to test and debug list operators, it is
often helpful to create a sample linked structure using the technique shown in
 Section 13.3 . Use a sequence of calls to malloc and temporary pointer variables to
allocate the individual nodes. Next, use assignment statements to define the data
and pointer components of the structures.

754 Chapter 13 • Dynamic Data Structures

 ■ Chapter Review
 1. Function malloc from the stdlib library can be used to allocate single ele-

ments, or nodes, of a dynamic data structure.
 2. Function calloc from stdlib dynamically allocates an array.
 3. Function free from stdlib returns memory cells to the storage heap.
 4. A linked list is constructed from nodes containing one or more information

components and a pointer component providing access to the next list ele-
ment. Linked lists can implement stacks, queues, and ordered lists.

 5. A stack is a LIFO (last-in, first-out) structure in which all insertions (push
operations) and deletions (pop operations) are done at the list head. Stacks
have many varied uses in computer science including saving parameter lists for
recursive modules and translating arithmetic expressions.

 6. A queue is a FIFO (first-in, first-out) structure in which insertions are done at
one end and deletions (removals) at the other. Queues are used to save lists of
items waiting for the same resource (e.g., a printer).

 7. A binary tree is a linked data structure in which each node has two pointer
fields leading to the node’s left and right subtrees. Each node in the tree
belongs to either the left or right subtree of an ancestor node, but it cannot be
in both subtrees of an ancestor node.

 8. A binary search tree is a binary tree in which each node’s key is greater
than all keys in its left subtree and smaller than all keys in its right subtree.

 NEW C CONSTRUCTS

 Construct Effect

 Pointer Declaration
 typedef struct node_s {
 int info;
 struct node_s *restp;
 } node_t;

 The type name node_t is defined as a synonym of the type
 struct node_s , which is a structure containing an integer
component and a component that is a pointer to another
structure of the same type.

 node_t *nodep;
 int *nums;

 nodep is a pointer variable of type pointer to node_t .
 nums is a pointer variable of type pointer to int .

 Dynamic Memory Allocation
 nodep = (node_t *)
 malloc(sizeof (node_t));
 nodep->info = 5;
 nodep->restp = NULL;

 A new structure of type node_t is allocated on the heap, and
its address is stored in nodep .
Values are stored in the new structure like this:

nodep info restp

5
(continued)

755Quick-Check Exercises

 Construct Effect

 nums = (int *)
 calloc(10, sizeof (int));

 A new 10-element array of integers is allocated on the heap,
and its starting address is stored in nums . The elements of the
new array are all set to zero.

 Memory Deallocation
 free(nodep);
 free(nums);

 The memory blocks accessed through the pointers
 nodep and nums are returned to the heap.

 Pointer Assignment
 nodep = nodep->restp; The pointer nodep is advanced to the next node in the

dynamic data structure pointed to by nodep .

 ■ Quick-Check Exercises

 1. Function ____________ allocates storage space for a single data object that
is referenced through a ____________. Function ____________ allocates
 storage space for an array of objects. Function ____________ returns the
 storage space to the ____________.

 2. When an element is deleted from a linked list, it is automatically returned to
the heap. True or false?

 3. All pointers to a node returned to the heap are automatically reset to NULL so
they cannot reference the node returned to the heap. True or false?

 4. If A, B, and C are inserted into a stack and a queue, what will be the order of
removal for the stack? For the queue?

 5. Assume the following data type definition and declaration:

 typedef struct node_s {
 int num;
 struct node_s *restp;
 } node_t;
 …
 node_t *headp, *cur_nodep;

 Write a for loop header that causes cur_nodep to point in succession to each
node of the linked list whose initial pointer is stored in headp . The loop should
exit when cur_nodep reaches the end of the list.

 6. The process just implemented in Exercise 5 is called ____________ a list.

NEW C CONSTRUCTS (continued)

756 Chapter 13 • Dynamic Data Structures

 7. If a linked list contains three nodes with values "him" , "her" , and "its" , and
 hp is a pointer to the list head, what is the effect of the following statements?
Assume the data component of node type pro_node_t is pronoun , the link
component is nextp , and np and mp are pointer variables.

 np = hp->nextp;
 strcpy(np->pronoun, "she");

 8. Answer Exercise 7 for the following code fragment:

 mp = hp->nextp;
 np = mp->nextp;
 mp->nextp = np->nextp;
 free(np);

 9. Answer Exercise 7 for the following code fragment:

 np = hp;
 hp = (pro_node_t *)malloc(sizeof (pro_node_t));
 strcpy(hp->pronoun, "his");
 hp->nextp = np;

 10. Write a for loop that would place ones in the even-numbered elements of the
following dynamically allocated array.

 nums_arr = (int *)calloc(20, sizeof (int));

 11. If a binary search tree has an inorder traversal of 1 , 2 , 3 , 4 , 5 , 6 , and the root
node contains 3 and has 5 as the root of its right subtree, what do we know
about the order in which numbers were inserted in this tree?

 12. What is the relationship between the keys of the left child, the right child, and
their parent in a binary search tree? Between the right child and the parent?
Between a parent and all descendants in its left subtree?

 ■ Answers to Quick-Check Exercises

 1. malloc , pointer; calloc ; free , heap
 2. false, free must be called.
 3. false
 4. For stack: C, B, A; for queue: A, B, C.
 5. for (cur_nodep = headp;
 cur_nodep != NULL;
 cur_nodep = cur_nodep->restp)

 6. traversing
 7. replaces "her" with "she"
 8. The third list element is deleted.

757Review Questions

 9. A new node with value "his" is inserted at the front of the list.
 10. for (i = 0; i < 20; i += 2)
 nums_arr[i] = 1;

 11. 3 was inserted first, and 5 was inserted before 4 and 6 .
 12. Left child < parent < right child; all descendants in left subtree < parent.

 ■ Review Questions

 1. Differentiate between dynamic and nondynamic data structures.
 2. Describe a simple linked list. Indicate how the pointers are utilized to estab-

lish a link between nodes. Also, indicate any other variables that would be
needed to reference the linked list.

 3. Give the missing type definitions and variable declarations and show the effect
of each of the following statements. What does each do?

 wp = (word_node_t *)malloc(sizeof (word_node_t));
 strcpy(wp->word, "ABC");
 wp->next = (word_node_t *)malloc(sizeof (word_node_t));
 qp = wp->next;
 strcpy(qp->word, "abc");
 qp->next = NULL;

 Assume the following type definitions and variable declarations for
Questions 4–9.

 typedef struct name_node_s {
 char name[11];
 struct name_node_s *restp;
 } name_node_t;

 typedef struct {
 name_node_t *headp;
 int size;
 } name_list_t;
 . . .
 {
 name_list_t list;
 name_node_t *np, *qp;

 4. Write a code fragment that places the names Washington, Roosevelt, and
Kennedy in successive elements of the linked list referenced by structure
 list . Define list.size accordingly.

 5. Write a code fragment to insert the name Eisenhower between Roosevelt and
Kennedy.

758 Chapter 13 • Dynamic Data Structures

 6. Write a function called delete_last that removes the last element from any
list referenced by structure list .

 7. Write a function place_first that places its second parameter value as the
first node of the linked list referenced by structure list , which is passed as
the function’s first argument.

 8. Write a function called copy_list that creates a linked list (the function
result) with new nodes that contain the same data as the linked list referenced
by the single argument of copy_list .

 9. Write a function that you could call to delete all nodes with name component
 "Smith" from a linked list referenced by structure list . The linked list and
the name to delete are the function’s two parameters.

 10. Often computers allow you to type characters ahead of the program’s use of
them. Should a stack or a queue be used to store these characters?

 11. Discuss the differences between a simple linked list and a binary tree.
Compare, for example, the number of pointer fields per node, search tech-
niques, and insertion algorithms.

 12. How can you determine whether a binary tree node is a leaf?

 ■ Programming Projects

 1. Rewrite the passenger list program whose main function is shown in Fig.
 13.28 so that it uses an ordered list (alphabetized by passenger name) rather
than a queue. Menu selection 'D' (delete) should prompt for the name of the
passenger to delete. In addition to the functions you write to manipulate the
ordered list, you will need to write functions scan_passenger and print_
passenger , which are mentioned in Fig. 13.28 .

 2. Rewrite the passenger list program referred to in Programming Project 1
using a binary search tree rather than an ordered list. When deleting a node,
simply change the number of assigned seats to zero, and leave the node in the
tree. Do not display such nodes.

 3. Create header and implementation files ("stack.h" and "stack.c") for a
data type stack_t and operators for maintaining a stack of single characters.
Use functions push and pop . Also, implement function retrieve whose
header is given here:

 /*
 * The value at the top of the stack is returned as the
 * function value. The stack is not changed.
 * Pre: s is not empty
 */
 int
 retrieve(stack_t s) /* input */

759Programming Projects

 4. A postfix expression is an expression in which each operator follows its
 operands. Table 13.4 shows several examples of postfix expressions.

 The grouping marks under each expression should help you visualize the
operands for each operator. The more familiar infix expression corresponding
to each postfix expression is also shown.

 The advantage of postfix form is that there is no need to group
 subexpressions in parentheses or to consider operator precedence. The group-
ing marks in Table 13.4 are only for our convenience and are not required.
You may have used pocket calculators that require entry of expressions in
postfix form.

 Use an adaptation of your stack library from Project 3 to write a program
that simulates the operation of a calculator by scanning an integer expres-
sion in postfix form and displaying its result. Your program should push each
integer operand onto the stack. When an operator is encountered, the top two
operands are popped, the operation is performed on its operands, and the
result is pushed back onto the stack. The final result should be the only value
remaining on the stack when the end of the expression is reached.

 5. Write and thoroughly test a program that creates a doubly linked list—a list
in which each node contains two pointers, one to the node that follows the
current node and one to the node that precedes the current one.

 71 5335

 Develop functions to insert a node at the beginning of the list, at the end, and
in front of a node with a designated key. Also, write a function to delete a node
with a designated key and functions to display the list from any point to the
end and from any point backward to the beginning.

 TABLE 13.4 Examples of Postfix Expressions

 Example Infix Expression Value

 5 6 *
5 * 6 30

4 5 6 * 3 / + 4 + ((5 * 6) / 3) 14

5 6 * 9 − (5 * 6) − 9 21

5 6 1 + * 5 * (6 + 1) 35

760 Chapter 13 • Dynamic Data Structures

 6. Write a program to monitor the flow of an item into and out of a warehouse.
The warehouse will have numerous deliveries and shipments for the item (a
widget) during the time period covered. A shipment out is billed at a profit of
50 percent over the cost of a widget. Unfortunately, each shipment received
may have a different cost associated with it. The accountants for the firm have
instituted a first-in, first-out system for filling orders. This means that the old-
est widgets are the first ones sent out to fill an order. This method of inventory
can be represented using a queue. Each data record will consist of
 S or O: Shipment received or an order to be sent
 #: Quantity received or shipped out
 Cost: Cost per widget (only for a shipment received)
 Vendor: Character string that names company sent to or received from

(up to 20 characters)
 Write the necessary functions to store the shipments received and to proc-

ess orders. The output for an order will consist of the quantity and the total
cost for all the widgets in the order.

 Hint: Each widget price is 50 percent higher than its cost. The widgets
used to fill an order may come from multiple shipments with different costs.

 7. Each student in the university may take a different number of courses, so the
registrar has decided to use a linked list to store each student’s class schedule
and to use an array of structures to represent the whole student body. A por-
tion of this data structure follows.

CIS120 HIS001

CIS120

restpid

[0] 1111

[1] 1234

[2] 1357 2 3

1 3 2 4

 The records show that the first student (array element 0 , id 1111) is taking
Section 1 of CIS120 for 3 credits and Section 2 of HIS001 for 4 credits; the
second student (array element 1 , id 1234) is not enrolled, and so on. Define
the necessary data types for creating this structure. Provide operators for
creating the original array of student ID numbers, inserting a student’s initial
class schedule, adding a course, and dropping a course. Write a menu-driven
main function to use this structure.

 8. The radix sorting algorithm uses an array of 11 queues to simulate the opera-
tion of the old card-sorting machines. The algorithm requires that one pass
be made for every digit of the numbers being sorted. For example, a list of
three-digit numbers would require three passes through the list. During the
first pass, the least significant digit (the ones digit) of each number is exam-
ined, and the number is added to the rear of the queue whose array subscript

761Programming Projects

matches the digit. After all numbers have been processed, the elements of
each queue beginning with queue[0] are copied one at a time to the end of
an 11th queue prior to beginning the next pass. Then, the process is repeated
for the next-most significant digit (the tens digit) using the order of the num-
bers in the 11th queue. Finally, the process is repeated using the hundreds
digit. After the final pass, the 11th queue will contain the numbers in ascend-
ing order. Write a program that implements the radix sort.

 9. A dequeue might be described as a double-ended queue, that is, a structure
in which elements can be inserted or removed from either end. Create a
personal library (header and implementation files) containing types and func-
tions for creating and maintaining a dequeue. Include functions for inserting
and removing elements, for displaying the dequeue, for displaying individual
nodes, and for displaying the dequeue in reverse order.

 10. Write and test a recursive function that deletes a node with a given key from a
binary search tree and returns the modified tree as its value.

This page intentionally left blank

 Multiprocessing
Using Processes
and Threads

 CHAPTER OBJECTIVES
 • To understand about processes, multitasking, and

 multiprocessing

 • To learn how to use pipes for interprocess
 communications

 • To learn how to use processes and threads to implement
multiprocessing

 • To understand the role of mutual exclusion locking
(mutex) in process synchronization

 • To simulate the producer/consumer model using multiple
processes

 C H A P T E R

14

 U p to this point, each program example in this book has been executed as a
single process that contains the resources necessary to run the program, such as
memory, stacks, file descriptors, and so on. Executing a program as a single process
is adequate if the tasks depend on each other and occur in an orderly and predict-
able manner, such as reading an input value, calculating a new program output
value, and displaying the calculated value. However, a program in which tasks do
not depend on each other or the order of tasks is unpredictable must be written in
a way that allows the tasks to run independently of one another. For example, pro-
grams that use graphical user interfaces with multiple windows for input must allow
each window to operate independently of the others even though the windows are
all part of the same program. Otherwise, it wouldn’t make much sense to have more
than one window open at a time.

 Modern operating systems allow you to write programs that can be divided into
tasks that operate independently of one another by employing a concept known as
 multitasking . In this chapter we look at two ways to write programs that accom-
plish multitasking through the use of processes and threads.

 14.1 Multitasking

 Linear Versus Parallel Programming

 Linear programming involves writing a sequence of program instructions in
which each instruction depends on the completion of the previous instruction.
Although this is a time-honored and well-worn approach to programming, there
are limitations to the linear programming approach when it is used to model the
parallel world around us. You would be very limited if you were able to accom-
plish only one task at a time and you had to complete that task before you could
start a new task. For example, suppose you sat down to read your mail and the
phone rang. In a linear world you wouldn’t be able to answer the phone until
you finished reading your mail. Now suppose that while you were reading your
mail and the phone was ringing, your neighbors dropped by and rang the door-
bell to say hello. You wouldn’t be able to open the door until you had completed
your phone call, but you couldn’t complete your phone call until you finished
reading your mail. You can see how your daily tasks would pile up one behind
another very quickly in a linear world (depicted in Figure 14.1 a). In a parallel
world you can use the concept of multitasking to accomplish all these tasks at
the same time.

 multitasking dividing
a program into
tasks that operate
independently of one
another

 linear programming
 writing a sequence of
program instructions in
which each instruction
depends on the
completion of the
previous instruction

 parallel programming
 execution of multiple
programs at the same
time

14.1 • Multitasking 14-3

 The world around us is parallel by nature. You have senses that allow you to
see, hear, smell, taste, and touch all at the same time, because the inputs for each
of these senses are processed by different parts of your brain that can operate
independently of one another. Imagine how limited your experience of the world
would be if you were able to process the inputs from only one sense at a time! In
the parallel world in which we live, you can open the door while you’re talking
on the phone and reading your mail. You can do all three things at the same time
because the human brain exhibits true parallelism: It allows your hand to open
the door at the same time your ears are listening to your phone conversation at
the same time your eyes are reading your mail. True parallelism is depicted in
 Figure 14.1 c.

 You can create the illusion of parallelism by time-sharing your brain among
the three tasks and focusing on one task at a time. For example, you could begin
by reading your mail and when the phone rings you could stop reading your mail
and answer the phone. When the doorbell rings you could ask the person on
the phone to hold on while you open the door. You could let your neighbors in
and ask them to sit down while you finish your phone call. After you finish your
phone call you could sit down to visit with your neighbors, and after your neigh-
bors leave you can finish reading your mail (depicted in Figure 14.1 b). You were
able to accomplish three tasks through the use of scheduling and prioritization
without any one task having to be completed before any other task. Welcome to
the world of multitasking!

a. Linear processing

Read mail

b. Pseudo-parallel processing

c. Parallel processing

Answer phone Answer door

Read mail

Answer phone

Answer door

Rm Rm Ap Ap Ad Ad

t0

t0

t0

t1

t1

t1

t2 t3

t3 t4 t5 t6 t2

 FIGURE 14.1

 Three Modes of
Processing

14-4 Chapter 14 • Multiprocessing Using Processes and Threads

 Multitasking as Time-Sharing

 Multitasking was originally developed as a way for many users to share a single
central processing unit (CPU) on a large, centralized computer system such as a
mainframe. It was accomplished by allocating to each system user a portion of the
available CPU time, a technique generally referred to as time-sharing . In theory,
if there were not too many users and the CPU was sufficiently fast, each user
would be unaware of the presence of the others. In practice, time-sharing rarely
worked that well.

 In the world of computing today the mainframe time-sharing environments
have for the most part been replaced by distributed computing environments that
consist of a network of PCs, one PC (and its CPU) for each user, eliminating the
need for users to share a CPU. As a result, multitasking has evolved as a way for a
single user to run many programs at the same time on a single CPU while still allow-
ing the user to maintain control over the CPU.

 Preemptive Multitasking

 In the early implementations of PC multitasking, the responsibility for sharing the
CPU was left up to the programs themselves, with each program voluntarily giving
up control of the CPU to allow other programs access to the CPU. Unfortunately,
as on any school playground, not every program was written to “play fair,” and it
took only one program “bully” to tie up the CPU, leaving the user helpless to regain
control of the PC.

 PCs have since evolved to include hardware that is capable of interrupting the
program that is running and instructing the CPU to run another program, i.e., the
operating system, to ensure that the CPU is shared equally among the other pro-
grams. This is known as preemptive multitasking because a running program can
be preempted at any time by the hardware interrupt system, allowing access to the
CPU in a way that is predictable, independent of the programs that are running,
and adjustable, based on criteria such as priority. From a programming perspec-
tive, programs running on preemptive multitasking operating systems behave as
though they are given uninterrupted access to the CPU even though the program is
being preempted at regular intervals. The only effect that preemptive multitasking
has on the program itself is that the exact time at which the program will complete
cannot be known.

 Before the development of preemptive multitasking, a CPU was able to run
only one program at a time, which meant that each program had to complete before
the next program could begin running. For example, you could run a word process-
ing program and then you could run a spreadsheet program after the word-process-
ing program had completed, but you could not run both programs at the same time.
Preemptive multitasking allows a CPU to appear as if it is running more than one

 time-sharing
 performing parallel
programming by
allocating to each
system user a portion of
the available CPU time

 preemptive
multitasking stopping
the execution of a
running program by
the hardware interrupt
system, allowing
another program to
access the CPU

14.1 • Multitasking 14-5

program at a time even though a CPU can execute only a single program instruction
at any given moment. This is known as pseudo-parallelism because even though
the programs appear to be running in parallel at the same time, they are actually
taking turns sharing the CPU. Figure 14.2 illustrates the execution of three tasks
under preemptive multitasking.

 Time Slices and Parallelism

 The operating system manages the sharing of the CPU by allocating time slices
for each program and scheduling times when each program gets a time slice. At
any given moment, the machine instructions for only one program are executing
in the CPU while the other programs wait for their allocated time slice to execute
their machine instructions. Different operating systems employ different scheduling
policy algorithms to determine the scheduling order and duration of the CPU time
slice allocated for each program. These algorithms are based on factors such as the
complexity of the program code, the priority the program has been given relative
to the other programs running, how recently the program was accessed, and so on.

 When the time slice for a given program ends, the state information for that
program is saved (so that it can continue where it left off during its next time slice),
the state information for the program scheduled to run next is restored, and the
machine instructions for that program begin executing. This is known as a context
switch . Because of the speed at which the CPU operates, context switches happen
so quickly and frequently that the CPU appears to be running all the programs at
the same time, creating the illusion of parallelism.

 pseudo-parallelism
 a situation in which
programs appear to be
running in parallel at the
same time although they
are actually taking turns
sharing the CPU

 time slice the amount
of CPU time allocated
to each program in a
parallel programming
environment

 context switch the
process of switching
from one process to
another accomplished
by saving the state
information for the
currently executing
process, which will
become idle, and
loading the saved
state information for a
currently idle process,
which will resume
execution

Task 1 Task 2 Task 3

CPU

The CPU executes Task 1 for awhile…
Then Task 2…
Then Task 3…
Then Task 1…
Then Task 2…
Then Task 3…
And so on…

 FIGURE 14.2

 Preemptive
Multitasking

14-6 Chapter 14 • Multiprocessing Using Processes and Threads

 EXAMPLE 14.1 Suppose each time slice is 50 milliseconds:

 At time 0, process P1 begins executing. At time 50, a context switch occurs, the state
information for process P1 is saved, and process P2 begins executing. At time 100,
a context switch occurs, the state information for process P2 is saved, and process
P3 begins executing. At time 150, a context switch occurs, the state information for
process P3 is saved, the process information for process P1 is restored, and process
P1 resumes executing. At time 200, a context switch occurs, the state information
for process P1 is saved, the state information for process P2 is restored, and process
P2 resumes executing. This continuous context switching occurs quickly, in this case
in 50 milliseconds, giving the illusion that processes P1, P2, and P3 are all running
at the same time. Figure 14.3 shows the two context switches that would occur in
switching from process P1 to P2 and then back to P1.

Process P1

Context switch

Process P2

Executing
Save state of P1

Idle

Idle

Executing

Executing

Idle

Reload state of P2

Context switch
Save state of P2

Reload state of P1

. . .

. . .

 FIGURE 14.3

 Context Switching
from P1 to P2
to P1

 Concurrent Programming

 Concurrent programming involves writing sets of program instructions that can
execute at the same time independently of one another. In reality, only one program
instruction can be executing at any given moment on a single CPU, but you can write
sets of program instructions that can logically execute at the same time. At scheduled
intervals, the operating system swaps one set of program instructions with another set
of program instructions, creating the illusion that each set of program instructions is
executing at the same time independently of other sets of instructions.

 concurrent
programming
 writing sets of program
instructions that can
execute at the same
time independently of
one another

 Time 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

 Process P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

14.2 • Processes 14-7

 For example, interrupting a file download in a Web browser can be written as
either one set of linear program instructions or two sets of parallel program instruc-
tions that are logically independent of one another. One set of linear program
instructions would require a loop that would download part of the file, ask the user
whether to interrupt the file download, and then wait for a response from the user.
This process would have to be repeated over and over again until the file download
was completed or the user decided to interrupt the file download, either of which
would terminate the loop. It would not be very user-friendly to have to answer the
same question over and over again to complete the file download, nor would it be
very user-friendly to have to wait until the file download completed to change one’s
mind once the download had started.

 The same problem could be solved using one set of program instructions to
download the file and another set of instructions to monitor input from the user.
Each set of program instructions is logically independent of the other and can run
at the same time. The operating system would swap one set of instructions with the
other set of instructions in the CPU at scheduled intervals, allowing a set of instruc-
tions to download the file and a set of instructions to monitor the user input to exe-
cute at what appears to be the same time. If the user decided to stop the download,
the user should not be aware that the operating system had to pause the download
program before the input monitor program could process the request. The rest of
this chapter discusses different ways to write two sets of program instructions that
appear to execute at the same time.

 EXERCISES FOR SECTION 14.1

 Self-Check

 1. What is the benefit of preemptive multitasking?
 2. What is the difference between linear programming and parallel

programming?
 3. What is the difference between time-sharing and a time slice?

 14.2 Processes
 A program consists of a set of instructions stored in a file that is read into
memory and executed. Each unique instance of an executing program is called
a process and is given a unique identifier, called a process ID , that is selected
by the operating system. The process ID can be used by one process to interact
with another process for obtaining information or communicating with the other
process.

 process ID a unique
identifier given to
a process by the
operating system

14-8 Chapter 14 • Multiprocessing Using Processes and Threads

 All the relevant information that defines the state for a given process, such as
the program counter, base memory address, contents of the CPU registers, and so
on can be stored in a data structure or structures by the operating system. When
a context switch occurs, the state information for the process to be suspended is
saved by the operating system, the state information for the process to be executed
is restored, and the restored process begins execution. As you might expect, context
switching involves a fair amount of processing overhead because the state informa-
tion must be updated and swapped each time a context switch occurs. Later on we’ll
see how to reduce the impact of context switching by using threads instead of proc-
esses in the concurrent programming model.

 Creating a Process

 A new process, referred to as a child , is created by an existing process, referred to
as a parent , by calling the fork function.

 Parent Process
 . . .
 printf ("Before fork()\n");
 pid = fork();
 printf ("After fork()\n");
 . . .

 The value returned to pid (data type pid_t) is the ID of the new process
(referred to as the child process). Data type pid_t is an int type that is used
to represent a process ID. The child process is created as a copy of the parent
process.

 Because the child process is a copy of the parent process, their program
counters have the same value, so the next statement to execute in both processes
would be the call to printf following the call to fork :

 Parent Process Child Process (Copy of Parent Process)

 printf ("Before fork()\n"); printf ("Before fork()\n");
 pid = fork(); pid = fork();
 printf ("After fork()\n"); printf ("After fork()\n");

 Keep in mind that the printf statement in a particular process doesn’t execute
until the operating system gives control to that process.

 A parent process can have more than one child process and a child process can
have its own child processes. As you can imagine, process relationships can become
quite complex, much like family relationships; an individual process can simultane-
ously be a child if it was created by another process and a parent if it created its own
child processes.

 child process a new
process that is created
by a currently executing
process (the parent
process)

 parent process the
currently executing
process that has created
one or more new child
processes

14.2 • Processes 14-9

 Because the fork function creates a new process, if it is successful it returns a
value both to the parent process and to the child process it created. It returns to the
parent process with the process ID (saved in variable pid for the parent process)
of the newly created child process and to the newly created child process with the
value 0 (saved in variable pid for the child process). If the call to the fork function
is not successful, it returns just to the parent process with a value of -1 and the child
process is not created. We will show later how to use the value returned to control
subsequent execution of the parent and the child process.

 The child process is created as a copy of the parent process with its own
address space, that is, a separate area of memory for storing all data and information
required for the process to execute. As a result, changes to variables in the child
process do not affect the values of the corresponding variables in the parent process
and vice versa since each process has its own address space. Therefore, for the frag-
ment shown earlier, after the return from the call to fork , variable pid in the par-
ent process stores the ID number of the child process, and variable pid for the child
process stores the value 0 . Since these processes are identical, the next statement to
execute in each is the same. Example 14 . 2 shows how we can test the process ID to
give the parent process and child process different behavior.

 EXAMPLE 14.2 In the following fragment, the fork function creates a new process returning the
process ID of the child process to the parent process and 0 to the child process. The
value of pid is used in the conditional statements to cause different blocks of code
to execute in each process, as explained after the fragment.

 #include <unistd.h>
 . . .
 pid_t pid;
 . . .
 pid = fork();
 . . .
 if (pid < 0)
 {
 /* Code executed in the parent process only if unsuccessful */
 printf ("Error Creating New Process\n");
 . . .
 }
 else if (pid == 0)
 {
 /* Code executed in the child process only if successful */
 printf ("Child ID %d\n", getpid());
 . . .
 }
 else
 {

14-10 Chapter 14 • Multiprocessing Using Processes and Threads

 /* Code executed in the parent process only if successful */
 printf ("Parent ID %d Child ID %d\n", getpid(), pid);
 . . .
 }
 . . .

 If a new process can not be created, the value of pid is –1 , indicating that an error
has occurred and causing the parent process to display an error message. If the
value of pid is 0 , the executing process must be the child process. The child process
displays its process ID, which is returned by the getpid function. If the value of
 pid is greater than 0 , the executing process must be the parent process. The parent
process displays its process ID, which is returned by the getpid function, and the
ID of the newly created child process (saved in pid).

 Table 14.1 summarizes the process functions covered in this section. Note that
the header unistd.h must be included to use the fork and getpid functions; the
header wait.h must be included to use the wait function (described next). The
 execl function is described in Section 14.3 .

 TABLE 14.1 Some Process Functions from unistd.h and wait.h

 Function Purpose: Example Parameters Result Type

 fork If successful, creates a new process and returns the process ID of
the new process (to the parent) and 0 (to the new process). If not
successful, returns –1 to the parent.
 pid = fork();

 None pid_t

 getpid Returns the process id of the calling process.

 pid = getpid();

 None pid_t

 wait Returns the process id of the next child process to exit. The exit
status is written into the memory location pointed to by
 status_ptr.

 pid = wait(&status_ptr);

 int* status_ptr pid_t

 execl Replaces the instructions in the process that is executing with the
instructions in the executable file specified by the path and file
arguments. The argument path specifies the full path name includ-
ing the executable file name; the argument file specifies just the
executable file name; the ellipses indicates that there may be more
arguments, but the last argument is always NULL .

 execl ("prog.exe", "prog.exe", NULL);

 const char *path

 const char *file

 . . .

 NULL

 int

14.2 • Processes 14-11

 Waiting for a Process

 A process can exit independently of its parent process or child processes. As a
result, a child process can exit before or after its parent process, but it is generally
preferred for all child processes to exit before the parent process exits. When a child
process exits before its parent process, the parent process can retrieve the exit status
of the child process to determine whether the child process exited successfully or
not. A parent process can retrieve the exit status of a child process by calling the
function wait , defined in header file wait.h .

 EXAMPLE 14.3 In the following fragment, the wait function call pauses the execution of the parent
process until the child process exits. If the child process has already exited, the wait
function call returns immediately. The wait function call should be in the code
fragment associated with the parent process.

 #include <wait.h>
 . . .
 pid_t pid;
 int status;
 . . .
 /* Pause until a child process exits */
 pid = wait (&status);
 if (pid > 0)
 printf ("pid %d status %d\n", pid, WEXITSTATUS(status));
 . . .

 The wait function returns the process ID of the child process that exited (the
function result) or 0 if there are no child processes remaining. It is saved in pid in
the fragment. The wait function also stores the exit status of the process that was
exited, including the exit code, in the function argument status (type int). The
macro call WEXITSTATUS(status) can be used to extract the exit code from the
variable status . If the calling process does not have any child processes remaining,
the exit code indicates an error.

 In the fragment, the printf function executes after the return from the wait func-
tion. If the child process that exited has an ID of 7608 and an exit status of 5, the
call to printf would display the message:

 pid 7608 status 5.

 A child process that has exited but whose parent process has not yet retrieved its
exit status is known as a zombie or defunct process . A process becomes a defunct
process because the operating system must maintain the process information, even

 zombie a child
process that has exited
but whose parent
process has not yet
retrieved its exit status

 defunct process
a child process that
has exited but whose
parent process has not
yet retrieved its exit
status

14-12 Chapter 14 • Multiprocessing Using Processes and Threads

though the process is no longer active. The exit status of a defunct process is main-
tained until the parent process retrieves its exit status or the parent process itself exits.

 Executing Another Program from a Process

 Rather than just create a new process that is the same as the parent, most often we
want to create a new process that will perform a different function. To do this, we
need to first create a new process (using fork) and then replace the instructions
associated with the new process with instructions to perform the desired operation.
For example, we can use this approach to get our program to perform a system-level
function such as getting a directory listing.

 We actually do this when we execute a system-level command. If we type in the
command ls at the system-level prompt %

 % ls

 a child process is created and the instructions for the ls command replace the
instructions in the child process that came from the parent process.

 A process can replace its instructions with different instructions using the
 execl function. If the call to execl is successful, the existing process instructions
are replaced by the new process instructions. The original process instructions no
longer exist.

 How does the process get its new instructions? The normal process is to read
these instructions from an executable file with the extension .exe. Command line
arguments can be passed into the process instructions from the execl function just
as command line arguments can be passed into the process instructions when the
file is executed from the command line.

 EXAMPLE 14.4 In the following fragment, the parent process calls fork to create a child process.
Subsequently, if the parent process is executing, pid is greater than zero, so the
 printf function executes. If the child process is executing (pid is zero), the execl
function executes, replacing the instructions with those from the executable file
 newprog.exe . Since the original instructions no longer exist, the printf statement
does not execute in the child process. Instead, the child process executes whatever
instructions happen to be in the executable file newprog.exe.

 #include <unistd.h>
 . . .
 pid_t pid;
 . . .
 pid = fork();
 if (pid == 0)
 execl ("newprog.exe", "newprog.exe", NULL);

14.2 • Processes 14-13

 printf ("Parent process after if statement\n");
 . . .

 EXAMPLE 14.5 In the following example, the execl function is not inside an if statement, so it will
be executed by the current process.

 #include <unistd.h>
 . . .
 execl ("newprog.exe", "newprog.exe", "Arg1", "Arg2", "ArgN", NULL);
 printf ("Error Reading/Executing The File newprog.exe\n");
 . . .

 The instructions in the current process are replaced by the instructions from the
executable file newprog.exe , which is assumed to be in the current working direc-
tory, with the arguments Arg1 , Arg2 , and ArgN passed to the new instructions as if
they were typed on the command line:

 % newprog.exe Arg1 Arg2 ArgN

 Because the number of command line arguments is variable, the last argument
must always be NULL in order to indicate the end of the argument list. Note that
the printf function executes only if the call to execl failed; otherwise, the call to
 printf will have been replaced by instructions from newprog.exe .

 EXERCISES FOR SECTION 14.2

 Self-Check

 1. How do you create a process?
 2. How do you wait for process to finish?
 3. How do you launch an executable program from a process?
 4. Explain the effect of the following fragment.

 #include <unistd.h>
 . . .
 pid_t pid;
 . . .
 pid = fork();
 printf ("Process pid %d\n", pid);
 . . .

14-14 Chapter 14 • Multiprocessing Using Processes and Threads

 Programming

 1. Modify the fragment in Example 14 . 2 to print whether the parent process is
executing or the child process is executing.

 14.3 Interprocess Communications and Pipes

 Pipes

 The usefulness of creating a new process from an existing process is limited without
the ability to communicate between the processes. Interprocess communications
allows the exchange of information between processes that are running on the same
CPU and that have a common ancestor. The oldest form of interprocess communi-
cations that is available is called a pipe , and it consists of two file descriptors, one
opened for reading and the other opened for writing. There are two kinds of pipes:
 half-duplex and full-duplex . A half-duplex pipe can send information only in one
direction whereas a full-duplex pipe can send information in both directions.

 Pipes are created with the pipe function, which returns two file descriptors in
an integer array, a read file descriptor and a write file descriptor. These file descrip-
tors are used to transfer information between two processes. Because not all oper-
ating systems support full-duplex pipes, the process that will be reading from the
pipe should close the write file descriptor and the process that will be writing to
the pipe should close the read file descriptor to ensure that information can be
sent in only one direction. The pipe file descriptors are closed with the file close
function. Information is written to the pipe write file descriptor with the file write
function, and information is read from the pipe read file descriptor with the file
 read function (Table 14.2).

 If processes must be able to send information in both directions, a full-duplex
pipe can be simulated with two half-duplex pipes by using one of the half-duplex
pipes for reading and the other for writing. All the examples illustrate half-duplex
pipes (Figure 14.4).

 Using Pipes

 Pipes can be used to enable a parent to communicate with its children or for
communication between sibling processes (children of the same parent proc-
ess). Example 14 . 6 illustrates how to use the functions described in Table 14.2
to open a pipe and to set up the read and write file descriptions for half-duplex
communications.

 interprocess
communications
the exchange of
information between
processes that are
running on the same
CPU and that have a
common ancestor

 pipe
a form of interprocess
communications
that consists of two
file descriptors, one
opened for reading and
the other opened for
writing

 half-duplex pipe
a pipe which can send
information only in one
direction

 full-duplex pipe
a pipe which can send
information in both
directions at the same
time

14.3 • Interprocess Communications and Pipes 14-15

 TABLE 14.2 Some Interprocess Communications Functions from unistd.h

 Function Purpose: Example Parameters Result Type

 pipe If successful, creates a new pipe and returns a value of
0.The read and write file descriptors are written into the
array argument. If not successful, returns –1.

 pipe (filedes);

 int filedes[2] int

 dup2 If successful, duplicates the file descriptor oldfiledes
into the file descriptor newfiledes and returns
 newfiledes . If not successful, returns –1.

 dup2 (oldfiledes, newfiledes);

 int oldfiledes

 int newfiledes

 int

 sleep If successful, pauses the program execution for the
specified number of seconds and returns 0. If unsuccess-
ful, returns the number of seconds remaining to sleep.

 sleep (seconds);

 unsigned int seconds unsigned int

 close Closes the designated file. Returns 0 if successful; –1 if
unsuccessful.

 close (oldfiledes)

 int oldfiledes int

 read Reads numbytes bytes from file oldfiledes into
array buffer . Returns the number of bytes read if
successful; returns –1 if unsuccessful.

 read (oldfiledes, buffer, numbytes)

 int oldfiledes

 void* buffer

 size_t numbytes

 size_t

 write Writes numbytes bytes to file newfiledes from
array buffer . Returns the number of bytes read if
successful; returns –1 if unsuccessful.

 write (newfiledes, buffer, numbytes)

 int newfiledes

 void* buffer

 size_t numbytes

 size_t

Task 1 Task 1
Child

process

Read Write

Task 1 Task 1
Parent
process

Write Read

Half-
duplex pipe

Half-
duplex pipe

 FIGURE 14.4

 Interprocess
Communications
Using Half-duplex
Pipes

14-16 Chapter 14 • Multiprocessing Using Processes and Threads

 EXAMPLE 14.6 The following fragment declares a file descriptor array filedes . The call to pipe
creates a pipe and fills the array argument with two unique integers that represent
the read and write file descriptor values. The call to printf executes only if the call
to pipe fails.

 #include <unistd.h>
 . . .
 int filedes[2];
 char buffer[30];
 . . .
 if (pipe (filedes) < 0)
 {
 printf ("Error Creating The Pipe\n");
 . . .
 }
 . . .

 Because we want to use the pipe only for half-duplex communication, each process
must close a different file descriptor. The process that will write to the pipe closes
the read file descriptor (filedes[0]) and then writes the string "Buffer con-
tents" to the write file descriptor (filedes[1]). It displays an error message if
either operation fails.

 . . .
 if (close (filedes[0]) < 0)
 printf ("Error Closing The Read File Descriptor\n");
 strcpy (buffer, "Buffer Contents");
 if (write (filedes[1], buffer, strlen (buffer)) < 0)
 printf ("Error Writing To The Write File Descriptor\n");
 . . .

 In the process that will read from the pipe, we close the write file descriptor first
(filedes[1]) and then read from the read file descriptor (filedes[0]).

 . . .
 if (close (filedes[1]) < 0)
 printf ("Error Closing The Write File Descriptor\n");
 if (read (filedes[0], buffer, sizeof(buffer)) < 0)
 printf ("Error Reading From The Read File Descriptor\n");
 . . .

 Table 14.2 summarizes the functions used with pipes. Functions read , write ,
and close are similar to functions fread , fwrite , and fclose shown in Table
 11.5 , except they use file descriptor arguments instead of file pointers. In the read
function, the third argument is the maximum number of bytes to read from the

14.3 • Interprocess Communications and Pipes 14-17

file descriptor, which is important so that the read function does not overflow
the buffer. In the write function, the third argument is the number of bytes to
write to the file descriptor. If there are bytes available to read, the read function
will read them and return immediately. However, if there are not any bytes avail-
able to read, then the read function will pause execution until there are bytes
available to read.

 Interprocess Communications Using Standard Input

 We have seen that when the execl function is called, the existing process memory
area and instructions (process image) are replaced by the new process image from
the executable file that was specified in the execl function call. If a pipe had been
created in the original process image to communicate between the parent process
and the child process, it is not still available in the new process image since it was
declared and assigned in the memory area belonging to the original process that is
no longer available because it was replaced by the new process memory area. A par-
ent process communicates with a child process that is running in a different process
image by creating a pipe and then duplicating and assigning the pipe (using function
 dup2) to the standard input or standard output before the execl function is called.
Duplicating and assigning the pipe to the standard input or standard output allows
the parent process to write to the pipe and the child process to read from standard
input. In the same way, the child process can write to standard output and the par-
ent process can read from the pipe. This allows the parent process to use the pipe
and the child process to use standard input or standard output to communicate with
its parent since the pipe is no longer available in the child process.

 EXAMPLE 14.7 Next we show how to duplicate and assign the input and output file descriptors for
a pipe to standard input and standard output.

 #include <unistd.h>
 . . .
 int filedes[2];
 . . .

 To read from the standard input using a pipe, we must first duplicate and assign the
read file descriptor to the standard input file descriptor (value of STDIN_FILENO):

 . . .
 if (dup2 (filedes[0], STDIN_FILENO) != STDIN_FILENO)
 printf ("Error Duplicating The Read File Descriptor\n");
 if (close (filedes[0]) < 0)
 printf ("Error Closing The Read File Descriptor\n");
 . . .

14-18 Chapter 14 • Multiprocessing Using Processes and Threads

 Since STDIN_FILENO has been assigned the same file descriptor as filedes[0] , we
close filedes[0] to prevent any conflict.

 To write to the standard output using a pipe, we must first duplicate and assign
the write file descriptor to the standard output file descriptor (value of STDOUT_
FILENO):

 . . .
 if (dup2 (filedes[1], STDOUT_FILENO) != STDOUT_FILENO)
 printf ("Error Duplicating The Write File Descriptor\n");
 if (close (filedes[1]) < 0)
 printf ("Error Closing The Write File Descriptor\n");
 . . .

 Since STDOUT_FILENO has been assigned the same file descriptor as filedes[1] ,
we close filedes[1] to prevent any conflict.

 Illustrating Communication Between a Parent and a Child

Process

 Next we show a complete program that creates a pipe, creates a new process,
replaces the new process image with the process image from a file named child.
exe , and sends it a message that is then read by the child process. Figure 14.5
shows the code that creates the process (parent.c) and then sends the message.
 Figure 14.6 shows the code for the new child process (child.c) that reads the
message.

 In Figure 14.5 , the call to pipe creates a new pipe. We then create a new proc-
ess (call to fork). Next, we close the appropriate file descriptors in both the parent
and child process. If we are in the child process, we duplicate the file descriptor
onto standard input and then call execl to replace the rest of the code with child.
exe . If we are still in the parent process, we wait for the new process to begin (by
calling sleep(1) , explained later). We then write a message to the child process
and wait for the child process to finish (call to wait).

 The new code for the child process reads the message from standard input
using function fgets (see Figure 8.8), displays the message, and then exits.

 The sleep function is used to pause execution of a process. We pause the
parent process to ensure that the child process begins execution before the parent
process writes its message to the child.

14.3 • Interprocess Communications and Pipes 14-19

 FIGURE 14.5 Program to Launch Another Program (parent.c)

 1. /* Create a new process, replace the new process image with a */
 2. /* different process image from an executable file, and, */
 3. /* communicate using a pipe */
 4.
 5. #include <stdio.h>
 6. #include <string.h>
 7. #include <unistd.h>
 8. #include <wait.h>
 9.
 10. /* Define the message to be sent using the pipe */
 11. #define MESSAGE "Parent Message To Forked Process"
 12.
 13. int
 14. main(void)
 15. {
 16. int filedes[2]; /* Array of file descriptors for the pipe */
 17.
 18. pid_t fpid; /* Forked process id */
 19. int status; /* Forked process status */
 20.
 21. /* Create the interprocess communications pipe */
 22. if (pipe (filedes) < 0)
 23. printf ("Error Creating The Interprocess Communications Pipe\n");
 24.
 25. /* Create a new process */
 26. fpid = fork();
 27.
 28. /* Both the parent and new processes continue running here */
 29. if (fpid < 0)
 30. {
 31. /* The new process was not created */
 32. printf ("Error Creating The New Process\n");
 33.
 34. /* Close the read and write file descriptors of the pipe */
 35. if (close (filedes[0]) != 0)
 36. printf ("Error Closing File Descriptor 0\n");
 37. if (close (filedes[1]) != 0)

(continued)

14-20 Chapter 14 • Multiprocessing Using Processes and Threads

 38. printf ("Error Closing File Descriptor 1\n");
 39. }
 40. else if (fpid == 0)
 41. {
 42. /* This is the new process */
 43. printf ("Forked Process ID %d\n", getpid());
 44.
 45. /* Close the write file descriptor of the pipe */
 46. if (close (filedes[1]) != 0)
 47. printf ("Error Closing File Descriptor 0\n");
 48.
 49. /* Duplicate & assign read file descriptor to standard input */
 50. if (dup2 (filedes[0], STDIN_FILENO) != STDIN_FILENO)
 51. printf ("Error Duplicating File Descriptor 0\n");
 52.
 53. /* Close read file descriptor of the pipe after duplication */
 54. if (close (filedes[0]) != 0)
 55. printf ("Error Closing File Descriptor 0\n");
 56.
 57. /* Replace this process image with the process */
 58. /* image from the executable file child.exe */
 59. if (execl("child.exe", "child.exe", NULL) < 0)
 60. printf ("Error Replacing This Process Image\n");
 61. }
 62. else
 63. {
 64. /* This is the parent process */
 65. printf ("Parent Process ID %d\n", getpid());
 66.
 67. /* Close the read file descriptor of the pipe */
 68. if (close (filedes[0]) != 0)
 69. printf ("Error Closing Pipe\n");
 70.
 71. /* Wait for the forked process to begin executing */
 72. sleep(1);
 73.
 74. printf ("Parent Process Writing '%s'\n", MESSAGE);
 75.
 76. /* Write the message to the write file descriptor and flush */
 77. /* the write file descriptor by writing a newline character */

FIGURE 14.5 (continued)

(continued)

14.3 • Interprocess Communications and Pipes 14-21

 78. if (write (filedes[1], MESSAGE, sizeof (MESSAGE)) < 0)
 79. printf ("Error Writing To File Descriptor 1\n");
 80. if (write (filedes[1], "\n", 1) < 0)
 81. printf ("Error Writing To File Descriptor 1\n");
 82.
 83. printf ("Parent Process Waiting For Forked Process\n");
 84.
 85. /* Wait for the forked process to complete & display status */
 86. if (wait (&status) == fpid)
 87. printf ("Forked Process Status %d\n", WEXITSTATUS(status));
 88. else
 89. printf ("Error Waiting For The Forked Process\n");
 90.
 91. printf ("Parent Process Resuming\n");
 92. }
 93.
 94. printf ("Parent Process Stopping\n");
 95.
 96. return (0);
 97. }

FIGURE 14.5 (continued)

 FIGURE 14.6 Program to Be Launched from the Program in Figure 14.5 (child.c)

 /* Read a newline delimited string from the standard */
 1. /* input and print the string to the standard output */
 2.
 3. #include <stdio.h>
 4. #include <string.h>
 5. #include <unistd.h>
 6.
 7. int
 8. main (void)
 9. {
 10. char text[64]; /* Message buffer */
 11.
 12. /* Display the child process ID */
 13. printf (" Child Process ID %d\n", getpid());
 14.

(continued)

14-22 Chapter 14 • Multiprocessing Using Processes and Threads

 15. /* Read a newline delimited string from the standard input */
 16. if (fgets (text, sizeof (text) - 1, stdin) == NULL)
 17. printf ("Error Reading Standard Input\n");
 18.
 19. /* Display the message read from standard input */
 20. printf (" Child Process Reading '%s'\n", text);
 21. printf (" Child Process Stopping\n");
 22.
 23. /* Return 1 to parent to indicate successful completion */
 24. return (1);
 25. }

FIGURE 14.6 (continued)

 EXERCISES FOR SECTION 14.3

 Self-Check

 1. Explain the process relationship restriction using pipes.
 2. How do you create a pipe?
 3. How do you connect a pipe to standard input or output?

 14.4 Threads
 Up until this point our discussion of multitasking has involved creating a set of coop-
erating processes to accomplish more than one task at a time. There is significant
overhead involved in switching from one process to another and in enabling processes
to communicate with each other. Threads were created based on the idea that coop-
erating processes could communicate much more efficiently by sharing a common
memory space for exchanging data. The threads within a process can be thought of as
a set of cooperating subprocesses that run within the same process image and memory
context and share the process-related resources with each other. As a result, thread
context switching is much more efficient than process context switching because the
memory context and process-related resources do not need to be switched.

 A process consists of one or more threads of execution with each thread given a
unique identifier called a thread ID that is local to the process. Each thread consists
of the necessary information to represent the thread execution context along with
the machine instructions to be executed within the thread.

 Only one thread within a process, called the thread of control , can be execut-
ing at a given moment. When a process begins its CPU time slice, the operating
system selects the thread of control for the process based on factors such as the

 thread one
process among a
set of cooperating
subprocesses that run
within the same process
image and memory
context and share
the process-related
resources with each
other

 thread of
control the currently
executing thread

14.4 • Threads 14-23

 priority of the thread among the other process threads, the complexity of the pro-
gram code, how recently the thread was accessed, and so on. A process can have as
many threads as the operating system will allow but, like other programming con-
structs, threads should be used only when appropriate and not abused just because
they are there. Remember that context switching between threads uses system
resources, so it’s a good programming practice to keep the number of threads
within a process to the minimum number necessary to accomplish the required
tasks. Figure 14.7 shows the memory resources required for a process with three
threads. As shown, each thread requires its own thread control block, user stack
space, and kernel stack space.

 Creating a Thread

 A thread is created with the pthread_create function. When the pthread_
create function returns, the current thread of control continues executing at the next
 program instruction after the call to pthread_create . When the new thread becomes
the thread of control, it begins executing at the first program instruction in the func-
tion specified by the argument start_routine in the call to pthread_create . Once
a thread has been created it will continue to execute until all the start_routine pro-
gram instructions have been executed, a return statement is executed, or the process
that created the thread ends. Therefore, to keep a thread executing until the process
that owns the thread ends, the thread must have a loop that continues to execute until
the loop control condition evaluates to false.

 Because threads run independently of one another, the exact moment a given
thread will end cannot be known. This is known as an asynchronous event: The event
does not occur in any particular sequence with other events that are occurring. The
 pthread_join function can be used to synchronize the thread events by waiting

Process
control
block

User
address
space

Thread
control
block

Thread
control
block

Thread
control
block

User
stack
space

User
stack
space

User
stack
space

Kernel
stack
space

Kernel
stack
space

Kernel
stack
space

Thread 1 Thread 2 Thread 3 FIGURE 14.7

 Memory Resources
for a Process with
Three Threads

14-24 Chapter 14 • Multiprocessing Using Processes and Threads

for the thread to actually end and complete any clean-up activity. In this way, one
thread can wait for another thread to end to coordinate activities between threads.

 Table 14.3 summarizes thread functions pthread_create and pthread_join .
Note that to use these functions, the header pthread.h must be included in the
program code and the pthread library must be included in the link statement:

 gcc file.c -lpthread

 The following program segment demonstrates the flow of control when creating
a new thread. The main thread executes the call to pthread_create in the main
function to create the new thread:

 Main Thread
 int
 main(void)
 {
 pthread_t tid;
 . . .
 pthread_create (&tid, NULL, tsub, NULL);
 printf ("Main thread after pthread_create()\n");
 . . .
 return (0);
 }

 The address of the function tsub is passed into the pthread_create function
call as the start_routine argument, which means that the tsub function will
begin executing when the new thread becomes the thread of control.

 TABLE 14.3 Some Thread Functions from pthread.h

 Function Purpose: Example Parameters Result Type

 pthread_create If successful, creates a new thread and returns 0
to the process. If not successful, returns greater
than 0 to the process.

 const

 pthread_t* thread

 pthread_attr_t* attr

 void* start_routine

 (void*)

 void* arg

 int

 pthread_create (&thread, NULL,
start_routine, NULL);

 pthread_join If successful, waits for the specified thread to end
and returns 0 to the process. If not successful,
returns greater than 0 to the process.

 pthread_t thread

 void** value_ptr

 int

 pthread_join (thread, &value_ptr);

14.4 • Threads 14-25

 void* tsub (void* arg)
 {
 printf ("New thread first executable statement\n");
 . . .
 return (NULL);
 }

 When the call to pthread_create returns, the new thread has been created. The
main thread continues executing at the printf statement in the main function.

 Main Thread
 int
 main(void)
 {
 pthread_t tid;
 . . .
 pthread_create (&tid, NULL, tsub, NULL);
 printf ("Main thread after pthread_create()\n");
 . . .
 return (0);
 }

 When the new thread becomes the thread of control the tsub function begins
executing at the printf which is the first statement.

 New Thread
 void* tsub (void* arg)
 {
 printf ("New thread first executable statement\n");
 . . .
 return (NULL);
 }

 Thread Synchronization

 When a process has more than one thread of execution, there is a possibility that
one thread may try to modify the value of a variable at the same time that another
thread tries to access the value of the same variable. In reality, two threads can’t be
running at exactly the same time since only one thread at a time can be the thread
of control. However, it is possible that the one thread begins modifying the value of
a variable, then a thread context switch occurs, and then the new thread of control
tries to access the value of the same variable. If this sequence of events happens,
the second thread may get the original value of the variable to work with instead of
the more correct updated value of the variable. Unfortunately, if the more correct
updated value is not available, the first thread becomes the thread of control again
and completes modifying the variable’s value.

14-26 Chapter 14 • Multiprocessing Using Processes and Threads

 As an example, assume that the current thread of control wants to increment
the value of a variable by 1, which requires three separate steps. Step 1 is to read
the value from the variable’s memory location into a CPU register. Step 2 is to
increment the value in the CPU register by 1. Step 3 is to write the updated value
from the CPU register back into the variable’s memory location. If a thread context
switch occurs after step 1 or step 2 has completed but before step 3 has completed,
any other thread that accesses the value of the variable being modified will see the
original value because the first thread has not yet completed the modification. This
is known as a data inconsistency , and it can lead to unpredictable results and pro-
gram failure.

 Table 14.4 illustrates one sequence of events that can lead to a data inconsist-
ency problem. In this example, assume that there is a shared resource variable that
contains the number of active threads. Each thread, when it first starts, increments
the value of the shared resource variable. Each thread, when it is about to end, dec-
rements the value of the shared resource variable. In this way, the number of active
threads is known at any given moment.

 At time T0, thread 1 writes the value of the shared resource variable into the
register. At time T1, thread 1 increments the value in the register by 1. At time T2,
a thread context switch occurs and the state associated with thread 1, including the
value in the register, is saved and the state associated with thread 2, including the
previous value in the register, is restored. At time T3, thread 2 writes the value of
the shared resource variable into the register. At time T4, thread 2 decrements the
value in the register by 1. At time T5, thread 2 writes the value from the register into
the shared resource variable. At time T7, a thread context switch occurs and the state
associated with thread 1, including the previous value in the register, is restored. At
time T8, thread 1 writes the value from the register into the shared resource variable.

 data inconsistency
data errors arising
because one thread
accesses a shared
resource while another
thread is in the process
of modifying it

 TABLE 14.4 Sequence of Operations Leading to a Data Inconsistency Problem

 Time Operation Thread Variable Register Comment

 T0 Write variable into register 1 1 1 New register value

 T1 Increment value in register 1 1 2 New register value

 T2 Thread context switch 1 1 2 Save thread 1 state

 2 1 ?? Restore thread 2 state

 T3 Write variable into register 2 1 1 New register value

 T4 Decrement value in register 2 1 0 New register value

 T5 Write register into variable 2 0 0 New variable value

 T6 Thread context switch 2 0 0 Save thread 2 state

 1 0 2 Restore thread 1 state

 T7 Write register into variable 1 2 2 New variable value

14.4 • Threads 14-27

 Thread 1 incremented the value of the shared resource variable by 1. Thread 2
decremented the value of the shared resource variable by 1. The value of the shared
resource variable after these two operations have completed should be 1 since 1 +
1 = 2 and then 2 − 1 = 1. Unfortunately, a thread context switch occurred before
thread 1 completed incrementing the value of the shared resource variable, and the
value of the shared resource variable is now 2 instead of 1!

 It is important in multithreaded applications that all the threads have access to
consistent data values at all times. This would not be a problem if all the threads
only read from the shared memory locations. Unfortunately, virtually all multi-
threaded applications contain threads that both read from and write to shared
memory locations. The problem exists because it is likely that one thread may try
to modify the value of a variable at the same time another thread tries to read the
value of that same variable. Not all processor architectures interleave read and write
access in such a way that data inconsistencies can occur, but because portability is a
concern it is important to assume that data inconsistency problems can happen and
that all multithreaded applications should be written with thread synchronization
in mind.

 Mutual Exclusion Locking

 Thread synchronization is accomplished by using a lock and release mechanism
to restrict access to the shared resources to one thread at any given moment. The
most common form of this mechanism is known as thread mutual exclusion lock-
ing or mutex . A mutex can be locked before and released after accessing a shared
resource. Only one thread at a time can lock a given mutex. As a result, any thread
that tries to lock a mutex that is already locked by another thread will be blocked
until the other thread has released the mutex. In this way, threads are synchro-
nized in their access to shared resources by being blocked until the mutex has been
released.

 When a mutex is released, any threads waiting for it that are blocked will
become unblocked and the thread that begins executing first will be able to lock the
mutex. Once the mutex has been locked again, any threads waiting for the mutex
will be blocked again until they are the first thread in the blocked group to begin
executing. This process will repeat until all the threads are able to lock the mutex.

 For mutex locks to work properly, all the threads that access the shared
resources must follow the same rules. If any thread tries to access the shared
resources without first locking the mutex, then using the mutex lock in other threads
has no meaning since the data inconsistency problem can still occur.

 Table 14.5 illustrates how mutual exclusion locking can be used to avoid the
data inconsistency problem illustrated in Table 14.4 . At time T0, thread 1 locks the
mutex. At time T1, thread 1 writes the value of the shared resource variable into
the register. At time T2, thread 1 increments the value in the register by 1. At time
T3, a thread context switch occurs, and the state associated with thread 1 is saved

 mutual exclusion
locking
accomplishing thread
synchronization by
using a lock and release
mechanism to restrict
access to the shared
resources to one thread
at any given moment

 mutex a particular
form of mutual
exclusion locking that
utilizes a variable which
can only be locked or
released by one thread
at a time. A thread
must attempt to lock
the mutex variable
before accessing a
shared resource, and
it must release it after
accessing the shared
resource

14-28 Chapter 14 • Multiprocessing Using Processes and Threads

 TABLE 14.5 Mutual Exclusion Locking Prevents Data Inconsistency

 Time Operation Thread Variable Register Comment

 T0 Lock mutex 1 1 ?? Mutex locked

 T1 Write variable into register 1 1 1 New register value

 T2 Increment value in register 1 1 2 New register value

 T3 Thread context switch 1 1 2 Save thread 1 state

 2 1 ?? Restore thread 2 state

 T4 Lock mutex 2 1 ?? Block thread 2

 T5 Thread context switch 2 1 ?? Save thread 2 state

 1 1 2 Restore thread 1 state

 T6 Write register into variable 1 2 2 New variable value

 T7 Unlock mutex 1 2 2 Mutex unlocked

 T8 Thread context switch 1 2 2 Save thread 1 state

 2 2 ?? Restore thread 2 state

 T9 Lock mutex 2 2 ?? Mutex locked

 T10 Write variable into register 2 2 2 New register value

 T11 Decrement value in register 2 2 1 New register value

 T12 Write register into variable 2 1 1 New variable value

 T13 Unlock mutex 2 1 1 Mutex Unlocked

and the state associated with thread 2 is restored. At time T4, thread 2 is blocked
from locking the mutex because thread 1 already has the mutex locked. At time T5,
a thread context switch occurs, and the state associated with thread 2 is saved and
the state associated with thread 1 is restored. At time T6, thread 1 writes the value
from the register into the shared resource variable. At time T7, thread 1 unlocks
the mutex. At time T8, a thread context switch occurs, and the state associated with
thread 1 is saved and the state associated with thread 2 is restored. At time T9,
thread 2 is able to lock the mutex because thread 1 is no longer locking the mutex.
At time T10, thread 2 writes the value of the shared resource variable into the reg-
ister. At time T11, thread 2 decrements the value in the register by 1. At time T12,
thread 2 writes the value from the register into the shared resource variable. At time
T13, thread 2 unlocks the mutex.

 Thread 1 incremented the value of the shared resource variable by 1. Thread 2
decremented the value of the shared resource variable by 1. The value of the shared
resource variable after these two operations have completed is 1. The mutex lock
blocked thread 2 until thread 1 completed updating the shared resource variable value.

 Table 14.6 summarizes the functions in the pthread library that perform
mutex operations. The pthread_mutex_init function call initializes the mutex

14.4 • Threads 14-29

variable before the mutex can be locked or released. The pthread_mutex_lock
function call locks the mutex so that other threads are prevented from locking the
mutex until the mutex has been released. The pthread_mutex_unlock function
call releases the mutex so that other threads that are blocked while waiting for the
mutex become unblocked and can try to lock the mutex.

 This lock, access, release synchronization sequence should be repeated when-
ever a shared resource is accessed. The following program segment demonstrates
using the mutex lock and release mechanism.

 #include <pthread.h>
 . . .
 pthread_mutex_t lock;
 . . .
 int
 main(void)
 {
 . . .
 if (pthread_mutex_init (&lock, NULL) != 0)
 printf ("Error Initializing Mutex Lock\n");
 . . .
 if (pthread_mutex_lock (&lock) != 0)
 printf ("Error Locking Mutex\n");
 /* Shared resources can be updated while the mutex is locked */
 . . .

 TABLE 14.6 Thread Functions for mutex operations

 Function Purpose: Example Parameters Result Type

 pthread_mutex_init If successful, initializes a new mutex and
returns 0 to the process. If not successful,
returns greater than 0 to the process.

 pthread_mutex_t*
 mutex
 const
 pthread_
mutexattr_t*
 attr

 int

 pthread_mutex_init (&mutex, NULL);

 pthread_mutex_lock If successful, sets the lock status of the mutex
and returns 0 to the process. If not successful,
returns greater than 0 to the process.

 pthread_mutex_t*
 mutex

 int

 pthread_mutex_lock (&mutex);

 pthread_mutex_unlock If successful, unsets the lock status of the
mutex and returns 0 to the process. If not suc-
cessful, returns greater than 0 to the process.

 pthread_mutex_t*
 mutex

 int

 pthread_mutex_unlock (&mutex);

14-30 Chapter 14 • Multiprocessing Using Processes and Threads

 if (pthread_mutex_unlock (&lock) != 0)
 printf ("Error Unlocking Mutex\n");
 . . .
 return (0);
 }

 Deadlocks

 Synchronization locks, such as a mutex, can cause threads to deadlock when they
are not used properly. A thread becomes deadlocked when it is blocked while wait-
ing for a mutex that is locked by another thread that is never released. As a result,
the thread remains blocked until the process ends. Unfortunately, deadlocked
threads can trigger a cascade of additional thread deadlocks. Any thread that tries to
lock a mutex that is already locked by a deadlocked thread will become blocked and,
by extension, deadlocked. Threads can become deadlocked with themselves or with
other threads, as illustrated in the following examples.

 A thread can deadlock with itself if it has locked a mutex and then attempts to
lock the same mutex again. Because the thread already has locked the mutex, it will
become blocked when it tries to lock the mutex again. Unfortunately, because the
thread has locked the mutex in the first place and is now blocked, the mutex lock
will never be released and the thread is deadlocked with itself.

 A thread can deadlock with another thread if each thread tries to lock a mutex
that the other thread already has locked. For example, assume thread A locks mutex
A and thread B locks mutex B. If thread A then tries to lock mutex B, it will become
blocked because thread B already has locked mutex B. If thread B then tries to lock
mutex A, it will become blocked because thread A already has locked mutex A. At
this point, thread A is blocked waiting for thread B to release mutex B, and thread B
is blocked waiting for thread A to release mutex A. Thread A and thread B are now
deadlocked with each other since each thread is waiting for a mutex that the other
thread has locked.

 These types of thread deadlocks can be avoided by exercising caution and
controlling the order in which the mutexes are locked. To prevent a thread from
deadlocking with itself, you should check to see if the thread already has locked the
mutex in order to avoid trying to lock the same mutex a second time.

 To prevent a thread from deadlocking with another thread, you should impose
an order in which the threads obtain their mutexes. For example, if threads that
require mutex A and mutex B always had to obtain mutex A first, then when two
threads need both resources, the first thread could lock mutex A and the second
thread would become blocked when it tried to lock mutex A. This would then allow
the first thread to continue and lock mutex B. After the first thread has finished
and released mutex A and mutex B, the second thread would become unblocked
and able to lock both mutex A and mutex B, thus avoiding the deadlock with the
first thread.

 deadlock a situation
in which a thread
is blocked (cannot
execute) because it is
attempting to lock a
mutex that is already
locked by another
thread that will never
release the mutex lock

14.4 • Threads 14-31

 Another alternative is to use the pthread_mutex_trylock function that
attempts to lock the mutex without blocking. If the mutex is not locked then the
function will succeed and lock the mutex. If the mutex is locked by another thread
then the function will fail without locking the mutex or blocking the thread. If the
function fails then the thread can release any mutexes it has locked and try to lock
the mutexes again at a later time thus avoiding deadlocks.

 The complete program in Figure 14.8 demonstrates initializing a mutex, creat-
ing a thread, and updating a shared resource variable named data. The main thread
and the new thread that executes the function thread both use the mutex lock to
synchronize access to the shared resource data. The thread function ends when the
 return (NULL) ; statement is executed after looping five times. The main function
waits for the thread to end before ending itself.

 FIGURE 14.8 Program That Creates a Thread and Updates a Shared Resource (thread.c)

 1. /* Create a thread and update a shared */
 2. /* resource from two different threads */
 3.
 4. #include <pthread.h>
 5. #include <stdio.h>
 6. #include <unistd.h>
 7.
 8. void* thread (void* argument); /* Thread function prototype */
 9.
 10. int data; /* Global share data */
 11. pthread_mutex_t lock; /* Thread mutex lock */
 12.
 13. int
 14. main(void)
 15. {
 16. pthread_t tid; /* Thread ids */
 17. int loop; /* Loop count */
 18.
 19. /* Display the primary thread id */
 20. printf ("Primary Thread Started ID %u\n", pthread_self());
 21.
 22. /* Initialize the global share data */
 23. data = 0;
 24.
 25. /* Initialize the mutex lock */
 26. if (pthread_mutex_init (&lock, NULL) != 0)
 27. printf ("Error Initializing The Mutex Lock\n");
 28. (continued)

14-32 Chapter 14 • Multiprocessing Using Processes and Threads

 29. /* Create a new thread */
 30. if (pthread_create (&tid, NULL, thread, NULL) != 0)
 31. printf ("Error Creating The Thread\n");
 32.
 33. /* Wait for the created thread to begin executing */
 34. sleep (1);
 35.
 36. for (loop = 0; loop < 5; loop++)
 37. {
 38. /* Lock the mutex, update the data, unlock the mutex */
 39. if (pthread_mutex_lock (&lock) != 0)
 40. printf ("Error Locking Mutex\n");
 41. data++;
 42.
 43. /* Display the loop counter and updated data value */
 44. printf ("Primary Thread Writing Loop %d Data %d\n", loop, data);
 45.
 46. if (pthread_mutex_unlock (&lock) != 0)
 47. printf ("Error Unlocking Mutex\n");
 48.
 49. sleep (1);
 50. }
 51.
 52. /* Wait for the created thread to complete */
 53. if (pthread_join (tid, NULL) != 0)
 54. printf ("Failed Join\n");
 55.
 56. printf ("Primary Thread Stopped\n");
 57.
 58. return (0);
 59. }
 60.
 61. void* thread (void* argument)
 62. {
 63. int loop; /* Loop counter */
 64.
 65. printf ("Created Thread Started ID %u\n", pthread_self());
 66.
 67. /* Wait for the primary thread to write first */
 68. sleep (1);
 69.

FIGURE 14.8 (continued)

(continued)

14.5 • Threads Illustrated 14-33

 70. for (loop = 0; loop < 5; loop++)
 71. {
 72. /* Lock the mutex, update the data, unlock the mutex */
 73. if (pthread_mutex_lock (&lock) != 0)
 74. printf ("Error Locking Mutex\n");
 75. data++;
 76.
 77. /* Display the loop counter and updated data value */
 78. printf ("Created Thread Writing Loop %d Data %d\n", loop, data);
 79
 80. if (pthread_mutex_unlock (&lock) != 0)
 81. printf ("Error Unlocking Mutex\n");
 82.
 83. sleep (1);
 84. }
 85.
 86. printf ("Created Thread Stopped\n");
 87.
 88. return (NULL);
 89. }

FIGURE 14.8 (continued)

 EXERCISES FOR SECTION 14.4

 Self-Check

 1. How do you create a thread?
 2. How do you initialize a mutex?
 3. How do you lock and unlock a mutex?
 4. What is thread deadlock?

 14.5 Threads Illustrated
 This case study illustrates using threads to accomplish more than one task at a time
with sets of program instructions that are logically independent of one another. The
example utilizes the producer / consumer thread model where one thread pro-
duces a resource that is consumed by other threads. The rate at which the resource
is consumed is variable and may be less than, equal to, or greater than the rate at
which the resource is produced. As a result, the consumer threads may have to wait
for additional resource from the producer thread before continuing.

 producer thread
a thread that creates a
resource that is consumed
by other threads

 consumer thread
a thread that receives a
resource that is produced
by another thread

14-34 Chapter 14 • Multiprocessing Using Processes and Threads

 CASE STUDY The Producer/Consumer Model

 PROBLEM

 A gasoline station wants a program to model the delivery of gasoline from the pro-
ducer and the dispensing of gasoline by the consumers. The station is equipped
with a storage tank that can be filled at a rate of 50 gallons per second and that can
hold 1000 gallons of gasoline. Ten pumps dispense gasoline at a rate of 5 gallons
per second each. Any combination of pumps can be in use at the same time, and
each active pump can dispense different quantities of gasoline than the other active
pumps. When the storage tank reaches the minimum quantity, the active pumps are
taken off line and the storage tank is refilled to its capacity. After the storage tank
has been refilled, the active pumps are put back on line and continue pumping. The
model displays the starting, stopping, and real-time activity of the storage tank and
pumps. Displaying or not displaying real-time activity is controlled by a constant
(VERBOSE) with 1 indicating that real-time activity is displayed and 0 indicating that
real-time activity is not displayed.

 ANALYSIS

 The user must be able to enter the pump number and gasoline quantity at the
same time that the producer is refilling the storage tank and other pumps are
active, which means that you will need one thread to query the user for the pump
number and gasoline quantity inputs, one thread for the producer refilling the
storage tank when the inventory reaches the minimum quantity, and one thread
for each of the active pumps. The user inputs thread can run in the main func-
tion, but the producer thread and the consumer threads will each need their own
function.

 DATA REQUIREMENTS

 Problem Constants

 CAPACITY 1000 /* Storage tank refill capacity */
 QUANTITY 50 /* Storage tank refill quantity */
 FILL_RATE 50 /* Storage tank fill rate */
 FLOW_RATE 5 /* Station pump flow rate */
 PUMPS 10 /* Number of pumps available */
 VERBOSE 0 /* Verbose reporting (0) or (1) */

 Problem Inputs

 number /* Pump number */
 amount /* Pump amount */

14.5 • Threads Illustrated 14-35

 Problem Outputs

 Storage Tank Activity
 Station Pump Activity

 DESIGN

 ALGORITHM FOR THE main THREAD

 1. Initialize terminate, inventory, pump[] quantities and number .
 2. Initialize the mutex lock .
 3. Launch the producer thread.
 4. while the pump number is not –1

 4.1 Get the pump number .
 4.2 if the pump number is not –1 and the pump[number] is 0

 4.2.1 Get the pump amount and store it in pump[number] .
 4.2.2 Launch a consumer thread.

 5. Wait for active consumer threads to complete.
 6. Set the terminate flag.
 7. Wait for the producer thread to complete.

 ALGORITHM FOR THE producer THREAD

 1. while the terminate flag is 0

 1.1 lock the mutex.
 1.2 if the inventory is less than the QUANTITY

 1.2.1 Display the consumers off line and starting inventory .
 1.2.2 Refi ll the storage tank to CAPACITY .
 1.2.3 Display the consumers back on line and ending inventory .

 1.3 unlock the mutex.
 2. return from the thread.

 ALGORITHM FOR THE consumer THREAD

 1. while the amount is greater than 0

 1.1 lock the mutex.
 1.2 Reduce the amount by the FLOW_RATE .
 1.3 Reduce the inventory by the FLOW_RATE .
 1.4 unlock the mutex.

 2. Display the pump number and output .
 3. return from the thread.

14-36 Chapter 14 • Multiprocessing Using Processes and Threads

 IMPLEMENTATION

 The program appears in Figure 14.9 . Notice that the consumer function is used
for all pump requests because each consumer thread executes its own copy of the
function. This works because we pass the pump number as the argument to the
 consumer function, which allows each thread to work with a different pump number
and amount . Access to the shared resources terminate , inventory , pump[] , and
 lock is synchronized by using the mutex lock to restrict access to one thread at a
time.

 TESTING

 This program should be tested in a variety of ways including the following:

 1. Enter an invalid pump number such as 0 or 100.
 2. Enter a valid pump number and an invalid amount such as 0 or –100.
 3. Enter a valid pump number and a valid amount.
 4. Enter several valid pump numbers and valid amounts in quick succession.
 5. Enter a pump number for a pump that is already active.
 6. Enter a pump number of –1 to exit the program with no pumps active.
 7. Enter a pump number of –1 to exit the program with pumps active.
 8. Enter enough valid pump numbers and pump amounts to trigger a storage

tank refill.
 9. Enter –1 to exit the program while the storage tank is refilling.

 FIGURE 14.9 Program for Modeling the Delivery and Dispensing of Gasoline (caseused.c)

 1. #include <pthread.h>
 2. #include <stdio.h>
 3. #include <wait.h>
 4.
 5. int get_number(); /* Pump number function prototype */
 6. int get_amount(); /* Pump amount function prototype */
 7.
 8. void startup (int* number, pthread_t* ptid); /* Startup function prototype */
 9. void cleanup (pthread_t ptid); /* Cleanup function prototype */
 10.
 11. /* Producer and consumer thread function prototypes */
 12. void* producer (void* argument);
 13. void* consumer (void* argument);
 14.
 15. #define CAPACITY 1000 /* Storage tank refill capacity */

(continued)

14.5 • Threads Illustrated 14-37

 16. #define QUANTITY 50 /* Storage tank refill quantity */
 17.
 18. #define FILL_RATE 50 /* Storage tank fill rate */
 19. #define FLOW_RATE 5 /* Station pump flow rate */
 20.
 21. #define PUMPS 10 /* Number of pumps available */
 22.
 23. #define VERBOSE 0 /* Verbose display on (1) or off (0) */
 24.
 25. int terminate; /* Storage fill terminate */
 26. int inventory; /* Storage tank inventory */
 27. int pump[PUMPS]; /* Pump quantity requests */
 28.
 29. pthread_mutex_t lock; /* Mutual exclusion id */
 30.
 31. int
 32. main(void)
 33. {
 34. int number; /* Pump number */
 35.
 36. pthread_t ptid; /* Producer thread id */
 37. pthread_t ctid; /* Consumer thread id */
 38.
 39. /* Startup the application */
 40. startup (&number, &ptid);
 41.
 42. /* Loop until the user sets the pump number to -1 */
 43. while (number != -1)
 44. {
 45. /* Get the pump number */
 46. number = get_number();
 47.
 48. if (number != -1)
 49. {
 50. /* Assign the amount to the pump */
 51. if (pthread_mutex_lock (&lock) != 0)
 52. printf ("Error Locking Mutex\n");
 53.
 54. pump[number-1] = get_amount();
 55.

FIGURE 14.9 (continued)

(continued)

14-38 Chapter 14 • Multiprocessing Using Processes and Threads

 56. if (pthread_mutex_unlock (&lock) != 0)
 57. printf ("Error Unlocking Mutex\n");
 58.
 59. /* Create a new consumer thread passing in pump number */
 60. if (pthread_create (&ctid, NULL, consumer, &number) != 0)
 61. printf ("Error Creating The Consumer Thread\n");
 62. }
 63. }
 64.
 65. /* Cleanup the application */
 66. cleanup (ptid);
 67.
 68. return (0);
 69. }
 70.
 71. void startup (int* number, pthread_t* ptid)
 72. {
 73. int count; /* Loop counter */
 74.
 75. /* Initialize the storage fill terminate to FALSE */
 76. terminate = 0;
 77.
 78. /* Initialize the storage tank inventory to the CAPACITY */
 79. inventory = CAPACITY;
 80.
 81. /* Initialize the pump amounts to 0 */
 82. for (count = 0; count < PUMPS; count++)
 83. pump[count] = 0;
 84.
 85. /* Initialize the pump number */
 86. *number = 0;
 87.
 88. /* Initialize the mutex lock and create the producer thread */
 89. if (pthread_mutex_init (&lock, NULL) != 0)
 90. {
 91. printf ("Error Initializing The Mutex Lock\n");
 92. *number = -1;
 93. }
 94. else if (pthread_create (ptid, NULL, producer, NULL) != 0)
 95. {

FIGURE 14.9 (continued)

(continued)

14.5 • Threads Illustrated 14-39

 96. printf ("Error Creating The Producer Thread\n");
 97. *number = -1;
 98. }
 99. }
 100.
 101. void cleanup (pthread_t ptid)
 102.
 103. {
 104. int checks; /* Pump checks */
 105. int number; /* Pump number */
 106. int active; /* Pump active */
 107.
 108. /* Initialize the pump checks counter */
 109. checks = 0;
 110.
 111. do
 112. {
 113. /* Initialize the pump number and active flag */
 114. number = 0;
 115. active = 0;
 116.
 117. /* Look for pumps that are active */
 118. while (number < PUMPS && !active)
 119. {
 120. if (pthread_mutex_lock (&lock) != 0)
 121. printf ("Error Locking Mutex\n");
 122.
 123. if (pump[number] > 0)
 124. active = 1;
 125. else
 126. number++;
 127.
 128. if (pthread_mutex_unlock (&lock) != 0)
 129. printf ("Error Unlocking Mutex\n");
 130. }
 131.
 132. if (active)
 133. {
 134. /* Increment the checks counter */
 135. checks++;

FIGURE 14.9 (continued)

(continued)

14-40 Chapter 14 • Multiprocessing Using Processes and Threads

 136.
 137. /* Display the active pumps message on the first check */
 138. if (checks == 1)
 139. printf ("Wait For Active Pump(s) To Finish\n");
 140.
 141. /* Sleep for one second before checking again */
 142. sleep (1);
 143. }
 144. }
 145. while (active);
 146.
 147. /* Set the terminate flag to cancel the producer thread */
 148. if (pthread_mutex_lock (&lock) != 0)
 149. printf ("Error Locking Mutex\n");
 150.
 151. terminate = 1;
 152.
 153. if (pthread_mutex_unlock (&lock) != 0)
 154. printf ("Error Unlocking Mutex\n");
 155.
 156. /* Wait for the producer thread to complete */
 157. if (pthread_join (ptid, NULL) != 0)
 158. printf ("Error Joining The Producer Thread\n");
 159. }
 160.
 161. int get_number()
 162. {
 163. int number; /* Pump number */
 164.
 165. do
 166. {
 167. /* Get the pump number */
 168. printf ("Enter A Pump Number From 1 To %d or –1 To Quit\n",
 169. PUMPS);
 170. scanf (" %d", &number);
 171.
 172. /* Skip processing if the pump number is –1 */
 173. if (number != –1)
 174.
 175. /* Validate the pump number */

FIGURE 14.9 (continued)

(continued)

14.5 • Threads Illustrated 14-41

 176. if (number < 1 || number > PUMPS)
 177. {
 178. printf ("The Pump Number Must Be From 1 To %d\n",
 179. PUMPS);
 180. number = 0;
 181. }
 182. else
 183. {
 184. /* Check to see if the pump is available */
 185. if (pthread_mutex_lock (&lock) != 0)
 186. printf ("Error Locking Mutex\n");
 187.
 188. if (pump[number-1] > 0)
 189. {
 190. printf ("Pump Number %d Is Already In Use\n",
 191. number);
 192. number = 0;
 193. }
 194.
 195. if (pthread_mutex_unlock (&lock) != 0)
 196. printf ("Error Unlocking Mutex\n");
 197. }
 198. }
 199. while (number == 0);
 200.
 201. return (number);
 202. }
 203.
 204. int get_amount()
 205. {
 206. int amount; /* Pump amount */
 207.
 208. do
 209. {
 210. /* Get the amount of gasoline to pump */
 211. printf ("Enter The Amount Of Gasoline To Pump\n");
 212. scanf (" %d", &amount);
 213.
 214. /* Validate the amount of gasoline */
 215. if (amount <= 0)

FIGURE 14.9 (continued)

(continued)

14-42 Chapter 14 • Multiprocessing Using Processes and Threads

 216. {
 217. printf (
 218. "The Amount Of Gasoline Must Be Greater Than 0\n");
 219. amount = 0;
 220. }
 221. }
 222. while (amount == 0);
 223.
 224. return (amount);
 225. }
 226.
 227. void* producer (void* argument)
 228. {
 229. int cancel; /* Cancel deliveries */
 229. int number; /* Pump number count */
 231. int remain; /* Pump remain count */
 232.
 233. /* Loop until the terminate flag is set to TRUE */
 234. do
 235. {
 236. if (pthread_mutex_lock (&lock) != 0)
 237. printf ("Error Locking Mutex\n");
 238.
 239. /* Refill storage tank if inventory falls below QUANTITY */
 240. if (inventory < QUANTITY)
 241. {
 242. printf ("Taking Pump(s) Off Line\n");
 243.
 244. /* Consumer threads are blocked when mutex is locked */
 245. for (number = 1; number <= PUMPS; number++)
 246. if (pump[number-1] > 0)
 247. printf ("Pump Number %d Off Line\n", number);
 248.
 249. printf ("Storage Tank Refill Started Inventory %d\n",
 250. inventory);
 251.
 252. /* Refill storage tank at FILL_RATE gallons per second */
 253. while (inventory < CAPACITY)
 254. {

FIGURE 14.9 (continued)

(continued)

14.5 • Threads Illustrated 14-43

 255. /* Do not refill storage tank beyond its CAPACITY */
 256. if (inventory + FILL_RATE <= CAPACITY)
 257. inventory += FILL_RATE;
 258. else
 259. inventory = CAPACITY;
 260.
 261. if (VERBOSE)
 262. printf ("Storage Tank Inventory %d\n", inventory);
 263.
 264. sleep (1);
 265. }
 266.
 267. printf ("Storage Tank Refill Finished Inventory %d\n",
 268. inventory);
 269. printf ("Putting Pump(s) Back On Line\n");
 270.
 271. /* Unblock consumer threads when mutex is unlocked */
 272. for (number = 1; number <= PUMPS; number++)
 273. {
 274. remain = pump[number-1];
 275.
 276. if (remain > 0)
 277. printf ("Pump Number %d On Line %d Remain\n",
 278. number, remain);
 279. }
 280. }
 281.
 282. /* Assign the terminate flag to the local cancel flag */
 283. /* used in the while condition outside the mutex lock */
 284. cancel = terminate;
 285.
 286. if (pthread_mutex_unlock (&lock) != 0)
 287. printf ("Error Unlocking Mutex\n");
 288.
 289. /* Sleep for one second before checking again */
 290. sleep (1);
 291. }
 292. while (!cancel);
 293.

FIGURE 14.9 (continued)

(continued)

14-44 Chapter 14 • Multiprocessing Using Processes and Threads

 294. printf ("Storage Tank Deliveries Canceled\n");
 295.
 296. return (NULL);
 297. }
 298.
 299. void* consumer (void* argument)
 300. {
 301. int number; /* Pump number */
 302. int output; /* Pump output */
 303. int amount; /* Pump amount */
 304.
 305. /* Cast argument as an int* and assign the contents to number */
 306. number = *(int*) argument;
 307.
 308. /* Initialize the output */
 309. output = 0;
 310.
 311. printf ("Pump Number %d Started\n", number);
 312.
 313. do
 314. {
 315. if (pthread_mutex_lock (&lock) != 0)
 316. printf ("Error Locking Mutex\n");
 317.
 318. /* Do not dispense more gasoline than requested */
 319. if (pump[number-1] < FLOW_RATE)
 320. amount = pump[number-1];
 321. else
 322. amount = FLOW_RATE;
 323.
 324. /* Do not dispense more gasoline than available */
 325. if (amount > inventory)
 326. amount = inventory;
 327.
 328. /* Reduce the storage tank inventory and */
 329. /* pump amount by the gallons per second amount */
 330. inventory -= amount;
 331. pump[number-1] -= amount;
 332.
 333. /* Increment the output by the amount */

FIGURE 14.9 (continued)

(continued)

14.5 • Threads Illustrated 14-45

 334. output += amount;
 335.
 336. /* Store the remaining pump amount in the local variable */
 337. /* amount for use in the while condition after the mutex */
 338. /* has been unlocked */
 339. amount = pump[number-1];
 340.
 341. if (VERBOSE)
 342. printf ("Pump Number %d Output %d\n", number, output);
 343. if (pthread_mutex_unlock (&lock) != 0)
 344. printf ("Error Unlocking Mutex\n");
 345.
 346. sleep (1);
 347. }
 348. while (amount > 0);
 349.
 350. printf ("Pump Number %d Finished Output %d\n", number, output);
 351.
 352. return (NULL);
 353. }

FIGURE 14.9 (continued)

 A sample run of the program follows:

 Enter A Pump Number From 1 To 10 or -1 To Quit
 1
 Enter The Amount Of Gasoline To Pump
 100
 Enter A Pump Number From 1 To 10 or -1 To Quit
 Pump Number 1 Started
 2
 Enter The Amount Of Gasoline To Pump
 200
 Enter A Pump Number From 1 To 10 or -1 To Quit
 Pump Number 2 Started
 3
 Enter The Amount Of Gasoline To Pump
 300
 Enter A Pump Number From 1 To 10 or -1 To Quit
 Pump Number 3 Started

14-46 Chapter 14 • Multiprocessing Using Processes and Threads

 4
 Enter The Amount Of Gasoline To Pump
 400
 Enter A Pump Number From 1 To 10 or -1 To Quit
 Pump Number 4 Started
 5
 Enter The Amount Of Gasoline To Pump
 500
 Enter A Pump Number From 1 To 10 or -1 To Quit
 Pump Number 5 Started
 1
 Pump Number 1 Is Already In Use
 Enter A Pump Number From 1 To 10 or -1 To Quit
 100
 The Pump Number Must Be From 1 To 10
 Enter A Pump Number From 1 To 10 or -1 To Quit
 -1
 Wait For Active Pump(s) To Finish
 Pump Number 1 Finished Output 100
 Pump Number 2 Finished Output 200
 Taking Pump(s) Off Line
 Pump Number 3 Off Line
 Pump Number 4 Off Line
 Pump Number 5 Off Line
 Storage Tank Refill Started Inventory 45
 Storage Tank Refill Finished Inventory 1000
 Putting Pump(s) Back On Line
 Pump Number 3 On Line 75 Remain
 Pump Number 4 On Line 180 Remain
 Pump Number 5 On Line 290 Remain
 Pump Number 3 Finished Output 300
 Pump Number 4 Finished Output 400
 Pump Number 5 Finished Output 500
 Storage Tank Deliveries Canceled

 EXERCISES FOR SECTION 14.5

 Self-Check

 1. Write an introductory comment with pre- and postconditions for function
 cleanup .

 2. Write an introductory comment with pre- and postconditions for function
 startup .

 3. Write an introductory comment with pre- and postconditions for function
 consumer .

 4. Write an introductory comment with pre- and postconditions for function
 producer .

14-47Chapter Review

 14.6 Common Programming Errors
 The most common programming errors in multithreaded programs involve
improper use of the mutex locking mechanism, including forgetting to lock the
mutex before updating a shared resource, forgetting to release the mutex after
updating a shared resource, and attempting to lock the mutex from within a thread
that has already locked the mutex. Forgetting to lock the mutex can cause unpre-
dictable behavior if the shared resource is accessed by another thread at the same
time. Program failure may ensue, with an error message such as

 Access violation at address 0x0E1F6A22

 In some situations, there is no run-time error message produced, and the pro-
gram may appear to be working properly, but the results are incorrect because of
inconsistent data values. This type of error occurs asynchronously and is unpredict-
able, which makes it very difficult to reproduce and track down. In some cases, add-
ing debug statements may seem to magically fix the problem by altering the timing
of the program execution in such a way that the problem no longer occurs, making
it even more difficult to track down and fix.

 Forgetting to release the mutex as well as attempting to lock the mutex a sec-
ond time in a thread that already has locked the mutex can lead to a thread dead-
lock, causing the program to cease to respond. This type of error is more predictable
and is usually more easily reproduced. It can be tracked down by adding debug
statements to determine which part of the program is causing the thread deadlock
to occur.

 The easiest way to avoid these types of problems is to review the program code
to make sure that every spot where a shared resource is accessed and there may be
more than one thread running are bracketing mutex lock and unlock function calls.
In addition, make sure that any mutex lock function call is followed by a correspond-
ing mutex unlock function call, so that the mutex is not left locked. Multithreaded
programs must be written carefully to work properly!

 ■ Chapter Review

 1. Multitasking is a way for a single user to run many programs at the same
time on a single CPU while still allowing the user to maintain control over
the CPU.

 2. Preemptive multitasking is a way to preempt a running program with the
 hardware interrupt system and instructing the CPU to run another program.

 3. Concurrent programming involves writing sets of program instructions that
can execute at the same time independently of one another.

 4. Each unique instance of an executing program is called a process and is given
a unique operating system identifier called a process ID.

14-48 Chapter 14 • Multiprocessing Using Processes and Threads

 5. A new process, called a child, is created by an existing process, called a parent,
with the fork function. The child process is a copy of the parent process. The
parent process can wait for the child process with the wait function.

 6. An existing process image can be replaced by a new process image from an
executable file with the execl function. The original process image no longer
exists.

 7. A pipe can be created with the pipe function that allows processes running
on the same CPU with a common ancestor to exchange information. Pipes
can be duplicated with the dup2 function to allow one process image to
exchange information with a different process image using the pipe from the
first process image and standard input and standard output from the other
 process image.

 8. Threads within a process share the process-related resources with each other,
making thread context switching more efficient than process context switching.

 9. New threads are created with the pthread_create function, which begins
executing at the first executable statement in the start function when the new
thread becomes the thread of control. One thread can wait for another thread
with the pthread_join function, which blocks the calling thread until the
specified thread exits.

 10. Mutual exclusion locks known as mutexes synchronize access to shared
resources by restricting the ability to lock the mutex to one thread at a time.
A mutex is initialized with the pthread_mutex_init function before it can be
used. A mutex is locked with the pthread_mutex_lock function which blocks
the calling thread until the mutex can be locked. A mutex is unlocked with the
 pthread_mutex_unlock function.

 11. Thread deadlocks occur when a thread is blocked trying to lock a mutex
that is already locked by itself or by another thread that will never release
the mutex lock.

 ■ Review of C Constructs

 Function parameters, which are discussed in Chapter 6 , allow you to include the
name of a function in the parameter list of another function. This construct is used
in multithreaded applications that call the pthread_create function:

 int pthread_create (pthread_t* thread ,
 const pthread_attr_t* attr ,
 void* start_routine (void*),
 void* arg);

 The third argument in the pthread_create function is void* start_routine
(void*). This means that pthread_create expects the address of a function that

14-49Review of C Constructs

returns a void pointer and has a single void pointer argument as the third argument.
In the thread program example the function name thread is passed into pthread_
create as the third argument. Passing function thread as an argument is valid
because the thread function returns a void pointer and has a single void pointer
argument as illustrated by its prototype:

 void* thread (void* argument);

 The name of any function whose prototype matches the function parameter
defi nition void* start_routine (void*) can be passed into the pthread_create
function as the third argument. In the case study program example there are func-
tions named producer and consumer with the requisite prototypes:

 void* producer (void* argument);
 void* consumer (void* argument);

 Both functions return a void pointer and have a single void pointer argument.
This action allows us to call pthread_create with producer at the beginning of
the program and with consumer as new pumps become active. In the fi rst case, the
function producer is called when the thread starts executing and in the second set
of cases the function consumer is called when the threads start. The same pthread_
create function is able to call two different functions because of the function
pointer construct.
 And what is a void pointer? Like an int pointer or a double pointer, a void
pointer contains the address of a value, but the data type of the value it points to
is unknown. An int pointer variable contains the address of an integer value, and
a double pointer variable contains the address of a double value; a void pointer
variable contains the address of an unknown data type value. But if we don’t know
the type of value, how do we use it? A void pointer is a generic pointer that can
hold the address of any known C data type value. A void pointer can be cast as any
known C data type pointer in order to interpret the value it points to. In the case
study example program, threads are created by calling pthread_create with the
consumer function name and the address of the integer variable number :

 pthread_create (&ctid, NULL, consumer, &number);

 Note that the last argument in pthread_create is a void pointer and we’re
passing in the address of an int value. This is possible because a void pointer is
generic: it can hold the address of any known C data type. In the consumer function
there is a single void pointer argument that contains the address of number that we
passed in. We know we passed in the address of an integer, so we can cast the void
pointer argument as an int pointer in order to interpret the value:

 number = *(int*)argument;

 Using function pointers and void pointers enables us to write generic functions
with generic arguments that can then be used in a variety of different situations. Try

14-50 Chapter 14 • Multiprocessing Using Processes and Threads

imagining how pthread_create would be written without using these C constructs.
Without function pointers, you would be able to call only one function when every
thread started executing. Without void pointers you would need to write differ-
ent versions of pthread_create to accept each known data type as an argument.
But what about user-defi ned data types, such as a user-defi ned structure, that the
creators of the C programming language could not possibly know in advance? Un-
derstanding why these statements are true will help you to understand what these C
constructs are and how they are used.

 ■ Quick-Check Exercises

 1. What is multitasking?
 2. What is pseudo-parallelism?
 3. What is concurrent programming?
 4. What is the function call to create a process?
 5. What is the function call to wait for a process to finish?
 6. What is the function call to launch an executable program from a process?
 7. What is the difference between a half-duplex pipe and a full-duplex pipe?
 8. What is the function call to create a pipe?
 9. What is the function call to connect a pipe to standard input or output?
 10. What is the function call to create a thread?
 11. What is the function call to initialize a mutex?
 12. What is the function call to lock a mutex?
 13. What is the function call to unlock a mutex?
 14. Can a thread deadlock with itself?

 ■ Answers to Quick-Check Exercises

 1. Multitasking is a way for a single user to run many programs at the same time
on a single CPU while still allowing the user to maintain control over the CPU.

 2. Programs appear to be running in parallel at the same time on a single CPU
when they are actually taking turns sharing the CPU using time slices.

 3. Writing sets of program instructions that can logically execute at the same
time.

 4. fork
 5. wait
 6. execl
 7. Half-duplex pipes can communicate in only one direction; full-duplex pipes

can communicate in both directions.

14-51Programming Projects

 8. pipe
 9. dup2
 10. pthread_create
 11. pthread_mutex_init
 12. pthread_mutex_lock
 13. pthread_mutex_unlock
 14. Yes, by attempting to lock the same mutex a second time.

 ■ Review Questions

 1. Describe preemptive multitasking.
 2. Explain why true parallelism can not be achieved on a single-CPU machine.
 3. Explain the limitations of the linear programming method for parallel

 problems.
 4. Explain what happens when a new process is created.
 5. Explain why a parent process should wait for its child processes to finish.
 6. Explain what happens when an executable program is launched from a process.
 7. Explain why pipes are limited to processes on the same CPU with a common

ancestor.
 8. Describe how a pipe is created and how to read from and write to a pipe
 9. Describe how to connect a pipe to standard input or output and explain when

it is necessary to do so.
 10. Explain what happens when a new thread is created.
 11. Explain why mutex locks are important.
 12. Explain what happens when a thread attempts to lock a mutex.
 13. Explain two ways threads can deadlock.

 ■ Programming Projects

 1. Write a program that creates a child process. In the child process, sleep for 5
seconds and then display the message “ Child Finished ”. In the parent proc-
ess, wait for the child process to finish and then display the message “ Parent
Finished ”. Call sleep with an argument of 5 in the child process to sleep for
5 seconds.

 2. Write a program that creates a pipe and then a child process. In the parent
process write the character string “ Hello World ” to the pipe and wait for the
child process to finish. In the child process, read the character string from the
pipe and display the character string.

14-52 Chapter 14 • Multiprocessing Using Processes and Threads

 3. Write a program that sleeps for 5 seconds and then displays the message
“ Child Finished ”. Write a separate program that launches the first program,
waits for the child process to finish, and then displays the message “ Parent
Finished ”.

 4. Write a program that reads a newline-delimited character string from standard
input and displays the character string. Write a separate program that creates
a pipe, assigns the read file descriptor of the pipe to standard input, launches
the first program, writes the character string “ Hello World ” to the pipe, and
waits for the child process to finish.

 5. Write a program that creates a new thread. In the new thread display the
message “ New Thread Started ”, sleep for 5 seconds, and then display
the message “ New Thread Finished ”. In the main thread, wait for the new
thread to finish and then display the message “ Main Thread Finished ”.

 6. Write a program with a global integer variable and a mutex lock that initial-
izes the mutex lock and then creates a new thread. In the new thread, lock
the mutex, increment the global integer variable, display the message “ New
Thread Data = ” with the updated value of the global integer variable, and
unlock the mutex. In the main thread, lock the mutex, increment the global
integer variable, display the message “ Main Thread Data = ” with the
updated value of the global integer variable, unlock the mutex, and wait for
the new thread to finish.

 7. Write a program with a global integer flag and a mutex lock. The program
initializes the mutex lock and then creates a new thread. In the new thread,
loop until the global integer flag is 0 incrementing a local counter once per
second and displaying the message “ Count = ” with the updated value of the
local counter from within the loop. In the main thread, wait for the user to
enter any key, then lock the mutex, set the global integer flag to 0, unlock the
mutex, and wait for the new thread to finish. Hint : Remember that you will
need to lock the mutex, store the global integer flag in a local integer variable,
and unlock the mutex from within the loop to test the loop condition since you
cannot lock the mutex outside the loop.

 8. Write a program that creates a new thread and passes an integer value into
the new thread as the argument. In the new thread, display the message “ New
Thread Argument = ” with the integer argument value. In the main thread,
wait for the new thread to finish.

 On to C++

 CHAPTER OBJECTIVES
 • To learn about C++ control structures, input and output

operators, and function parameters

 • To understand how to do object-oriented programming
in C++

 C H A P T E R

15

 C is a traditional procedural programming language that views data as static col-
lections of values that are manipulated and transformed by programs. In the early
1980s, Bjarne Stroustrup of AT&T’s Bell Laboratories developed C++, a new pro-
gramming language that added to C features to support object-oriented program-
ming (OOP) , which views software as a simulation of a world populated not with
static data but with objects—semiautonomous agents having prescribed responsibili-
ties. An object is defined by encapsulating what it is (its data components) with what
it does (its responsibilities). The rising popularity of object-oriented programming
stems in part from the fact that the OOP view of the world more closely models
reality than does the procedural programming view. Also, classes of objects can
often be reused in other projects, shortening development time.

 Objects are organized in classes that have the same components and behavior.
The classes in turn are arranged in a superclass-subclass hierarchy, and objects that
are in subclasses inherit data and behaviors from their superclasses.

 In addition to the use of classes and inheritance, object-oriented program-
ming is characterized by the use of polymorphism —giving a single name to behav-
iors that are operationally different but conceptually the same. Polymorphism is
common in natural languages such as English. For example, when you are offered
a piece of steak to “eat,” you automatically reach for a knife and fork and embark
on several minutes of concentrated chewing and swallowing. However, when
you set out to “eat” a bowl of vanilla ice cream, you equip yourself with a spoon
and tend to skip the chewing altogether. So, what is the operational definition of
“to eat”? Clearly, it varies depending on what you are eating. In a similar fashion,
an object-oriented language lets software developers create operations or func-
tions with one name but multiple behaviors depending on the data to which they
are applied.

 15.1 C++ Control Structures, Input/Output, and Functions
 C++ includes all the standard control structures of C: if , if-else , and switch
statements for selection; while , for , and do-while statements for repetition.
However, C++ standard input/output uses operators rather than functions such as
 printf and scanf , fprintf , and fscanf , and C++ programs usually declare and
initialize named constants rather than calling for textual replacement using the pre-
processor directive #define (for example, const double PI = 3.1415926;). This
declaration facility is also available in C. Figure 15.1 shows side-by-side C and C++
versions of a program that solves the following problem: At a research lab, some

 object-oriented
programming (OOP)
a methodology that
creates programs
composed of
semiautonomous
agents called objects

15.1 • C++ Control Structures, Input/Output, and Functions 15-3

yttrium-90 has leaked into the employee coffee room. The half-life of this radioac-
tive substance is about three days—that is, the current radiation level is only half of
what it was three days ago. The program displays a chart that lists the radiation level
for every three days along with the message Safe or Unsafe. The official safe level is
0.466 millirem per day, but the program implements a safety factor of 10, not advis-
ing entry into the room until the radiation level is 1

10 of the official safe level. Notice
that the programs are virtually identical except for the color-highlighted regions.
The C++ program uses a different style of comment, although C-style comments
are also permitted. The double slash (//) indicates that the rest of the line is a com-
ment.

 Using namespace std

 The line

 using namespace std;

 follows the # include lines. This line indicates that we will be using objects that are
name in a special region called namespace std (short for standard). Because the
C++ standard library is defined in the standard namespace, this line should appear
in all C++ programs. The using statement ends with a semicolon. Notice that the
library file names in namespace std do not require a . h extension.

 C++ Standard Input/Output

 One of the features of C++ is the ability to define not only functions but also opera-
tors. The iostream library uses this feature to define >> as an input operator and <<
as an output operator. In function main of the C++ sample program of Fig. 15.1 , we
see the output operator in two statements:

 cout << "Enter the radiation level (in millirems)> ";
 cout << "\nYou can enter the room on day " << day << ".\n";

 The name cout refers to the output stream that the library iostream associates with
the program’s standard output device, typically the screen. An output stream is
a destination to which output is sent as a continuous stream of characters. The <<
operator inserts characters in an output stream, so it is called the insertion operator .
The first output statement above inserts 42 characters in the cout stream:

 Enter the radiation level (in millirems)> ❚

 It also leaves the cursor at the end of the output line, allowing the user to enter data
on the same line. All characters entered by the user are automatically inserted in the
 cout output stream. When the user types the <Enter> or <Return> key, a newline
character is inserted in the output stream, moving the cursor to the beginning of
the next line. The second output statement shown above uses the output insertion

 output stream an
output destination for
a continuous stream of
characters

 insertion operator
(<<) an operator that
inserts characters in an
output stream

 FIGURE 15.1 Comparison of (a) C and (b) C++ Control Structures

 (a) (b)
 /* //

 * Calculates and displays a table showing the safety level of a // Calculates and displays a table showing the safety level of a

 * coffee room // coffee room

 */ //

 #include <stdio.h> #include <iostream> // library with I/O operators

 #include <iomanip> // library with output format manipulators

 #define SAFE_RAD 0.466 /* safe level of radiation */ using namespace std;

 #define SAFETY_FACT 10.0 /* safety factor */

 const double SAFE_RAD = 0.466; // safe level of radiation

 const double SAFETY_FACT = 10.0; // safety factor

 int rad_table(double init_radiation, double min_radiation);

 int rad_table(double init_radiation, double min_radiation);

 int

main(void) int

 { main()

 int day; /* day user can enter room */ {

 double init_radiation, /* radiation level right after leak */ int day; // day user can enter room

 min_radiation; /* safe level divided by safety factor*/ double init_radiation, // radiation level right after leak

 min_radiation; // safe level divided by safety factor

 /* Compute stopping level of radiation */

 min_radiation = SAFE_RAD / SAFETY_FACT; // Compute stopping level of radiation

 min_radiation = SAFE_RAD / SAFETY_FACT;

 /* Prompts user to enter initial radiation level */

 printf("Enter the radiation level (in millirems)> "); // Prompts user to enter initial radiation level

 scanf("%lf", &init_radiation); cout << "Enter the radiation level (in millirems)> ";

 cin >> init_radiation;

 /* Displays table */

 day = rad_table(init_radiation, min_radiation); // Displays table

 day = rad_table(init_radiation, min_radiation);

 /* Display day the user can enter the room. */

 printf("\nYou can enter the room on day %d.\n", day); // Display day the user can enter the room.

 cout << "\nYou can enter the room on day " << day << ".\n";

 return (0); return (0);

 } }

(continued)

 /* //

 * Displays a table showing the radiation level and safety status // Displays a table showing the radiation level and safety status every

 * every 3 days until the room is deemed safe to enter. Returns the // 3 days until the room is deemed safe to enter. Returns the day

 * day number for the first safe day. // number for the first safe day.

 * Pre: min_radiation and init_radiation are defined. // Pre: min_radiation and init_radiation are defined.

 * Post: radiation_lev <= min_radiation // Post: radiation_lev <= min_radiation

 */ //

 int int

 rad_table(double init_radiation, double min_radiation) rad_table(double init_radiation, double min_radiation)

 { {

 int day; /* days elapsed since substance leak */ int day; // days elapsed since substance leak

 double radiation_lev; /* current radiation level */ double radiation_lev; // current radiation level

 day = 0; day = 0;

 printf("\n Day Radiation Status\n (millirems)\n"); cout << "\n Day Radiation Status\n (millirems)\n";

 for (radiation_lev = init_radiation; for (radiation_lev = init_radiation;

 radiation_lev > min_radiation; radiation_lev > min_radiation;

 radiation_lev /= 2.0) { radiation_lev /= 2.0) {

 if (radiation_lev > SAFE_RAD) if (radiation_lev > SAFE_RAD)

 printf(" %3d%3c%9.4f Unsafe\n", day, ' ', cout << " " << setw(3) << day << setw(3) << ' ' <<

 radiation_lev); fixed << showpoint << setprecision(4)

 else << setw(9) << radiation_lev << " Unsafe\n";

 printf(" %3d%3c%9.4f Safe\n", day, ' ', radiation_lev); else

 day += 3; cout << " " << setw(3) << day << setw(3) << ' ' <<

 } fixed << showpoint << setprecision(4)

 << setw(9) << radiation_lev << " Safe\n";

 return (day); day += 3;

 } }

 return (day);

 }

FIGURE 15.1 (continued)

 (a) (b)

15-6 Chapter 15 • On to C++

operator three times to display three values: (1) a string, (2) the value of the int
variable day , and (3) a period and newline character to end both the sentence and
the output line.

 Function main of the C++ sample program of Fig. 15.1 also demonstrates the
C++ input operator in the statement

 cin >> init_radiation;

 Just as C++ treats output as a continuous stream of characters, it views the sequence
of characters typed at the keyboard as a stream. Thus, cin is the name that the
iostream library associates with the standard input device, typically the keyboard.
The >> operator is called the extraction operator because it extracts one or more
characters from the input stream for storage as a data value. Since the right operand
of the >> in our example is a type double variable, the extraction operator skips
over any blanks and newline characters before it takes the first group of nonblank
characters encountered and tries to interpret this group as a real number for storage
in init_radiation .

 Reference Parameters

 Notice that init_radiation is not preceded by the & address-of operator as it is
in the call to scanf in the C program. C++ allows the programmer to use either of
two kinds of parameters when defining functions or operators. The first is value
 parameters —parameters like those available in C into which the values of the
corresponding actual arguments are stored when a call is executed. The second is
 reference parameters , parameters into which the addresses of the correspond-
ing actual arguments are stored at a call. Since the right operand of operator >>
is a reference parameter, the C++ compiler automatically passes the address of
 init_radiation in the machine-code version of the statement

 cin >> init_radiation;

 Because of the availability of reference parameters, C++ programs rarely, if ever,
need to use the address-of operator. To illustrate the declaration and use of refer-
ence parameters, Fig. 15.2 displays a side-by-side comparison of function separate
in C (see Fig. 5.1) and in C++.

 EXAMPLE 15.1 In its C++ implementation (Fig. 15.2 b), function separate has one input value
parameter (num) and three output reference parameters (sign , whole , and frac).
C++ uses the notation

 int& whole
 double& frac

 extraction operator
(>>) an operator that
takes values from an
input stream for storage
in variables

 value parameter
a parameter into
which the value of the
corresponding actual
argument is stored, so
the function/operator
has its own copy of the
argument value

 reference parameter
a parameter into which
the address of the
corresponding actual
argument is stored, so
the function/operator
can refer to the original
copy of the argument

 FIGURE 15.2 Implementing Output Parameters in C and C++

 (a) (b)
 /* //

 * Separates a number into three parts: a sign (+, -, // Separates a number into three parts: a sign (+, -,

 * blank), a whole number magnitude, and a fractional part. // blank), a whole number magnitude, and a fractional part.

 */ //

 void void

 separate(double num, /* input - value to be split */ separate(double num, // input - value to be split

 char *signp, /* output - sign of num */ char& sign, // output - sign of num

 int *wholep, /* output - whole number magnitude int& whole, // output - whole number magnitude

 of num */ of num

 double *fracp) /* output - fractional part of num */ double& frac) // output - fractional part of num

 { {

 double magnitude; /* magnitude of num */ double magnitude; // magnitude of num

 /* Determines sign of num */ // Determines sign of num

 if (num < 0) if (num < 0)

 *signp = '-'; sign = '-';

 else if (num == 0) else if (num == 0)

 *signp = ' '; sign = ' ';

 else else

 *signp = '+'; sign = '+';

 /* Finds magnitude of num (its absolute value) and // Finds magnitude of num (its absolute value) and

 separates it into whole and fractional parts */ // separates it into whole and fractional parts

 magnitude = fabs(num); magnitude = fabs(num);

 *wholep = floor(magnitude); whole = floor(magnitude);

 *fracp = magnitude - *wholep; frac = magnitude - whole;

 } }

15-8 Chapter 15 • On to C++

 to indicate that frac and whole are reference parameters. Since the addresses of
corresponding actual arguments are passed to frac and to whole when function
 separate is called, the statement

 frac = magnitude - whole;

 uses the value stored in the actual argument corresponding to whole to calculate the
fractional part and stores this result in the actual argument corresponding to frac .
Notice that we do not need to use the indirection operator * to accomplish this. In
a function with the declarations

 double n = -5.165;
 char s;
 int w;
 double f;

 the function call

 separate(n, s, w, f);

 would return the expected values to actual arguments s('-') , w(5) , and
 f(0.165) .

 Output Formatting

 To control the spacing and precision of values displayed on the standard output
stream cout , the programmer inserts appropriate output manipulators in the stream
just before inserting the value to be displayed. Function rad_table in Fig. 15.1
shows the use of output formatting in both C and C++. Table 15.1 lists calls to C
function printf for formatted output and comparable C++ expressions that use
some of the output manipulators that are defined in the iomanip library.

 TABLE 15.1 Output Formatting in C and C++

 C C++ Meaning

 printf("%3d",
 day);

 cout << setw(3) <<
 day;

 Display the value of integer variable day right-
justified in a field of 3 columns.

 printf("%9.4f",
 radiation_lev);

 cout << fixed
 << showpoint
 << setprecision(4)
 << setw(9)
 << radiation_lev;

 Display the value of floating-point variable
 radiation_lev with a decimal point
 (showpoint) and a fixed number of digits to
the right of the decimal point (fixed) ; spe-
cifically, 4 digits to the right of the decimal point
(setprecision(4)); and right-justify the
value in a field of 9 columns (setw(9)).

15.2 • C++ Support for Object-Oriented Programming 15-9

 EXERCISES FOR SECTION 15.1

 Self-Check

 1. Predict the output of the following C++ program fragment, representing each
space by a ❚. Assume that x (type double) is 12.334 and i (type int) is 100.
Note that the effect of manipulator setw applies to the very next output only.
However, the calls to setprecision , fixed , and showpoint cause effects
that last until changed by other calls.

 cout << setprecision(2) <<
 fixed << showpoint;
 cout << "x is " << setw(5) << x << " i is " <<
 setw(4) << i;
 cout << "\ni is " << i << " x is " <<
 setprecision(1) << x << "\n";

 2. If variables a , b , and c are 504, 302.558, and −12.31, respectively, write a C++
program fragment that will display the line below. Do not display any quoted
strings of blanks. Rather, adjust the field widths using setw to produce the
blanks shown. (For clarity, a ❚ denotes a blank space.)

 ❚❚504❚❚❚❚❚302.56❚❚❚❚−12.3

 3. Write initialized declarations of constants equivalent to the following #define
preprocessor directives.

 #define KMS_PER_MILE 1.609
 #define DAYS_IN_WEEK 7

 Programming

 1. Rewrite the gasoline storage tank program of Fig. 5.9 in C++. Include
the iostream and iomanip libraries instead of stdio, and replace all uses of
 #define constant macros by initialized declarations of const variables.

 2. Rewrite the program to sort three numbers from Fig. 6.6 in C++. Be sure to
use two reference parameters in function order .

 15.2 C++ Support for Object-Oriented Programming
 In Chapter 10 you studied the notion of an abstract data type—a data structure
and a set of associated operations. The complex number case study of that chapter
defined an abstract data type that we could model as shown in Fig. 15.3 .

15-10 Chapter 15 • On to C++

abs_complex

scan_complex

print_complex

add_complex

subtract_complex

multiply_complex

divide_complex

real
imag

 FIGURE 15.3

 “Donut” Model of
an Abstract Data
Type

 Let’s compare this model to a similar model of the built-in type int
(Fig. 15.4). Although our implementation of the complex number ADT pro-
vides comparable operations to those built in for type int , we were unable to
make the operations of our ADT exact copies of those associated with int for
two reasons:

 1. C does not allow the programmer to define operators, so we had to define
functions for addition, subtraction, etc.

 2. C permits only one meaning for a name in a given scope, so we could not
name our complex number input function scanf or our absolute value
 function abs .

 In contrast, C++ provides language support for object-oriented programming.
There are three major aspects of this support:

 1. Class definition —The class definition facility allows you to group together the
data structure and the operations of an abstract data type, and it permits you
to define automatic conversions from one data type to another.

15.2 • C++ Support for Object-Oriented Programming 15-11

 2. Operator overloading —C++ lets you define how operators should be evalu-
ated when applied to new data types, so a complex numbers class can include
definitions of arithmetic and input/output operators.

 3. Function overloading —C++ permits multiple definitions of a function as long
as each has a unique signature —that is, each has a unique list of parameter
types. An absolute value function for complex numbers could thus have the
same name as the absolute value function for integers.

 Object-support features 2 and 3 provide C++’s mechanisms for implementing
polymorphism. Because of C++’s object-oriented features, we can model complex
numbers just as the system models integers, as shown in Fig. 15.5 . The C++ class
definition facility allows us to encapsulate our definition of type Complex in a manner
that hides the implementation of the real and imaginary parts of a complex number.
A client program can manipulate these data only by using the operations shown in
the outer circle of the “donut” ADT model in Fig. 15.5 . These operations are consid-
ered the public part of the object, whereas the data members real and imag are the
private parts of the object.

abs

scanf

printf

+

–

*

/

int

 FIGURE 15.4

 “Donut” Model of
Standard Type int

 signature a
combination of a
function or operator’s
name and its parameter
(operand) types

15-12 Chapter 15 • On to C++

 The Header File complex.h

 Figure 15.6 is the header file for a C++ class Complex . In this file we have labeled
the class declaration with the terminology used to describe each aspect of the defini-
tion. Although a full explanation of C++ classes is beyond the scope of this chapter,
the next few subsections will summarize the meanings of these terms.

 Class Name and Constructors

 We have noted that class definition is the type-expansion facility of C++. Naming a
class and defining constructors for it provide the ability to declare an object of this
class just as you would declare a variable of a built-in type. The first constructor
shown takes no arguments and is called the default constructor . Because of this
constructor, we can declare a Complex object named comp1 using the statement

 Complex comp1;

 Since our default constructor initializes both data members of the object to zero, the
space allocated for comp1 would be

0.0comp1.real

0.0comp1.imag

 default constructor
a constructor that
requires no arguments

abs

>>

<<

+

–

*

/

real
imag

int Complex

abs

>>

<<

+

–

*

/

int

 FIGURE 15.5

 Comparison of Models of Standard Type int and Abstract Data Type Complex

15.2 • C++ Support for Object-Oriented Programming 15-13

//
// header file complex.h
//
#ifndef COMPLEX_H
#define COMPLEX_H
#include <iostream>
using namespace std;

class Complex {

public:

 Complex() { real = 0; imag = 0; } // default constructor

 Complex(double r1) { real = r1; imag = 0; } // constructor that

 // converts reals to complex numbers

 Complex(double r1, double im) { real = r1; imag = im; } // constructor

 // with 2 parameters corresponding to 2 data members

 Complex abs() const;

 Complex operator+ (Complex operand2) const;

 Complex operator- (Complex operand2) const;

 Complex operator* (Complex operand2) const;

 Complex operator/ (Complex operand2) const;

private:

 double real; // real and imaginary parts

 double imag; // of a complex number

friend istream& operator>> (istream& is, Complex& innum);

friend ostream& operator<< (ostream& os, Complex outnum);

};

#endif

Class name

ConstructorsAccess specifiers

Prototype of member function

Prototypes of member operators

Data members

Prototypes of friend operators

 FIGURE 15.6 Header File for Class Complex

15-14 Chapter 15 • On to C++

 The second and third constructors shown take arguments that allow initialization
of Complex objects to nonzero values. For example, the statements that follow use
both constructors and cause initialization as shown.

 Complex comp2(5.1);
 Complex comp3(9.1, -7.2);

5.1comp2.real

0.0comp2.imag

9.1comp3.real

–7.2comp3.imag

 Member Functions and Operators

 When our design of a class includes functions and operators whose first param-
eter/operand is an object of the class type, we define the functions/operators as
public members of the class by placing their prototypes within the class declara-
tion. The prototypes include parameters only for arguments/operands that are in
addition to the first. For example, since function abs is applied to only one com-
plex number at a time, no parameters are shown. The first parameter of a member
function or the first operand of a member operator is the object to which the
function or operator “belongs,” and the function/operator code has direct access
to all other members of the object, including the private data members. The form
of a prototype for an operator is similar to the form of a function prototype. In
the prototype of the addition member operator, the first use of Complex indicates
that the value computed by the operator is a complex number (an object of type
 Complex). The name of the module that defines the operator is the keyword
 operator with the specific operator symbol appended. Following this name is the
parameter list. As with member functions, member operators have direct access
to the members of their first operand. Thus, the Complex parameter operand2
corresponds to the + operator’s right operand. If the function or operator does
not change any of the object’s data members, its prototype and header end in the
keyword const .

Parameter
corresponding

to right operand

Indicates
that +

doesn’t
change
its first

operand

Module
name

Return
type

(Complex operand2) const;operator+Complex

15.2 • C++ Support for Object-Oriented Programming 15-15

 The Implementation File complex.cpp

 Consider the implementations of abs and of arithmetic operators + , - , * , and / that
are shown in Fig. 15.7 . Because C++ permits overloading of function names and
of operators—that is, it allows one name to have multiple meanings—in our imple-
mentation file we must designate which version of an operation we are defining. For

 overloading using
the same name for
several different
functions or operators
in a single scope

 FIGURE 15.7 Implementation File for Class Complex

 1. //
 2. // implementation file complex.cpp
 3. //
 4.
 5. #include "complex"
 6. #include <iostream>
 7. #include <iomanip>
 8. #include <cmath>
 9. using namespace std;
 10.
 11. //
 12. // absolute value of a complex number
 13. //
 14. Complex Complex::abs() const
 15. {
 16. Complex cabs(sqrt(real * real + imag * imag), 0);
 17. return cabs;
 18. }
 19.
 20. //
 21. // sum of current complex number and operand2
 22. //
 23. Complex Complex::operator+ (Complex operand2) const
 24. {
 25. Complex csum(real + operand2.real, imag + operand2.imag);
 26. return csum;
 27. }
 28.
 29. //
 30. // product of current complex number and operand2
 31. //
 32. Complex Complex::operator* (Complex operand2) const
 33. {

(continued)

15-16 Chapter 15 • On to C++

 34. Complex cproduct(real * operand2.real - imag * operand2.imag,
 35. real * operand2.imag + imag * operand2.real);
 36. return cproduct;
 37. }
 38.
 39. //
 40. // difference of current complex number and operand2
 41. //
 42. Complex Complex::operator- (Complex operand2) const
 43. {
 44. Complex cdiff(real - operand2.real, imag - operand2.imag);
 45. return cdiff;
 46. }
 47.
 48. //
 49. // quotient of current complex number divided by operand2
 50. //
 51. Complex Complex::operator/ (Complex operand2) const
 52. {
 53. double divisor = operand2.real * operand2.real +
 54. operand2.imag * operand2.imag;
 55. Complex cquot((real * operand2.real + imag * operand2.imag) / divisor,
 56. (imag * operand2.real - real * operand2.imag) /
 57. divisor);
 58. return cquot;
 59. }
 60.
 61. //
 62. // Extract from input source the two components of a complex number
 63. //
 64. istream& operator>> (istream& is, Complex& c)
 65. {
 66. is >> c.real >> c.imag;
 67. return is;
 68. }
 69.
 70. //
 71. // Insert in the output stream a representation of a complex number:
 72. // either the form (a + bi) or (a - bi), dropping a or b if one of them
 73. // rounds to zero
 74. //

FIGURE 15.7 (continued)

(continued)

15.2 • C++ Support for Object-Oriented Programming 15-17

 75.
 76. ostream& operator<< (ostream& os, Complex c)
 77. {
 78. double a = c.real;
 79. double b = c.imag;
 80. char sign;
 81.
 82. os << fixed << showpoint << setprecision(2);
 83. os << '(';
 84. if (fabs(a) < .005 && fabs(b) < .005) {
 85. os << 0.0;
 86. } else if (fabs(b) < .005) {
 87. os << a;
 88. } else if (fabs(a) < .005) {
 89. os << b;
 90. } else {
 91. if (b < 0)
 92. sign = '-';
 93. else
 94. sign = '+';
 95. os << a << ' ' << sign << ' ' << fabs(b) << 'i';
 96. }
 97.
 98. os << ')';
 99. return os;
 100. }

FIGURE 15.7 (continued)

this reason, in the function/operator header, the name is preceded by the class name
 Complex and the scope resolution operator :: . For example, the headers

 Complex Complex::abs() const
 Complex Complex::operator+ (Complex operand2) const

 have the meanings shown in Table 15.2 .
 The bodies of both member function abs and member operator + use the third

constructor of class Complex to declare and initialize a type Complex local variable
containing the correct result. The value of this local variable is returned as the func-
tion/operator result. Function abs uses the data member names real and imag to
access the components of the current complex number. Operator + uses the data
member names real and imag to refer to the components of its left operand, and
 operand2.real and operand2.imag to access the components of its right operand.

15-18 Chapter 15 • On to C++

 To call a public member function, one uses an object name, the class member
access operator (.), and the function name. For example, the driver function of
 Fig. 15.8 calls abs using:

 com1.abs()

 This call executes the code of class Complex ’s abs function in a context where
 abs ’ reference to real means com1.real and to imag means com1.imag . If
 abs were called from another member function or operator, the object name
would not be needed: the call abs() would return the absolute value of the current
object.

 The C++ compiler automatically generates a call to a member operator when
the left operand of an operator is an object. For example, when evaluating the
expression

 (com1 + com2)

 from the driver function, the fact that com1 is an object of class Complex
causes invocation of Complex ’s member operator + in a context in which the
 operator’s references to real and imag will mean com1.real and com1.imag and
its references to operand2.real and operand2.imag will mean com2.real and
 com2.imag .

 TABLE 15.2 Interpreting Headers of Overloaded Functions and Operators

 Part of First Header Meaning

 Complex The function result is an object of type Complex .

 Complex::abs This header marks the beginning of the definition of the function abs , which is
a member of class Complex .

 () The parameter list is empty because this function operates only on the object to
which it belongs.

 const This function never changes the value of the object to which it belongs.

 Part of Second Header Meaning

 Complex The value of this operation is an object of type Complex .

 Complex::operator+ This header marks the beginning of the definition of the + operator, which is a
member of class Complex .

 (Complex operand2) The parameter list contains one parameter: + is a binary operator whose left
operand is the object to which the operator belongs and whose right operand
will be associated with Complex parameter operand2 .

 const This operator never changes the value of the object to which it belongs.

15.2 • C++ Support for Object-Oriented Programming 15-19

 Data Members

 The attributes or components of an object are implemented as class data members.
Each data member is declared just as if it were a separate variable. If a member func-
tion or operator needs to refer to the data members of the current object, it simply
uses the component name. However, other legitimate references require the use of
the object name, the class member selection operator (.), and the component name:

 operand2.real

 FIGURE 15.8 Driver Function to Test Class Complex

 1. //
 2. // Driver for Complex — equivalent to driver of Fig. 10.10
 3. //
 4.
 5. #include "complex.h"
 6.
 7.
 8. int
 9. main()
 10. {
 11. Complex com1, com2;
 12.
 13. // Gets two complex numbers
 14. cout << "Enter the real and imaginary parts of a complex number\n";
 15. cout << "separated by a space> ";
 16. cin >> com1;
 17. cout << "Enter a second complex number> ";
 18. cin >> com2;
 19.
 20. // Forms and displays the sum
 21. cout << "\n" << com1 << " + " << com2 << " = " << (com1 + com2);
 22.
 23. // Forms and displays the difference
 24. cout << "\n\n" << com1 << " - " << com2 << " = " << (com1 - com2);
 25.
 26. // Forms and displays the absolute value of the first number
 27. cout << "\n\n|" << com1 << "| = " << com1.abs() << "\n";
 28.
 29. return (0);
 30. }

15-20 Chapter 15 • On to C++

 Private members are accessible to all member functions and constructors, the
code units that refer to these members by name. Additional code units can be given
access to private members by designating them as friends of the class. We have done
this in Fig. 15.6 for operators >> and << . In order for a class’s friend to reference a pri-
vate member, it must use the object name, the class member selection operator, and
the member name. Both operators and functions can be declared friends of a class.

 Input/Output Operator Overloading

 To assist us in thinking of a complex number as a single unit rather than as a collec-
tion of pieces, the Complex class declaration in Fig. 15.6 indicates that operators >>
and << are to be overloaded so they can be used for input/output of complex num-
bers. These operators cannot be defined as members of class Complex because their
first operands must be input or output streams, not complex numbers. However, they
do need access to the private data members of their Complex operands. As we noted
in the previous section, it is for this reason that we designate operators >> and << as
friends of class Complex . The value returned by all predefined versions of operator
 >> is the input stream that is its left operand, and the value returned by predefined
versions of operator << is the output stream that is its left operand. The return of
the stream as the I/O operator’s value enables us to write expressions consisting of
sequences of << or >> operations, as is shown in Fig. 15.9 . The stream returned as
the value of each operation becomes the left operand of the next operation.

 Consider how function main of Fig. 15.8 uses our overloaded input and output
operators. The statement that inputs a value for com1

 cin >> com1;

 uses the definition of class Complex ’s friend operator >> . The system knows to call
our definition of this operator rather than one of the standard definitions because
the right operand is a Complex object. However, when executing the first statement
of our Complex class definition of friend operator >> ,

 is >> c.real >> c.imag;

 the system will repeatedly use the standard definition of the binary operator >> that
takes a type double right operand.

 EXERCISES FOR SECTION 15.2

 Self-Check

 1. Fill in the blanks with words or phrases to correctly complete these statements.

 a. Member functions _________ (use / do not use) an object name and class
member selection operator to refer to other members.

 friend a nonmember
operator or function
given permission to
access the private
members of a class

15.2 • C++ Support for Object-Oriented Programming 15-21

 b. _________ provide the ability to declare an object just as you would
declare a variable of a built-in type and to declare and initialize an object
simultaneously.

 c. A member function that does not modify any object components is a
 constant function and should therefore have a prototype and a header that
end in _________.

 d. When a member function is defined outside a class declaration, the func-
tion name in its header is preceded by the _________ and the _________
operator.

 e. When evaluating an expression of the form

 output stream << right operand

 the compiler determines whether to use a standard definition of << or an
overloaded definition for a user-defined class by considering _________.

 2. The following is a flawed implementation of a class Ratio intended to repre-
sent a common fraction as an integer numerator and an integer denominator.
Identify the errors in this implementation and correct them. The algorithm
used to find the greatest common divisor of two integers is correct. Notice
that reduce is an example of a member function that does change values of
components: Therefore, its prototype and header should not end in const .
For simplicity, we have combined the declaration and implementation of the
class along with the driver function in a single file.

 #include <iostream>
 #include <cstdlib>
 using namespace std;

 FIGURE 15.9 Step-by-Step Evaluation of Multiple << Operations

 cout << "\n" << com1 << " + " << com2 << " = " << (com1 + com2);

 cout

 cout

 cout

 cout

 cout

 cout

15-22 Chapter 15 • On to C++

 class Ratio {

 public:
 Ratio() {} // Default constructor
 void reduce(); // reduces fraction

 private:
 int num; // numerator
 int denom; // denominator

 friend ostream& operator<< (ostream&, Ratio);
 };

 //
 // Constructor that initializes components
 //
 Ratio :: Ratio(int numerator, int denominator)
 {
 num = numerator;
 denom = denominator;
 }

 //
 // Reduces fraction represented by a Ratio object by
 // dividing num and denom by greatest common divisor
 //
 void reduce() const
 {
 int n, m, r;
 n = abs(num);
 m = abs(denom);
 r = n % m;
 while (r != 0) {
 n = m;
 m = r;
 r = n % m;
 }
 num /= m;
 denom /= m;
 }

 //
 // Extract from input source the two components of a Ratio
 //
 istream operator>> (istream& is, Ratio& oneRatio)

15.2 • C++ Support for Object-Oriented Programming 15-23

 {
 is >> num >> denom;
 return is;
 }

 //
 // Display a Ratio object as a common fraction
 //
 ostream& operator<< (ostream& os, Ratio)
 {
 os << oneRatio.num ;
 if (oneRatio.denom != 1)
 cout << " / " << oneRatio.denom;
 }

 //
 // Driver to declare and manipulate a Ratio object
 //
 int main()
 {
 Ratio aRatio;
 cout << "Enter numerator and denominator of a "
 << "common fraction" << endl << ">>> ";
 cin >> aRatio;
 cout << endl << "Fraction entered = " << aRatio
 << endl;
 reduce();
 cout << "Reduced fraction = " << aRatio << endl;
 return 0;
 }

 Programming

 1. Write a class declaration for a class Can to represent a cylindrical
aluminum can. Objects of this class should know their own (empty)
weight in grams and their dimensions—base radius and height—in
centimeters. The class should include a member function named
capacity that, given the volume (cm 3) of 1 gram of a product to be
canned, could answer the question “How many whole grams of this
product will fit in this can?” Do not forget to include constructors, one
that takes parameters for initializing components and one that does not.
Writing the full implementation of this class is the subject of Programming
Project 3 at the end of this chapter.

15-24 Chapter 15 • On to C++

 ■ Chapter Review

 1. An object is a semiautonomous agent that encapsulates both attributes (data)
and behaviors (functions and operators).

 2. C++ does standard input and output by using the input extraction (>>) and
output insertion (<<) operators that are defined in the iostream library.

 3. The C++ iostream library associates the output stream cout with the screen
and the input stream cin with the keyboard.

 4. C++ permits multiple definitions of a single operator or function name, pro-
vided that the list of parameter/operand types is unique for each definition.

 5. C++ uses the same control structures as C— if , if-else , switch , while ,
 for , do-while .

 6. A C++ class is a type of objects that all have the same collections of attributes
and behaviors.

 7. C++ object attributes are implemented as class data members whose accessi-
bility is usually private—that is accessible only to class members and friends.

 8. C++ object behaviors and services are implemented as class member opera-
tors and functions.

 9. All classes provide the service of construction, which allows declaration and
initialization of objects.

 10. C++ overloaded operators can be implemented as members of a class
when the first operand is an object of that class.

 C++ CONSTRUCTS

 Construct Effect

 Definition of a Named Constant

 const double SAFE_RAD = 0.466; Declares that the name SAFE_RAD will have the value 0.466
throughout the current scope.

 Calls to Input Extraction Operators

 cin >> number >> complex_num; Copies input data from the keyboard into variables number
and complex_num . System uses a predefined meaning of
 >> if the target variable is of a standard type and uses one
of the program’s definitions of >> if the target variable is
an object that is an instance of one of the program’s newly
defined classes.

 Calls to Output Insertion Operators

 cout << "First complex number is"
 << complex_num << "\n";

 Displays a line with the string "First complex number is"
 followed by the value of complex_num as designated by the
program’s definition of the operator << for objects that are
complex numbers.

15-25Quick-Check Exercises

 Construct Effect

 Insertion of Format Manipulators in Output Stream

 cout << setprecision(2) <<
 fixed << showpoint ;

 cout << setw(10) << number;

 Sets up cout so that floating-point numbers inserted in
the cout stream will be displayed with a decimal point and
two digits to the right of the decimal. Displays the value of
 number right-justified in a field of ten columns.

 Class Declaration

 class Ratio {

 public:
 Ratio() { num = 0; denom = 1;}
 void reduce();
 Ratio operator+ (Ratio
 operand2) const;

 private:
 int num; // numerator
 int denom; // denominator
 };

 Declares class Ratio , a class of objects that represent
common fractions.

 Object Declaration

 Ratio oneRatio; Declares oneRatio to be an object, an instance of class
 Ratio .

 Member Function Header

 void Ratio::reduce() First line of implementation of reduce , a function that is a
member of class Ratio .

 Member Operator Header

 Ratio Ratio::operator+
 (Ratio operand2) const

 Beginning of implementation of the + operator for addition of
two Ratio objects. The operator does not change the object
to which it belongs.

 ■ Quick-Check Exercises

 1. _______ programming creates software that models systems as collections of
objects—semiautonomous agents with prescribed responsibilities.

 2. C++ provides support for polymorphism by allowing _______ of function
names and operators, provided that the signature of each version is unique.

C++ CONSTRUCTS (continued)

15-26 Chapter 15 • On to C++

 3. C++ uses the _______ _______ operator >> rather than functions scanf and
 fscanf , and the _______ _______ operator << rather than functions printf
and fprintf .

 4. The statement

 const double PI = 3.14159265359;

 declares and initializes PI as a named _______.
 5. In C++, the symbol _______ indicates that the rest of the line is a comment.

 6–10. Name the parts of the class declaration shown in Fig. 15.10 .

 ■ Answers to Quick-Check Exercises

 1. Object-oriented
 2. overloading
 3. input extraction; output insertion
 4. constant
 5. //
 6. class name

class Ratio {

public:

 Ratio() {num = 0; den = 1;} //default constructor

 Ratio(double top, double bottom)
 { num = top; den = bottom; reduce(); }

 void reduce();

private:

 double num;
 double den;

};

6

8

7

9

10

 FIGURE 15.10

 Declaration of
Class Ratio

15-27Programming Projects

 7. access specifier
 8. constructors
 9. prototype of member function

 10. data members

 ■ Review Questions

 1. What is an object? What facility in C++ permits definition of a type of objects?
 2. Assume that a class named Tree includes a public member function whose

prototype is

 void grow(int);

 If tree_1 is an object of class Tree , how would you call grow with reference
to tree_1 ? How would you call grow from another member function?

 3. Explain how to control the format of how numbers are displayed in C++.
 4. What is the purpose of declaring a function or an operator to be a friend of a

class of objects?
 5. What two kinds of parameters does C++ allow functions and operators to

have? What is the difference between these two kinds?
 6. What does it mean for a class member function to be a “constant” function?
 7. In a statement such as

 cout << "The answer is " << one_complex << "\n";

 how does the system determine which of several definitions of << to use?
 8. If you have defined a class named Tree and you use the declaration

 Tree seedling;

 will the data members of seedling be initialized to known values when space
for seedling is allocated? Explain.

 ■ Programming Projects

 1. Rewrite in C++ the water bill program of Fig. 4.7 . Include the iostream and
iomanip libraries instead of stdio, and replace all uses of constant macros with
initialized declarations of const variables.

 2. Programming Project 9 in Chapter 10 called for you to represent a battery
using a structure type. In this project you will solve the same problem by
designing a class to model a battery. A battery object should know its voltage,

15-28 Chapter 15 • On to C++

how much energy it is capable of storing, and how much energy it is currently
storing (in joules). Include the following member functions:

 powerDevice —Given the current of an electrical device (amps) and the
time the device is to be powered by the battery (seconds), this function
checks to see if the battery’s energy reserve is adequate to power the
device. If so, the function updates its energy reserve by subtracting the
energy consumed and returns the value 1. Otherwise it returns the value 0
and leaves the energy reserve unchanged.

 maxTime —Given the current of an electrical device, the function returns
the number of seconds the battery can operate the device before it is fully
discharged. This function does not modify the energy reserve.

 reCharge —This function sets the battery’s component representing the
present energy reserve to its maximum capacity.

 Use the following equations in your design:

 p = vi p = power in watts (W)
 v = voltage in volts (V)
 w = pt i = current in amps (A)
 w = energy in joules (J)
 t = time in seconds (s)

 For this simulation, ignore any loss of energy in the transfer from battery
to device.

 Create a main function that tests your class by creating an object to model
a 12-V automobile battery with a maximum energy storage of 5 � 10 6 J. Use
the battery to power a 4-A light for 15 minutes. Then find out how long the
battery’s remaining energy could power an 8-A device. After recharging the
battery, ask again how long it could operate an 8-A device.

 3. Implement class Can whose declaration you wrote in the programming
 exercise for Section 15.2 . Write a main function that prompts for and inputs
a Can object and then repeatedly inputs the volume of 1 gram of various
 products to be canned. Display how many whole grams of each product should
fit in the can.

 Appendix A

 M O R E A B O U T P O I N T E R S

 Chapter 13 reviews the use of pointers as output and input/output parameters and
as arrays and strings before presenting their use in dynamic memory allocation. In
this appendix we present two pointer topics not previously discussed—pointer arith-
metic and a pointer to a pointer.

 Pointer Arithmetic
 C permits application of the addition and subtraction operators to pointer operands
if the pointers reference elements of an array. If p is a pointer to an array element,
the value of the expression

 p + 1

 depends entirely on the size of the memory block occupied by one array element. C
guarantees that if p is the address of an array’s nth element, then p + 1 is the address
of element n + 1 .

 FIGURE A.1 Pointer Arithmetic Example

 typedef struct {
 char name[STRSIZ];
 double diameter; /* equatorial diameter in km */
 int moons; /* number of moons */
 double orbit_time, /* years to orbit sun once */
 rotation_time; /* hours to complete one revolution on axis */
 } planet_t;

 . . .

 planet_t pl[2] = {{"Earth", 12713.5, 1, 1.0, 24.0},
 {"Jupiter", 142800.0, 4, 11.9, 9.925}};

(continued)

A-2 Appendix A

 An example to illustrate the role of context in the evaluation of a pointer expres-
sion follows. In Fig. A.1 , our example uses two arrays: pl , which is an array of
 planets, and nm , which is an array of integers. Figure A.2 shows the values of point-
ers p and np after they are assigned 1 more than pl and nm , respectively. In Fig. A.3 ,
we see possible output produced when our example prints the contents of the four
pointer variables as integers. We also see the effect of pointer subtraction on two
pointers of the same type.

 int nm[5] = {4, 8, 10, 16, 22};
 planet_t *p;
 int *np;

 p = pl + 1;
 np = nm + 1;
 printf("sizeof (planet_t) = %d sizeof (int) = %d\n",
 sizeof (planet_t), sizeof (int));
 printf("pl = %d nm = %d\n", pl, nm);
 printf(" p = %d (pl + %d) ", p, (int)p - (int)pl);
 printf("np = %d (nm + %d)\n", np, (int)np - (int)nm);
 printf(" p - pl = %d\n", p - pl);

FIGURE A.1 (continued)

E a r t h \0

1

1.0

24.0

1.428e+5

11.9

4

9.925

J u p i t e r \0

1.27135e+4

p

np
4

8

10

16

22

[0]

[1]

[2]

[3]

[4]
[1]

[0]
pl nm FIGURE A.2

 Memory Snapshot
at Completion of
Pointer Arithmetic
Example

Appendix A A-3

 Pointer to a Pointer

 Since C uses pointers that are under programmer control both for output and input/
output parameters and for access to dynamically allocated memory such as the
nodes of a linked list, sometimes the occasion arises where a pointer variable that
accesses dynamically allocated memory must be passed as an output or input/output
argument to a function. Passing the address of a pointer variable creates a pointer to
a pointer, a concept that requires very careful programming.

 In Chapter 13 we implemented the stack data structure using a linked list.
However, we hid this implementation detail from the client program by embed-
ding the stack’s top pointer in a stack_t structure type as illustrated below in
 Fig. A.4 .

 In Fig. A.5 , we show an implementation of push and pop that uses the linked
list without embedding it in a stack_t structure type. Since push and pop take the
stack as an input/output parameter, these parameters are represented as pointers to
pointers of type stack_node_t ** . Figure A.6 illustrates the appearance of memory
in the middle of the fourth call to push in function main , just prior to the last assign-
ment statement in the code of function push .

 FIGURE A.3 Output from Pointer Arithmetic Example

 sizeof (planet_t) = 48 sizeof (int) = 4
 pl = 2145835092 nm = 2145835316
 p = 2145835140 (pl + 48) np = 2145835320 (nm + 4)
 p - pl = 1

 FIGURE A.4 Structure Types for a Linked List Implementation of a Stack

 typedef char stack_element_t;

typedef struct stack_node_s {
 stack_element_t element;
 struct stack_node_s *restp;
 } stack_node_t;

 typedef struct {
 stack_node_t *topp;
 } stack_t;

A-4 Appendix A

 FIGURE A.5 Functions push and pop That Use a Linked List as a Stack

 /*
 * Creates and manipulates a stack of characters implemented as
 * a linked list of nodes
 */

 #include <stdio.h>
 #include <stdlib.h>

 /* stack data structure and operations */
 typedef char stack_element_t;

typedef struct stack_node_s {
 stack_element_t element;
 struct stack_node_s *restp;
 } stack_node_t;

void push(stack_node_t **top_stackpp, stack_element_t c);
 stack_element_t pop(stack_node_t **top_stackpp);

 int
 main(void)
 {
 stack_node_t *stackp = NULL;

 /* Builds stack of four characters */
 push(&stackp, '2');
 push(&stackp, '*');
 push(&stackp, 'C');
 /* Figure A.6 shows memory */
 push(&stackp, '/'); /* during this call */

 /* Empties stack element by element */
 printf("\nEmptying stack: \n");
 while (stackp != NULL) {
 printf("%c\n", pop(&stackp));
 }

 return (0);
 }

Appendix A A-5

 /*
 * The value in c is placed on top of the stack implemented as
 * a linked list of nodes accessed through top_stackpp
 */
 void
 push(stack_node_t **top_stackpp, /* input/output - stack */
 stack_element_t c) /* input - element to add */
 {
 stack_node_t *newp; /* pointer to new stack node */

 /* Creates and defines new node */
 newp = (stack_node_t *)malloc(sizeof (stack_node_t));
 newp->element = c;
 newp->restp = *top_stackpp;

 /* Sets stack top pointer to point to new node */
 *top_stackpp = newp;
 }

 /*
 * Removes and frees top node of stack, returning character value
 * stored there.
 * Pre: the stack is not empty
 */
 stack_element_t
 pop(stack_node_t **top_stackpp) /* input/output - stack */
 {
 stack_node_t *to_freep; /* pointer to node removed */
 stack_element_t ans; /* value at top of stack */
 /* saves pointer to node */
 to_freep = *top_stackpp; /* being deleted */
 ans = to_freep->element; /* retrieves value to return */
 top_stackpp = to_freep->restp; / deletes top node */
 free(to_freep); /* deallocates space */

 return (ans);
 }

FIGURE A.5 (continued)

A-6 Appendix A

top_stackpp

c

newp

Heap

C * 2stringp

Function main
data area

Function main
data area

/

/

 FIGURE A.6

 Memory During
Use of Pointer to
Pointer

 Appendix B

 A N S I C S T A N D A R D L I B R A R I E S †

 LIBRARY FACILITIES ALPHABETIZED BY NAME

 Syntax Header File Purpose

 void abort(void); stdlib.h Abnormally terminates a program.

 int abs(int x); stdlib.h Returns the absolute value of an integer.

 double acos(double x); math.h Returns the arc cosine of the input value (argu-
ment must be in the range −1 to 1).

 char *asctime
 (const struct tm *tblock);

 time.h Converts a time stored as a structure in
 *tblock to a 26-character string.

 double asin(double x); math.h Returns the arc sine of the input value (argument
must be in the range −1 to 1).

 void assert(int test); assert.h If test evaluates to zero, assert prints a mes-
sage on stderr and aborts the program.

 double atan(double x); math.h Calculates the arc tangent of the input value.

 double atan2(double y,
 double x);

 math.h Calculates the arc tangent of y/x .

 int atexit(void (*func)(void)); stdlib.h Registers a function to be called at normal pro-
gram termination.

 double atof(const char *s); math.h Converts a string pointed to by s to double .

 int atoi(const char *s); stdlib.h Converts a string pointed to by s to int .

 long int atol(const char *s); stdlib.h Converts a string pointed to by s to long int .

 void *bsearch(const void *key,
 const void *base,
 size_t nelem, size_t 1 width,
 int (*fcmp)(const void *,
 const void *));

 stdlib.h Binary search of the sorted array base : returns
the address of the first entry in the array that
matches the search key using the comparison
 routine *fcmp ; if no match is found, returns 0.

 † This table has been adapted from the Borland C++ Library Reference Manual with permission of Borland International, Inc.
 1 size_t is a type used for memory object sizes and repeat counts.

B-2 Appendix B

 Syntax Header File Purpose

 void *calloc(size_t nitems,
 size_t size);

 stdlib.h Allocates a memory block of size nitems ×
 size , clears the block to zeros, and returns a
pointer to the newly allocated block.

 double ceil(double x); math.h Returns the smallest integer not less than x .

 void clearerr(FILE *stream); stdio.h Resets stream ’s error and end-of-file indicators
to 0.

 clock_t 2 clock(void); time.h Returns processor time elapsed since the begin-
ning of program invocation.

 double cos(double x); math.h Calculates the cosine of a value (angle in radians).

 double cosh(double x); math.h Calculates the hyperbolic cosine of a value.

 char *ctime
 (const time_t 3 *time);

 time.h Converts date and time value pointed to by time
(the value returned by function time) into a
26-character string representing local time.

 double difftime
 (time_t time2, time_t time1);

 time.h Calculates the difference between two times in
seconds.

 div_t div(int numer,
 int denom);

 stdlib.h Divides two integers, returning quotient and
remainder in a structure whose components are
 quot and rem .

 void exit(int status); stdlib.h Terminates program. Before termination, all files
are closed, buffered output (waiting to be output)
is written, and any registered “exit functions”
(posted with atexit) are called; status of 0
indicates normal exit; a nonzero status indicates
some error.

 double exp(double x); math.h Calculates the exponential function e x .

 double fabs(double x); math.h Calculates the absolute value of a floating-point
number.

 int fclose(FILE *stream); stdio.h Closes the named stream.

 int feof(FILE *stream); stdio.h Predicate that detects end of file on a stream.

 int ferror(FILE *stream); stdio.h Predicate that detects errors on a stream.

 int fflush(FILE *stream); stdio.h Flushes a stream: If the stream has buffered out-
put, fflush writes the output for stream to
the associated file.

 int fgetc(FILE *stream); stdio.h Gets a character from a stream.

 int fgetpos(FILE *stream,
 fpos_t *pos);

 stdio.h Gets the current file pointer and stores it in the
location pointed to by pos .

 2 clock_t is used to represent processor time.
 3 time_t is used to represent calendar time.

LIBRARY FACILITIES ALPHABETIZED BY NAME (continued)

Appendix B B-3

 Syntax Header File Purpose

 char *fgets(char *s, int n,
 FILE *stream);

 stdio.h Copies characters from stream into the string s
until it has read n-1 characters or a newline char-
acter, whichever comes first. Marks the end of s
with the null character.

 double floor(double x); math.h Returns the largest whole number not greater
than x .

 double fmod(double x,
 double y);

 math.h Calculates x modulo y , the remainder of x
divided by y .

 FILE *fopen
 (const char *filename,
 const char *mode);

 stdio.h Opens file named by filename and associates a
stream with it. Modes and meanings: "r" is read,
 "w" is write, "a" is append, "r+" is existing file
update (reading and writing), "w+" is new file
update (reading and writing), "a+" is update at
the end of the file.

 int fprintf(FILE *stream,
 const char *format
 [, argument , . . .]);

 stdio.h Writes formatted output to a stream.

 int fputc(int c, FILE *stream); stdio.h Outputs a character to a stream.

 int fputs(const char *s,
 FILE *stream);

 stdio.h Outputs a string to a stream.

 size_t fread(void *ptr,
 size_t size, size_t n,
 FILE *stream);

 stdio.h Reads up to n items of data, each of length size
bytes, from the given stream into a block pointed
to by ptr ; returns number of items read.

 void free(void *block); stdlib.h Deallocates a memory block allocated by a previ-
ous call to calloc , malloc , or realloc .

 FILE *freopen
 (const char *filename,
 const char *mode,
 FILE *stream);

 stdio.h Associates a new file with an open stream; often
used for redirecting standard streams.

 double frexp(double x,
 int *exponent);

 math.h Splits a double number into mantissa and
 exponent.

 int fscanf(FILE *stream,
 const char *format
 [, address , . . .]);

 stdio.h Scans and formats input from a stream.

 int fseek(FILE *stream,
 long int offset, int whence);

 stdio.h Repositions the file pointer associated with
 stream to a new position that is offset bytes
from the file location given by whence .

 int fsetpos(FILE *stream,
 const fpos_t *pos);

 stdio.h Positions the file pointer of a stream to a new
position that is the value obtained by a previous
call to fgetpos on that stream.

LIBRARY FACILITIES ALPHABETIZED BY NAME (continued)

B-4 Appendix B

 Syntax Header File Purpose

 long int ftell(FILE *stream); stdio.h Returns the current file pointer for stream
as the number of bytes from the beginning of
the file.

 size_t fwrite
 (const void *ptr,
 size_t size, size_t n,
 FILE *stream);

 stdio.h Writes n × size bytes to stream from the
memory block pointed to by ptr .

 int getc(FILE *stream); stdio.h Gets a character from stream .

 int getchar(void); stdio.h Gets a character from stdin .

 char *getenv(const char *name); stdlib.h Returns the value of a specified variable.

 char *gets(char *s); stdio.h Gets a string (one line) from stdin ; discards any
newline character.

 struct tm *gmtime
 (const time_t *timer);

 time.h Converts date and time to Greenwich mean time
(GMT).

 int isalnum(int c); ctype.h Predicate returning nonzero if c is a letter or a
decimal digit.

 int isalpha(int c); ctype.h Predicate returning nonzero if c is a letter.

 int iscntrl(int c); ctype.h Predicate returning nonzero if c is a delete char-
acter or an ordinary control character.

 int isdigit(int c); ctype.h Predicate returning nonzero if c is a decimal digit.

 int isgraph(int c); ctype.h Predicate returning nonzero if c is a printing char-
acter other than a space.

 int islower(int c); ctype.h Predicate returning nonzero if c is a lowercase
letter.

 int isprint(int c); ctype.h Predicate returning nonzero if c is a printing
character.

 int ispunct(int c); ctype.h Predicate returning nonzero if c is a punctuation
character.

 int isspace(int c); ctype.h Predicate returning nonzero if c is a space,
tab, carriage return, new line, vertical tab, or
form feed.

 int isupper(int c); ctype.h Predicate returning nonzero if c is an uppercase
letter.

 int isxdigit(int c); ctype.h Predicate returning nonzero if c is a hexadecimal
digit (0 to 9, A to F, a to f).

 long int labs(long int x); math.h Computes the absolute value of the parameter x .

 double ldexp(double x,
 int exp);

 math.h Calculates x × 2 exp .

LIBRARY FACILITIES ALPHABETIZED BY NAME (continued)

Appendix B B-5

 Syntax Header File Purpose

 ldiv_t ldiv(long int numer,
 long int denom);

 stdlib.h Divides two long int s, returning quotient and
remainder in a structure whose components are
 quot and rem .

 struct lconv *localeconv(void); locale.h Sets up country-specific monetary and other
numeric formats.

 struct tm *localtime
 (const time_t *timer);

 time.h Accepts the address of a value returned by time
and returns a pointer to a structure of type tm in
which the time is corrected for the time zone and
possible daylight savings time.

 double log(double x); math.h Calculates the natural logarithm of x .

 double log10(double x); math.h Calculates log 10 (x).

 void longjmp(jmp_buf jmpb,
 int retval);

 setjmp.h Restores the task state captured by the last call to
 setjmp with the argument jmpb ; then returns
in such a way that setjmp appears to have
returned with the value retval .

 void *malloc(size_t size); stdlib.h Allocates a block of size bytes from the memory
heap and returns a pointer to the newly allocated
block.

 int mblen
 (const char *s, size_t n);

 stdlib.h Returns the size in bytes of the multibyte charac-
ter pointed to by s (n is the maximum size of the
character).

 size_t mbstowcs(wchar_t *pwcs,
 const char *s, size_t n);

 stdlib.h Converts up to n multibyte characters from string
 s to wide characters stored in array pwcs .

 int mbtowc(wchar_t *pwc,
 const char *s, size_t n);

 stdlib.h Converts the multibyte character accessed by s to
a wide character.

 void *memchr(const void *s,
 int c, size_t n);

 string.h Searches the first n bytes of the block pointed to
by s for first occurrence of character c .

 int memcmp(const void *s1,
 const void *s2, size_t n);

 string.h Compares two blocks for a length of exactly n
bytes; return value < 0 means s1 less than s2 ,
value = 0 means same as, and value > 0 means
greater than.

 void *memcpy(void *dest,
 const void *src, size_t n);

 string.h Copies a block of n bytes from src to dest
(behavior undefined if src and dest overlap);
returns dest .

 void *memmove(void *dest,
 const void *src, size_t n);

 string.h Copies a block of n bytes from src to dest
(copy is correct even if src and dest overlap);
returns dest .

 void *memset(void *s, int c,
 size_t n);

 string.h Sets the first n bytes of the array s to the
 character c .

LIBRARY FACILITIES ALPHABETIZED BY NAME (continued)

B-6 Appendix B

 Syntax Header File Purpose

 time_t mktime(struct tm *t); time.h Converts the time in the structure pointed to by t
into a calendar time.

 double modf(double x,
 double *ipart);

 math.h Splits a double into integer and fractional parts,
both with the same sign as x .

 void perror(const char *s); stdio.h Prints to the stderr stream the system error
message for the last library routine that produced
the error.

 double pow(double x, double y); math.h Calculates x y .

 int printf(const char *format
 [, argument , . . .]);

 stdio.h Writes formatted output to stdout .

 int putc(int c, FILE *stream); stdio.h Outputs a character to stream .

 int putchar(int c); stdio.h Outputs a character to stdout .

 int puts(const char *s); stdio.h Outputs a string to stdout ; terminates output
by a newline character.

 void qsort(void *base, size_t
 nelem, size_t width,
 int (*fcmp)(const void *,
 const void *));

 stdlib.h Sorts array base using the quicksort algorithm
based on the comparison function pointed to
by fcmp .

 int raise(int sig); signal.h Sends a signal of type sig to the program. If
the program has installed a signal handler for the
signal type specified by sig , that handler will be
executed.

 int rand(void); stdlib.h Returns successive pseudorandom numbers in the
range from 0 to RAND_MAX (constant defined in
 stdlib.h).

 void *realloc(void *block,
 size_t size);

 stdlib.h Attempts to shrink or expand the previously
 allocated block to size bytes, copying the
 contents to a new location if necessary.

 int remove
 (const char *filename);

 stdio.h Deletes the file specified by filename .

 int rename(const char *oldname,
 const char *newname);

 stdio.h Changes the name of a file from oldname
to newname .

 void rewind(FILE *stream); stdio.h Repositions a file pointer to the beginning of a
stream.

 int scanf(const char *format
 [, address , . . .]);

 stdio.h Scans and formats input from stdin stream.

 void setbuf(FILE *stream,
 char *buf);

 stdio.h Causes the buffer buf to be used for I/O buffer-
ing instead of an automatically allocated buffer.

 int setjmp(jmp_buf jmpb); setjmp.h Captures the complete task state in jmpb and
returns 0.

LIBRARY FACILITIES ALPHABETIZED BY NAME (continued)

Appendix B B-7

 Syntax Header File Purpose

 char *setlocale(int category,
 char *locale);

 locale.h Selects a locale; if selection is successful, returns a
string indicating the locale that was in effect prior
to invoking the function.

 int setvbuf(FILE *stream,
 char *buf, int type,
 size_t size);

 stdio.h Causes the buffer buf to be used for I/O buffer-
ing instead of an automatically allocated buffer.
The type parameter may be _IOFBF (fully
buffered), _IOLBF (line buffered), or _IONBF
(unbuffered).

 void (*signal(int sig,
 void (*func)(int sig)))
 (int);

 signal.h Specifies signal-handling actions.

 double sin(double x); math.h Calculates the sine of the input value (angles in
radians).

 double sinh(double x); math.h Calculates hyperbolic sine.

 int sprintf(char *buffer,
 const char *format
 [, argument , . . .]);

 stdio.h Writes formatted output to a string.

 double sqrt(double x); math.h Calculates the positive square root of a nonnega-
tive input value.

 void srand(unsigned int seed); stdlib.h Initializes random number generator.

 int sscanf(const char *buffer,
 const char *format
 [, address , . . .]);

 stdio.h Scans and formats input from a string.

 char *strcat(char *dest,
 const char *src);

 string.h Appends a copy of src to the end of dest ;
returns dest .

 char *strchr(const char *s,
 int c);

 string.h Returns a pointer to the first occurrence of the
character c in the string s (or null).

 int strcmp(const char *s1,
 const char *s2);

 string.h Compares one string to another; return value < 0
means s1 less than s2 , value = 0 means same as,
and value > 0 means greater than.

 int strcoll(const char *s1,
 const char *s2);

 string.h Compares two strings according to the collating
sequence set by setlocale ; return value < 0
means s1 less than s2 , value = 0 means same as,
and value > 0 means greater than.

 char *strcpy(char *dest,
 const char *src);

 string.h Copies string src to dest , stopping after copy-
ing the terminating null character; returns dest .

 size_t strcspn(const char *s1,
 const char *s2);

 string.h Returns the length of the initial segment of string
 s1 that consists entirely of characters not from
string s2 .

 char *strerror(int errnum); string.h Returns a pointer to an error message string asso-
ciated with errnum .

LIBRARY FACILITIES ALPHABETIZED BY NAME (continued)

B-8 Appendix B

 Syntax Header File Purpose

 size_t strftime(char *s,
 size_t maxsize, const char
 *fmt, const struct tm *t);

 time.h Formats time for output according to the fmt
specifications; returns the number of characters
placed into s .

 size_t strlen(const char *s); string.h Returns the number of characters in s , not count-
ing the null terminating character.

 char *strncat(char *dest, const
 char *src, size_t maxlen);

 string.h Copies at most maxlen characters of src to the
end of dest and appends a null character.

 int strncmp(const char *s1,
 const char *s2,
 size_t maxlen);

 string.h Compares a portion (no more than maxlen
characters) of one string to a portion of another;
return value < 0 means portion of s1 less than
portion of s2 , value = 0 means same as, and
value > 0 means greater than.

 char *strncpy(char *dest, const
 char *src, size_t maxlen);

 string.h Copies up to maxlen characters from src into
 dest , truncating or null-padding dest (which
might not be null-terminated).

 char *strpbrk(const char *s1,
 const char *s2);

 string.h Returns a pointer to the first occurrence in s1 of
any of the characters in s2 (or returns null).

 char *strrchr(const char *s,
 int c);

 string.h Returns a pointer to the last occurrence of the
character c in string s (or returns null).

 size_t strspn(const char *s1,
 const char *s2);

 string.h Returns the length of the initial segment of s1
that consists entirely of characters from s2 .

 char *strstr(const char *s1,
 const char *s2);

 string.h Scans s1 for the first occurrence of the
 substring s2 .

 double strtod(const char *s,
 char **endptr);

 stdlib.h Converts string s to a double value; if endptr
is not null, it sets *endptr to point to the char-
acter that stopped the scan.

 char *strtok(char *s1,
 const char *s2);

 string.h Searches s1 for tokens, which are separated by
delimiters defined in s2 .

 long int strtol(const char *s,
 char **endptr, int radix);

 stdlib.h Converts a string s to a long int value in
the given radix; if endptr is not null, it sets
 *endptr to point to the character that stopped
the scan.

 unsigned long int strtoul
 (const char *s,
 char **endptr, int radix);

 stdlib.h Converts a string s to an unsigned long
int value in the given radix; if endptr is not
null, it sets *endptr to point to the character
that stopped the scan.

 size_t strxfrm(char *s1,
 const char *s2, size_t n);

 string.h Transforms strings so that strcmp of new
strings has the same result as strcoll of origi-
nal strings. Changes up to n characters of s1 .

LIBRARY FACILITIES ALPHABETIZED BY NAME (continued)

Appendix B B-9

 Syntax Header File Purpose

 int system
 (const char *command);

 stdlib.h Executes an operating system command.

 double tan(double x); math.h Calculates the tangent of an angle specified in
radians.

 double tanh(double x); math.h Calculates the hyperbolic tangent.

 time_t time(time_t *timer); time.h Gives the current time, in seconds, elapsed since
00:00:00 GMT, January 1, 1970, and stores that
value in the location pointed to by timer .

 FILE *tmpfile(void); stdio.h Creates a temporary binary file and opens it for
update.

 char *tmpnam(char *s); stdio.h Creates a unique file name.

 int tolower(int ch); ctype.h Converts an integer ch to its lowercase value.
Non-uppercase letter values are returned
unchanged.

 int toupper(int ch); ctype.h Converts an integer ch to its uppercase value.
Non-lowercase letter values are returned
unchanged.

 int ungetc(int c,
 FILE *stream);

 stdio.h Pushes a character back into an open input
stream.

 void va_start(va_list ap,
 lastfix);
 type va_arg(va_list ap, type);
 void va_end(va_list ap);

 stdarg.h Macros for implementing a variable
argument list.

 int vfprintf(FILE *stream,
 const char *format,
 va_list arglist);

 stdio.h Writes formatted output to a stream: Writes the
values of a series of arguments, applying the for-
mat specifiers from the format string.

 int vprintf(const char *format,
 va_list arglist);

 stdio.h Writes formatted output to stdout : Writes the
values of a series of arguments, applying the for-
mat specifiers from the format string.

 int vsprintf(char *buffer,
 const char *format,
 va_list arglist);

 stdio.h Writes formatted output to a string: Writes the
values of a series of arguments, applying the for-
mat specifiers from the format string.

 size_t wcstombs(char *s, const
 wchar_t *pwcs, size_t n);

 stdlib.h Converts a string of wide characters to a string
of multibyte characters (changes no more than n
bytes of s).

 int wctomb(char *s,
 wchar_t wchar);

 stdlib.h Stores in s the multibyte representation of wide
character wchar .

LIBRARY FACILITIES ALPHABETIZED BY NAME (continued)

B-10 Appendix B

 LIBRARY FACILITIES BY HEADER FILE

 assert.h
 void assert(int test);

 ctype.h
 int isalnum(int c);
 int isalpha(int c);
 int iscntrl(int c);
 int isdigit(int c);
 int isgraph(int c);
 int islower(int c);
 int isprint(int c);
 int ispunct(int c);
 int isspace(int c);
 int isupper(int c);
 int isxdigit(int c);
 int tolower(int ch);
 int toupper(int ch);

 locale.h
 struct lconv *localeconv(void);
 char *setlocale(int category, char *locale);

 math.h
 double acos(double x);
 double asin(double x);
 double atan(double x);
 double atan2(double y, double x);
 double atof(const char *s);
 double ceil(double x);
 double cos(double x);
 double cosh(double x);
 double exp(double x);
 double fabs(double x);
 double floor(double x);
 double fmod(double x, double y);
 double frexp(double x, int *exponent);
 long int labs(long int x);
 double ldexp(double x, int exp);
 double log(double x);
 double log10(double x);
 double modf(double x, double *ipart);
 double pow(double x, double y);
 double sin(double x);
 double sinh(double x);
 double sqrt(double x);
 double tan(double x);
 double tanh(double x);

Appendix B B-11

 pthread.h
 int pthread_create(pthread_t*, const pthread_attr_t*,
 void* (void *), void*);
 int pthread_join(pthread_t, void**);
 int pthread_mutex_init(pthread_mutex_t*,
 const pthread_mutexattr_t*);
 int pthread_mutex_lock(pthread_mutex_t*);
 int pthread_mutex_unlock(pthread_mutex_t*);

 setjmp.h
 void longjmp(jmp_buf jmpb, int retval);
 int setjmp(jmp_buf jmpb);

 signal.h
 int raise(int sig);
 void (*signal(int sig, void (*func)(int sig)))(int)

 stdarg.h
 void va_start(va_list ap, lastfix);
 type va_arg(va_list ap, type);
 void va_end(va_list ap);

 stdio.h
 void clearerr(FILE *stream);
 int fclose(FILE *stream);
 int feof(FILE *stream);
 int ferror(FILE *stream);
 int fflush(FILE *stream);
 int fgetc(FILE *stream);
 int fgetpos(FILE *stream, fpos_t *pos);
 char *fgets(char *s, int n, FILE *stream);
 FILE *fopen(const char *filename, const char *mode);
 int fprintf(FILE *stream, const char *format[, argument , . . .]);
 int fputc(int c, FILE *stream);
 int fputs(const char *s, FILE *stream);
 size_t fread(void *ptr, size_t size, size_t n, FILE *stream);
 FILE *freopen(const char *filename, const char *mode, FILE *stream);
 int fscanf(FILE *stream, const char *format[, address , . . .]);
 int fseek(FILE *stream, long int offset, int whence);
 int fsetpos(FILE *stream, const fpos_t *pos);
 long int ftell(FILE *stream);
 size_t fwrite(const void *ptr, size_t size, size_t n, FILE *stream);
 int getc(FILE *stream);
 int getchar(void);
 char *gets(char *s);
 void perror(const char *s);
 int printf(const char *format[, argument , . . .]);

LIBRARY FACILITIES BY HEADER FILE (continued)

B-12 Appendix B

 int putc(int c, FILE *stream);
 int putchar(int c);
 stdio.h (continued)
 int puts(const char *s);
 int remove(const char *filename);
 int rename(const char *oldname, const char *newname);
 void rewind(FILE *stream);
 int scanf(const char *format[, address , . . .]);
 void setbuf(FILE *stream, char *buf);
 int setvbuf(FILE *stream, char *buf, int type, size_t size);
 int sprintf(char *buffer, const char *format[, argument , . . .]);
 int sscanf(const char *buffer, const char *format[, address , . . .]);
 char *strncpy(char *dest, const char *src, size_t maxlen);
 FILE *tmpfile(void);
 char *tmpnam(char *s);
 int ungetc(int c, FILE *stream);
 int vfprintf(FILE *stream, const char *format, va_list arglist);
 int vprintf(const char *format, va_list arglist);
 int vsprintf(char *buffer, const char *format, va_list arglist);

 stdlib.h
 void abort(void);
 int abs(int x);
 int atexit(void (*func)(void));
 int atoi(const char *s);
 long int atol(const char *s);
 void *bsearch(const void *key, const void *base, size_t nelem,
 size_t width, int (*fcmp)(const void *, const void *));
 void *calloc(size_t nitems, size_t size);
 div_t div(int numer, int denom);
 void exit(int status);
 void free(void *block);
 char *getenv(const char *name);
 ldiv_t ldiv(long int numer, long int denom);
 void *malloc(size_t size);
 int mblen (const char *s, size_t n);
 int mbtowc(wchar_t *pwc, const char *s, size_t n);
 size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);
 void qsort(void *base, size_t nelem, size_t width,
 int (*fcmp)(const void *, const void *));
 int rand(void);
 void *realloc(void *block, size_t size);
 void srand(unsigned int seed);
 double strtod(const char *s, char **endptr);

stdio.h (continued)

LIBRARY FACILITIES BY HEADER FILE (continued)

Appendix B B-13

 long int strtol(const char *s, char **endptr, int radix);
 unsigned long int strtoul(const char *s, char **endptr, int radix);
 int system(const char *command);
 size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);
 int wctomb(char *s, wchar_t wchar);

 string.h
 void *memchr(const void *s, int c, size_t n);
 int memcmp(const void *s1, const void *s2, size_t n);
 void *memcpy(void *dest, const void *src, size_t n);
 void *memmove(void *dest, const void *src, size_t n);
 void *memset(void *s, int c, size_t n);
 char *strcat(char *dest, const char *src);
 char *strchr(const char *s, int c);
 int strcmp(const char *s1, const char *s2);
 int strcoll(const char *s1, const char *s2);
 char *strcpy(char *dest, const char *src);
 size_t strcspn(const char *s1, const char *s2);
 char *strerror(int errnum);
 size_t strlen(const char *s);
 char *strncat(char *dest, const char *src, size_t maxlen);
 int strncmp(const char *s1, const char *s2, size_t maxlen);
 char *strpbrk(const char *s1, const char *s2);
 char *strrchr(const char *s, int c);
 size_t strspn(const char *s1, const char *s2);
 char *strstr(const char *s1, const char *s2);
 char *strtok(char *s1, const char *s2);
 size_t strxfrm(char *s1, const char *s2, size_t n);

 time.h
 char *ctime(const time_t *time);
 char *asctime(const struct tm *tblock);
 clock_t clock(void);
 double difftime(time_t time2, time_t time1);
 struct tm *gmtime(const time_t *timer);
 struct tm *localtime(const time_t *timer);
 time_t mktime(struct tm *t);
 size_t strftime(char *s, size_t maxsize, const char *fmt,
 const struct tm *t);
 time_t time(time_t *timer);

 unistd.h
 int close(int);
 int dup2(int, int);
 int execl(const char *path, const char *file, . . ., NULL);

stdlib.h (continued)

LIBRARY FACILITIES BY HEADER FILE (continued)

B-14 Appendix B

 pid_t fork(void);
 pid_t getpid(void);
 int pipe(int[]);
 size_t read(int, void*, size_t);
 ssize_t write(int, void*, size_t);

 wait.h
 pid_t wait(int*);

 MACRO CONSTANTS, VARIABLES, AND TYPES BY HEADER FILE

 Construct by Header File Meaning

 errno.h
 EDOM Error code for math domain error
 ERANGE Error code for result out of range
 errno Variable whose value is set to indicate type of error when an error in a

system call occurs

 stddef.h
 NULL Null pointer value
 ptrdiff_t Pointer difference data type
 size_t Type used for memory object sizes and repeat counts
 wchar_t Wide-character constant type

 assert.h
 NDEBUG If defined, assert is a true function; otherwise, assert is a macro.

 locale.h
 The first argument passed to setlocale specifies which aspect of the

locale is changed:
 LC_ALL all behavior
 LC_COLLATE behavior of strcoll and strxfrm facilities
 LC_CTYPE character-handling functions
 LC_MONETARY monetary information returned by localeconv
 LC_NUMERIC decimal point and nonmonetary information returned by localeconv
 LC_TIME behavior of strftime facility
 NULL When passed as second argument to setlocale , the function returns

a pointer to a string that is the name of the current locale for the indicated
category.

 struct lconv Type used to store strings that represent the settings for the current locale

 math.h
 HUGE_VAL Overflow value for math functions

 setjmp.h
 jmp_buf Type of buffer used to save and restore the program task state

unistd.h (continued)

LIBRARY FACILITIES BY HEADER FILE (continued)

Appendix B B-15

 Construct by Header File Meaning

 signal.h
 sig_atomic_t Atomic entity type
 SIG_DFL Means that a signal should receive its “default” handling, which may cause the

program to terminate
 SIG_IGN Means that a signal should be ignored, no action
 SIG_ERR Means that an error code should be returned
 Each macro below stands for a standard signal:
 SIGABRT abnormal termination
 SIGFPE erroneous arithmetic operation
 SIGILL illegal computer instruction
 SIGINT interrupt or attention signal
 SIGSEGV invalid memory access
 SIGTERM a termination signal from a user or another program

 stdio.h
 Each macro below expands to values that can be used for parameter

 type in a call to setvbuf indicating:
 _IOFBF fully buffered file
 _IOLBF line buffered file
 _IONBF unbuffered file
 BUFSIZE Default buffer size used by setbuf
 EOF Indicates that the end of a file has been reached
 FILE Type used to represent file control information
 FILENAME_MAX Maximum length for a file name
 FOPEN_MAX Number of streams that may be open simultaneously (at least 8)
 fpos_t A file position type
 L_tmpnam Size of an array large enough to hold a temporary file name string
 In a call to fseek , the constants below indicate from which point the offset

should be measured:
 SEEK_CUR from the current position
 SEEK_END from the end of the file
 SEEK_SET from the beginning of the file
 size_t Type used for memory object sizes and repeat counts
 stderr Standard error output device
 stdin Standard input device
 stdout Standard output device
 TMP_MAX Maximum number of unique file names

 stdlib.h
 Constants defining exit conditions for call to exit function:
 EXIT_FAILURE abnormal program termination
 EXIT_SUCCESS normal program termination
 MB_CURR_MAX Maximum number of bytes used to represent a multibyte character in the

 current locale

 RAND_MAX Maximum value returned by rand function
 div_t Integer division return type
 ldiv_t Long integer division return type

MACRO CONSTANTS, VARIABLES, AND TYPES BY HEADER FILE (continued)

B-16 Appendix B

 Construct by Header File Meaning

 time.h
 CLOCKS_PER_SEC The number of time units (“clock ticks”) per second
 clock_t Type used to represent the processor time
 time_t Type used to represent the calendar time
 struct tm Structure type defining the broken-down calendar time

 TABLE OF IMPLEMENTATION LIMITS

 Constant Minimum Magnitude

 limits.h
 CHAR_BIT 8
 CHAR_MAX UCHAR_MAX or SCHAR_MAX
 CHAR_MIN 0 or SCHAR_MIN
 INT_MAX +32767
 INT_MIN -32767
 LONG_MAX +2147483647
 LONG_MIN -2147483647
 MB_LEN_MAX 1
 SCHAR_MAX +127
 SCHAR_MIN -127
 SHRT_MAX +32767
 SHRT_MIN -32767
 UCHAR_MAX 255
 UINT_MAX 65535
 ULONG_MAX 4294967295
 USHRT_MAX 65535

 float.h
 DBL_DIG 10
 DBL_MANT_DIG
 DBL_MAX_10_EXP +37
 DBL_MAX_EXP
 DBL_MIN_10_EXP -37
 DBL_MIN_EXP
 FLT_DIG 6
 FLT_MANT_DIG
 FLT_MAX_10_EXP +37
 FLT_MAX_EXP
 FLT_MIN_10_EXP -37
 FLT_MIN_EXP
 FLT_RADIX 2
 LDBL_DIG 10
 LDBL_MANT_DIG
 LDBL_MAX_10_EXP +37

MACRO CONSTANTS, VARIABLES, AND TYPES BY HEADER FILE (continued)

Appendix B B-17

 Constant Minimum Magnitude

float.h (continued)
 LDBL_MAX_EXP
 LDBL_MIN_10_EXP -37
 LDBL_MIN_EXP
 DBL_MAX 1E+37
 FLT_MAX 1E+37
 LDBL_MAX 1E+37

 Constant Maximum Value

 float.h
 DBL_EPSILON 1E-9
 DBL_MIN 1E-37
 FLT_EPSILON 1E-5
 FLT_MIN 1E-37
 LDBL_EPSILON 1E-9
 LDBL_MIN 1E-37

TABLE OF IMPLEMENTATION LIMITS (continued)

This page intentionally left blank

 Appendix C

 C O P E R A T O R S

 Table C.1 shows the precedence and associativity of the full range of C operators.
In this table, an ellipsis (. . .) at the beginning of a group of operators indicates that
these operators have equal precedence with those on the previous line. The prec-
edence table is followed by a table listing each operator along with its name, the
number of operands required, and the section of the text that explains the operator.
New operators are marked by lowercase Roman numerals keyed to the descriptions
following Table C.2 .

 TABLE C.1 PRECEDENCE AND ASSOCIATIVITY OF OPERATIONS

 Precedence Operation Associativity

 highest a[..] f(..) . -> left
 (evaluated first) postfix ++ postfix -- left

 prefix ++ prefix -- sizeof ~ ! right
 ... unary + unary - unary & unary *

 casts right
 * / % left

 binary + binary - left
 << >> left

 < > <= >= left
 == != left
 binary & left
 binary ̂ left
 binary | left

 && left
 || left

 ? : right
 = += -= *= /= %= right
 ... <<= >>= &= ^= |=

 lowest , left
 (evaluated last)

C-2 Appendix C

 TABLE C.2 WHERE TO FIND OPERATORS IN TEXT

 Operator Name
 Number of
Operands

 Where
Found

 a[..] subscript 2 7.1
 f(..) function call varies 3.2
 . direct selection 2 10.1
 -> indirect selection 2 10.2
 ++ increment 1 5.4
 -- decrement 1 5.4
 sizeof size of memory block 1 11.2
 ~ bitwise negation 1 App C
 ! logical negation 1 4.2
 & address-of 1 6.1
 * indirection 1 6.1

 or multiplication 2 2.5
 (type name) cast 1 2.5
 / division 2 2.5
 % remainder 2 2.5
 + unary plus 1 2.5

 or addition 2 2.5
 - unary minus 1 2.5

 or subtraction 2 2.5
 << left shift 2 App C
 >> right shift 2 App C
 < less than 2 4.2
 <= less than or equal 2 4.2
 > greater than 2 4.2
 >= greater than or equal 2 4.2
 == equality 2 4.2
 != inequality 2 4.2
 & bitwise and 2 App C
 ̂ bitwise xor 2 App C
 | bitwise or 2 App C
 && logical and 2 4.2
 || logical or 2 4.2
 ? : conditional 3 App C
 = assignment 2 2.3
 += -= *= compound assignment
 /= %= (arithmetic) 2 5.3
 <<= >>= (shifts) 2 App C
 &= ^= |= (bitwise) 2 App C
 , sequential evaluation 2 App C

Appendix C C-3

 Bitwise Operators

 In Chapter 2 , we noted that positive integers are represented in the computer
by standard binary numbers. For example, on a machine where a type int value
occupies 16 bits, the statement

 n = 13;

 would result in the following actual memory configuration:

 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1n
 Ten of the operators given in Table C.1 take operands of any integer type but treat
an operand as a collection of bits rather than as a single number. These operations
are described below.

 (i) Bitwise negation Application of the ~ operator to an integer produces a value
in which each bit of the operand has been replaced by its negation, that is, each 0
is replaced by a 1, and each 1 is replaced by a 0. Using our n value just shown, we
compute ~n as follows:

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1n

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0~ n
 (ii) Shift operators The shift operators << (left) and >> (right) take two integer
operands. The value of the left operand is the number to be shifted and is viewed as a
collection of bits that can be moved. To avoid problems with implementation variations,
it is best to use left operands that are nonnegative when right shifting. The right
operand is a nonnegative number telling how far to move the bits. The << operator
shifts bits left, and the >> operator shifts them right. The bits that “fall off the end” are
lost, and the “emptied” positions are filled with zeros. Here are some examples:

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1n

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0n << 1

0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

n << 4

n >> 3

0 lost

0000 lost

0 s added

0 added

0 s added

101 lost

C-4 Appendix C

 The compound assignment operators <<= and >>= cause the value resulting
from the shift to be stored in the variable supplied as the left operand.

 (iii) Bitwise and, xor, and or The bitwise operators & (and), ̂ (xor), and |
(or) all take two integer operands that are viewed as strings of bits. The operators
determine each bit of their result by considering corresponding bits of each
operand. For example, if we denote the i th bit of operand n by n i and the i th bit of
operand m by m i , then the i th bit of result r (r i) is defined for each operator as shown
in Table C.3 .

 TABLE C.3 Value of Each Bit of Result r for &, ^, and | with Operands n and m

 Operator Value of r i Explanation

 & n i & m i r i is 1 only if both corresponding
operand bits are 1

 ̂ n i + m i == 1 r i is 1 only if the corresponding
operand bits do not match

 | n i | m i r i is 1 if at least 1 of the
corresponding operand bits is 1

 The following is an example of applying each operator:

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1n

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0m

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0n & m

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1n ^ m

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1n | m
 The compound assignment operators &= , ̂ = , and |= cause the result value to be
stored in the variable supplied as the left operand.

 (iv) Conditional The conditional operator ? : takes three operands:

 c ? r1 : r2

Appendix C C-5

 The value of an expression using the conditional is the value of either its second or
third operand, depending on the value of the first operand. This evaluation could be
expressed in pseudocode as

 if c
 result value is r1

 else
 result value is r2

 The conditional might be used in defining a macro to find the minimum of two
values,

 #define MIN(x,y) (((x) <= (y)) ? (x) : (y))

 (v) Sequential evaluation The comma operator, evaluates its two operands in
sequence, yielding the value of the second operand as the value of the expression.
The value of the first operand is discarded. Following are two examples of the
comma’s use. In the first example, the value of the result of the comma’s application
is actually used: It is assigned to x. In the second example, the comma is merely a
device to allow execution of two assignments in a context where only one expression
is permitted.

 EXAMPLE C.1 The effect of the assignment statement

 x = (i += 2, a[i]);

 is the same as the effect of these two statements:

 i += 2;
 x = a[i];

 Notice that the parentheses around the comma expression in the first version are
essential since the precedence of the assignment operator is higher than the prec-
edence of the comma. Here are “before” and “after” snapshots of memory:

 Before After

 a[0] 4.2 a[0] 4.2
 [1] 12.1 [1] 12.1
 [2] 6.8 [2] 6.8
 [3] 10.5 [3] 10.5

 i 1 i 3

 x ? x 10.5

C-6 Appendix C

 EXAMPLE C.2 In the code fragment that follows, the two loop control variables are initialized to 0 .
One of these variables is incremented by 2 at the end of each loop iteration while
the second variable is incremented by the new value of the first.

 for (i = 0, j = 0;
 i < I_MAX && j < J_MAX;
 i += 2, j += i)
 printf("i - %d, j = %d\n", i, j);

 The comma operator should be used sparingly, since frequent use greatly increases
the code’s complexity from the reader’s point of view.

 Appendix D

 C H A R A C T E R S E T S

 The charts in this appendix show the following character sets: ASCII (American
Standard Code for Information Interchange), EBCDIC (Extended Binary Coded
Decimal Interchange Code), and CDC † Scientific. Only printable characters are
shown. The integer code for each character is shown in decimal. For example, in
ASCII, the code for ‘A’ is 65, and the code for ‘z’ is 122. The blank character is
denoted by n.

 Right
Digit

 Left
Digit(s)

 ASCII

 0 1 2 3 4 5 6 7 8 9

 3 n ! " # $ % & '

 4 () * + , − . / 0 1

 5 2 3 4 5 6 7 8 9 : ;

 6 < = > ? @ A B C D E

 7 F G H I J K L M N O

 8 P Q R S T U V W X Y

 9 Z [/] ̂ − ̀ a b c

 10 d e f g h i j k l m

 11 n o p q r s t u v w

 12 x y z { | }

 Codes 00–31 and 127 are nonprintable control characters.

 † CDC is a trademark of Control Data Corporation.

D-2 Appendix D

 Right
Digit

 Left
Digit(s)

 EBCDIC

 0 1 2 3 4 5 6 7 8 9

 6 n

 7 ¢ . < (+ |

 8 &

 9 ! $ *) ; 0 _ /

 10 ̂ , % —

 11 > ?

 12 : # @ ' = " a

 13 b c d e f g h i

 14 j k l m n

 15 o p q r

 16 s t u v w x y z

 17 \ { }

 18 []

 19 A B C D E F G

 20 H I J

 21 K L M N O P Q R

 22 S T U V

 23 W X Y Z

 24 0 1 2 3 4 5 6 7 8 9

 Codes 00–63 and 250–255 are nonprintable control characters.

 Right
Digit

 Left
Digit

 CDC

 0 1 2 3 4 5 6 7 8 9

 0 : A B C D E F G H I

 1 J K L M N O P Q R S

 2 T U V W X Y Z 0 1 2

 3 3 4 5 6 7 8 9 + − *

 4 / () $ = n , . ? [

 5] % Z ∨ ∧ ↑ ↓ < >

 6 ≤ ≥ 0 ;

 Appendix E

 A N S I C R E S E R V E D W O R D S

 auto double int struct
 break else long switch
 case enum register typedef
 char extern return union
 const float short unsigned
 continue for signed void
 default goto sizeof volatile
 do if static while

This page intentionally left blank

 Abstract data type (ADT) A data type combined with a set of
basic operations.

 Abstraction The process of modeling a problem by extracting
the essential variables and their relationships.

 Accumulator A variable used to store a value being computed
in increments during the execution of a loop.

 Activation frame Representation of one call to a function.
 Actual argument An expression used inside the parentheses of a

function call; its value is passed into the function and associated
with the function’s corresponding formal parameter.

 Address of a memory cell The relative position of a memory
cell in the computer’s main memory.

 Algorithm A list of steps for solving a problem.
 Application Software used for a specific task such as word

processing, accounting, or database management.
 Arithmetic overflow An error that is an attempt to represent a

computational result that is too large.
 Arithmetic underflow An error in which a very small computational

result is represented as zero.
 Array A collection of data items of the same type.
 Array element A data item that is part of an array.
 Array subscript A value or expression enclosed in square brackets

[] after the array name, specifying which array element to
access.

 Assembly language Mnemonic codes that correspond to
machine language instructions.

 Assignment statement An instruction that stores a value or a
computational result in a variable.

 auto Default storage class of function parameters and local
variables; storage is automatically allocated on the stack at the
time of a function call and deallocated when the function
returns.

 Background color The default color for all of the pixels in a
display window.

 Batch mode A mode of program execution in which the
 program scans its data from a previously prepared data file.

 Binary file A file containing binary numbers that are the
 computer’s internal representation of each file component.

 Binary number A number made up of a sequence of the digits
0 and 1; a base-2 number.

 Binary operator An operator with two operands.

 Bit A binary digit—0 or 1.
 Booting a computer Loading the operating system from disk

into memory.
 Bottom-up testing The process of separately testing individual

functions of a program system.
 Buffer An area of memory where data to be displayed or

printed is temporarily stored.
 Byte The amount of storage required to store a single character.
 Cancellation error An error resulting from applying an arithmetic

operation to operands of vastly different magnitudes: effect
of smaller operand is lost.

 Cast (see type cast) converting an expression to a different type
by writing the desired type in parentheses in front of the
expression

 Central processing unit (CPU) The “brain” of a computer; consists
of arithmetic logic unit and control unit.

 Child process A new process that is created by a currently
executing process (the parent process).

 Cohesive function A function that performs a single operation.
 Collating sequence A sequence of characters arranged by character

numeric code number.
 Command line arguments Options specified in the statement

that activates a program.
 Comment Text beginning with /* and ending with */ that

provides supplementary information that is ignored by the
preprocessor and compiler.

 Compiler Software that translates a high-level language
 program into machine language.

 Compound statement A group of statements bracketed by {
and } that are executed sequentially.

 Computer A machine that can receive, store, transform, and
output data of all kinds.

 Computer chip (microprocessor chip) A silicon chip containing
the circuitry for a computer processor.

 Computer theft (computer fraud) Illegally obtaining money by
falsifying information in a computer database.

 Concatenation Joining of two strings.
 Concurrent programming Writing sets of program instructions that

can execute at the same time independently of one another.
 Condition An expression that is either false (represented by 0)

or true (usually represented by 1).

 G L O S S A R Y

G-2 Glossary

 Constant macro A name that is replaced by a particular
 constant value before the program is sent to the compiler.

 Consumer thread One of several threads that receives a
resource that is produced by another thread.

 Contents of memory cell The information stored in a memory
cell, either a program instruction or data.

 Context switch The process of switching from one process to
another accomplished by saving the state information for
the currently executing process, which will become idle,
and loading the saved state information for a currently idle
process, which will resume execution.

 Control structure A combination of individual instructions into
a single logical unit with one entry point and one exit point;
controls which instructions are executed and in what order.

 Counter-controlled loop (counting loop) A loop whose
required number of iterations can be determined before
loop execution begins.

 Cursor A moving place marker that indicates the next position
on the screen where information will be displayed.

 Data abstraction Separation of the logical view of a data object
(what is stored) from the physical view (how the information
is stored).

 Data inconsistency Data errors arising because one thread
accesses a shared resource while another thread is in the
process of modifying it.

 Data retrieval Copying the contents of a particular memory
cell to another storage area.

 Data storage Setting the individual bits of a memory cell to 0
or 1, destroying the cell’s previous contents.

 Data structure A composite of related data items stored under
the same name.

 Data type A set of values and of operations that can be
 performed on those values.

 Database A vast electronic file of information that can be
quickly searched using subject headings or keywords.

 Deadlock A situation in which a thread is blocked (cannot
execute) because it is attempting to lock a mutex that is
already locked by another thread that will never release
the mutex lock.

 Debugging Removing errors from a program.
 Decision step An algorithm step that selects one of several actions.
 Declarations The part of a program that tells the compiler the

names of memory cells used.
 Default constructor A constructor that requires no arguments.
 Defunct process A child process that has exited but whose

 parent process has not yet retrieved its exit status.
 Digital video disk (DVD) Silvery plastic platter with up to 17

GB of data storage.
 Direct component selection operator A period placed between

a structure type variable and a component name to create
a reference to the component.

 Directory A list of the names of files stored on a disk.

 Disk A circular sheet of metal or plastic coated with a magnetic
material used for secondary data storage in a computer.

 Disk drive A device used to store and retrieve information on a disk.
 Double buffering a technique used in graphics programming

to reduce display flicker by allocating two buffers: The
second buffer is filled while the contents of the first buffer
is displayed and then the roles of each buffer are reversed.

 Driver A short function written to test another function by
defining its arguments, calling it, and displaying its result.

 Dynamic data structure A structure that can expand and
 contract as a program executes.

 Empty list A list of no nodes; represented in C by the pointer
NULL, whose value is 0.

 Empty string A string of length zero: the first character of the
string is the null character.

 Encapsulate Packaging a data object and its operators together
as a unit.

 Enumerated type A data type whose list of values is specified
by the programmer in a type declaration.

 Enumeration constant An identifier that is one of the values of
an enumerated type.

 Executable statements Program lines that are converted
to machine language instructions and executed by the
computer.

 extern Storage class of names known to the linker.
 Extraction operator (>>) An operator that takes values from an

input stream for storage in variables.
 Fetching an instruction Retrieving an instruction from main

memory.
 Field width The number of columns used to display a value.
 FIFO (first-in, first-out) structure A data structure in which

the first element stored is the first to be removed.
 File A collection of related information stored on a disk.
 File server The computer in a network that controls access to

a secondary device such as a hard disk.
 Flag A type int variable used to represent whether or not a

certain event has occurred.
 Flash drive Device that plugs into USB port and stores data

bits as trapped electrons.
 Flowchart A diagram that shows the step-by-step execution of

a control structure.
 Foreground color The new color of pixels that are part of a

graphics object in a display window.
 Formal parameter An identifier that represents a corresponding

actual argument in a function definition.
 Format string In a call to printf , a string of characters

enclosed in quotes (""), which specifies the form of the
output line.

 Friend A nonmember operator or function given permission to
access the private members of a class.

 Full-duplex pipe A pipe which can send information in both
directions at the same time.

Glossary G-3

 Function argument Expression enclosed in parentheses
 following the function name in a function call; provides
information needed by the function.

 Function call Code that activates a function.
 Function keys Special keyboard keys used to select a particular

operation; the operation selected depends on the program
being used.

 Global variable A variable that may be accessed by many
 functions in a program.

 Graphics mode A display mode in which a program draws
graphics patterns and shapes in an output window.

 Graphical user interface Pictures and menus displayed to
allow user to select commands and data.

 Half-duplex pipe A pipe which can send information only in
one direction.

 Hand trace (desk check) Step-by-step simulation of an
 algorithm’s execution.

 Hard disk A disk drive that is built into the computer and
 normally cannot be removed.

 Hardware The computer’s physical devices.
 Header file Text file containing the interface information about

a library needed by a compiler to translate a program
 system that uses the library or by a person to understand
and use the library.

 Heap Region of memory in which function malloc dynamically
allocates blocks of storage.

 Hierarchical structure A structure containing components that
are structures.

 High-level language Machine-independent programming
language that combines algebraic expressions and English
symbols.

 Icon A picture representing a computer operation.
 Implementation file File containing the C source code of a

library’s functions and any other information needed for
compilation of these functions.

 Indirect component selection operator The character
sequence -> placed between a pointer variable and a
component name that creates a reference that follows the
pointer to a structure and selects the component.

 Indirect reference Accessing the contents of a memory cell
through a pointer variable that stores its address.

 Infinite loop A loop that executes forever.
 Information hiding Protecting the implementation details of

a lower-level module from direct access by a higher-level
module.

 Inorder traversal Displaying the items in a binary search tree
in order by key value.

 Input data The data values that are scanned by a program.
 Input operation An instruction that copies data from an input

device into memory.
 Input (output) stream Continuous stream of character codes

representing textual input (or output) data.

 Input/output function A C function that performs an input or
output operation.

 Insertion operator (<<) An operator that inserts characters in
an output stream.

 Install Make an application available on a computer by copying
it from CD to the computer’s hard drive.

 Integrated circuit (IC) or Chip A sliver of silicon containing a
large number of miniature circuits.

 Integrated development environment (IDE) Software package
combining a word processor, compiler, linker, loader, and
tools for finding errors.

 Interactive mode A mode of program execution in which the
user responds to prompts by entering (typing in) data.

 Interprocess communications The exchange of information
between processes that are running on the same CPU and
that have a common ancestor.

 Leaf node A binary tree node with no successors.
 Left subtree The part of a tree pointed to by the left pointer

of the root node.
 Library A collection of useful functions and symbols that may

be accessed by a program.
 LIFO (last-in, first-out) structure A data structure in which

the last element stored is the first to be removed.
 Linear programming Writing a sequence of program instructions

in which each instruction depends on the completion of
the previous instruction.

 Linker Software that combines object files and resolves cross-
references to create an executable machine language
program.

 List head The first element in a linked list.
 Local area network (LAN) Computers, printers, scanners,

and storage devices connected by cables for inter-
communication.

 Logic error An error caused by following an incorrect algorithm.
 Logical complement (negation) The complement of a condi-

tion has the value 1 (true) when the condition’s value is
0 (false); the complement of a condition has the value 0
(false) when the condition’s value is nonzero (true).

 Logical expression An expression whose value is (false) or
nonzero (true); may one or more of the logical operators
 && (and), || (or), ! (not).

 Loop A control structure that repeats a group of steps in a
program.

 Loop body The statements that are repeated in a loop.
 Loop boundaries Initial and final values of the loop control

variable.
 Loop control variable The variable whose value controls loop

repetition.
 Loop repetition condition The condition that controls loop

repetition.
 Machine language Binary number codes understood by a

specific CPU.

G-4 Glossary

 Macro Facility for naming a commonly used statement or
operation.

 Memory cell An individual storage location in memory.
 Microprocessor An entire CPU on a single chip.
 Modem A device that converts binary data into audio signals

that can be transmitted between computers over telephone
lines.

 Mouse An input device that moves its cursor on the computer
screen to select an operation.

 Multidimensional array An array with two or more dimensions.
 Multitasking Dividing a program into tasks that operate

 independently of one another.
 Mutex A particular form of mutual exclusion locking that

utilizes a variable which can only be locked or released by
one thread at a time. A thread must attempt to lock the
mutex variable before accessing a shared resource, and it
must release it after accessing the shared resource.

 Mutual exclusion locking Accomplishing thread synchronization
by using a lock and release mechanism to restrict access to
the shared resources to one thread at any given moment.

 Nested if statement An if statement with another if
 statement as its true task or its false task.

 Newline escape sequence The character sequence \n , which
is used in a format string to terminate an output line.

 Nodes Dynamically allocated structures that are linked
together to form a composite structure.

 Null character Character "\0" that marks the end of a string
in C.

 Null pointer Pointer whose value is NULL.
 Object file File of machine language instructions that is the

output of a compiler.
 Object-oriented programming (OOP) A methodology that

creates programs composed of semi-autonomous agents
called objects.

 Operating system (OS) Software that controls interaction of
user and computer hardware and that manages allocation
of computer resources.

 Optical drive Device that uses a laser to access or store data
on a compact disk.

 Ordered list A data structure in which each element’s position
is determined by the value of its key component; the keys
form an increasing or decreasing sequence.

 Output operation An instruction that displays information
stored in memory.

 Overloading Using the same name for several different functions
or operators in a single scope.

 Parallel arrays Two or more arrays with the same number
of elements used for storing related information about a
 collection of data objects.

 Parallel programming Execution of multiple programs at the
same time.

 Parent process The currently executing process that has created
one or more new child processes.

 Pipe A form of interprocess communications that consists of
two file descriptors, one opened for reading and the other
opened for writing.

 Pixel A picture element on a computer screen.
 Placeholder A symbol beginning with % in a format string that

indicates where to display the output value.
 Pointer A memory cell whose content is the address of another

memory cell.
 Pointer variable A memory cell that stores the address of a

data item.
 Pop Remove the top element of a stack.
 Postcondition A condition assumed to be true after a function

executes.
 Precondition A condition assumed to be true before a function call.
 Preemptive multitasking Stopping the execution of a running

program by the hardware interrupt system, allowing
another program to access the CPU.

 Preprocessor A system program that modifies a C program
prior to its compilation.

 Preprocessor directive A C program line beginning with # that
provides an instruction to the preprocessor.

 Print list In a call to printf , the variables or expressions
whose values are displayed.

 Printer An output device that produces a hard copy of information
sent to it.

 Procedural abstraction A programming technique in which a
main function consists of a sequence of function calls and
each function is implemented separately.

 Process ID A unique identifier given to a process by the
 operating system.

 Producer thread A thread that creates a resource that is
 consumed by other threads.

 Program A list of instructions that enables a computer to
 perform a specific task.

 Program documentation Information (comments) that
enhances the readability of a program.

 Program output The lines displayed by a program.
 Prompt (prompting message) A message displayed to indicate

what data to enter and in what form.
 Pseudocode A combination of English phrases and C

 constructs to describe algorithm steps.
 Pseudo-parallelism A situation in which programs appear to

be running in parallel at the same time although they are
actually taking turns sharing the CPU.

 Push insert a new element at the top of the stack.
 Queue A list data structure in which elements are inserted at

one end and removed from the other end.
 Random access memory (RAM) The part of main memory that

temporarily stores programs, data, and results.

Glossary G-5

 Read-only memory (ROM) The part of main memory that
permanently stores programs or data.

 Record A collection of information about one data object.
 Recursive function Function that calls itself or that is part of a

cycle in the sequence of function calls.
 Reference parameter A parameter into which the address of the

corresponding actual argument is stored, so the function/
operator can refer to the original copy of the argument.

 Register High-speed memory location inside the CPU.
 register Storage class of automatic variables that the

 programmer would like to have stored in registers.
 Representational error An error due to coding a real number

as a finite number of binary digits.
 Reserved word A word that has special meaning in C.
 Right subtree The part of a tree pointed to by the right pointer

of the root node.
 Root (zero of a function) A function argument value that

causes the function result to be zero.
 Root node The first node in a binary tree.
 Run-time error An attempt to perform an invalid operation,

detected during program execution.
 Scope of a name The region in a program where a particular

meaning of a name is visible.
 Secondary storage Units such as disks or tapes that retain data

even when the power to the disk drive or tape drive is off.
 Seed seed for a random number generator An initial value

used in the computation of the first random number.
 Selection control structure A control structure that chooses

among alternative program statements.
 Sentinel value An end marker that follows the last item in a

list of data.
 Short-circuit evaluation Stopping evaluation of a logical

expression as soon as its value can be determined.
 Side effect A change in the value of a variable as a result of

carrying out an operation.
 Simple case Problem case for which a straightforward solution

is known.
 Single buffering The default case for graphics mode in which

only one buffer is allocated.
 sizeof Operator that finds the number of bytes used for

storage of a data type.
 Software The set of programs associated with a computer.
 Software piracy Violating copyright agreements by illegally

copying software for use in another computer.
 Source file File containing a program written in a high-level

language; the input for a compiler.
 Stack A data structure in which the last data item added is the

first data item processed.
 Standard identifier A word having special meaning but one

that a programmer may redefine (but redefinition is not
recommended!).

 static Storage class of variables allocated only once, prior
to program execution.

 stdin System file pointer for keyboard’s input stream.
 stdout , stderr System file pointers for screen’s output stream.
 Stepwise refinement Development of a detailed list of steps to

solve a particular step in the original algorithm.
 Stored program concept Computer’s ability to store program

instructions in main memory for execution.
 String length In a character array, the number of characters

before the first null character.
 Structure chart A documentation tool that shows the relationships

among the subproblems of a problem.
 Structure type A data type for a record composed of multiple

components.
 Stub A skeleton function that consists of a header and statements

that display trace messages and assign values to output
parameters; enables testing of the flow of control among
functions before this function is completed.

 Subdirectory A list of the names of files that relate to a
 particular topic.

 Subscripted variable A variable followed by a subscript in
brackets, designating an array element.

 Substring A fragment of a longer string.
 Syntax Grammar rules of a programming language.
 Syntax error A violation of the programming language’s grammar

rules, detected during program translation (compilation).
 System integration test Testing a system after replacing all its

stubs with functions that have been pretested.
 System stack Area of memory where parameters and local

variables are allocated when a function is called and
 deallocated when the function returns.

 Tail recursion Any recursive call that is executed as a function’s
last step.

 Terminating condition A condition that is true when a recursive
algorithm is processing a simple case.

 Text file A named collection of characters saved in secondary
storage.

 Text mode A display mode in which a program displays only
characters.

 Thread One process among a set of cooperating subprocesses
that run within the same process image and memory context
and share the process-related resources with each other.

 Thread of control The currently executing thread.
 Time-sharing Performing parallel programming by allocating

to each system user a portion of the available CPU time.
 Time slice The amount of CPU time allocated to each

 program in a parallel programming environment.
 Top-down design A problem-solving method in which you

first break a problem into its major subproblems and then
solve the subproblems to derive the solution to the original
problem.

G-6 Glossary

 Top-down testing The process of testing flow of control
between a main function and its subordinate functions.

 Traversing a list Processing each node in a linked list in
sequence, starting at the list head.

 Unary operator An operator with one operand.
 union A data structure that overlays components in memory,

allowing one chunk of memory to be interpreted in
 multiple ways.

 Unit testing A test of an individual function.
 Value parameter A parameter into which the value of the

corresponding actual argument is stored, so the function/
operator has its own copy of the argument value.

 Variable A name associated with a memory cell whose value
can change.

 Variable declarations Statements that communicate to the
compiler the names of variables in the program and the
kind of information stored in each variable.

 Virus Code attached to another program that spreads through
a computer’s disk memory, disrupting the computer or
erasing information.

 void function A function that does not return a value.
 Volatile memory Memory whose contents disappear when the

computer is switched off.
 Wide area network (WAN) A network such as the internet that

connects computers and LANs over a large geographic
area.

 World Wide Web (WWW) A part of the Internet whose
graphical user interfaces make associated network
resources easily navigable.

 Worm A virus that can disrupt a network by replicating itself
on other network computers.

 Zombie A child process that has exited but whose parent process
has not yet retrieved its exit status.

 A
 abs function, 121
 abstract data type (ADT), 584
 abstraction

 in complexity management, 660 – 663
 data, 661 – 662
 defined, 34 , 660
 procedural, 660 – 661

 accumulator, defined, 242
 activation frame, defined, 524
 actual argument

 defined, 138
 output parameters as, 336 – 340

 addition (+) operator, 73
 address-of (&) operator, 395

 misuse/neglect of, 505
 references and, 325

 add_to_q function, 728 – 729
 algorithms

 decision steps in, 194 – 204
 defined, 34
 for delete function, 738 – 739
 delete_ordered_node function, 741
 design, 34 – 35
 desk check, 35
 implementation, 35
 for insert_in_order, 736
 for insertion in binary search

tree, 747
 iterative approximations, 276 – 278
 loop use decision, 236
 recursive, 521
 for selection sort, 403
 stepwise refinement, 34
 writing, 34

 analysis, 33 – 34 . see also software
 development method

 bisection case study, 278 – 279
 capital letters case study, 538 – 539
 characters, 485 – 488

 circle’s area and circumference case
study, 109 – 110

 coin processor case study, 82 – 83
 complex numbers case study, 584 – 585
 database inquiry case study, 641 – 643
 defined, 33
 drawing diagrams case study, 124
 flat washers case study, 113 – 114
 fraction arithmetic case study,

 347 – 348
 hospital revenue case study, 419 – 420
 miles conversion case study, 36 – 37
 operations on sets case study, 545
 ordered list case study, 732 – 733
 recursive selection sort case study, 542
 solar collecting area size, 341
 text editor case study, 495 – 496
 Towers of Hanoi case study, 553 – 555
 universal measurement case study,

 594 – 595
 water bill case study, 195
 water bill conservation case study,

 205 – 207
 ancestors, 744
 and operator (&&), 177
 animation, 292 – 296
 application

 defined, 26
 installing, 27

 approximations, iterative, 276 – 278
 arc function, 152 – 155 , 161
 arguments, 63

 actual, 138
 array elements as, 386 – 388
 arrays, 388 – 401 , 438
 command line, 683
 input (see input arguments)
 list correspondence, 144
 to main function, 682 – 685
 multiple, functions with, 142 – 144

 output (see output arguments)
 string, 456

 arithmetic expressions, 72 – 87
 evaluation rules, 78
 mathematical formulas, 80 – 81
 with multiple operators, 77 – 80
 and numerical inaccuracies,

 81 – 82
 step-by-step evaluation, 79

 arithmetic overflow, defined, 82
 arithmetic underflow, defined, 82
 ARPAnet project, 23
 array declaration, 394 , 593

 example, 378
 multidimensional arrays, 414 , 415
 syntax, 378

 array elements
 defined, 376
 finding largest, 391
 as function arguments, 386 – 388
 illustrated, 377
 passing, 386
 value, 379

 array initialization, 378
 list, 378
 multidimensional arrays, 416

 array of characters
 overflow of, 505
 to store prompt, 430
 storing string in, 378 – 379

 array parameters
 argument correspondence for,

 389 – 390
 formal, 388 – 389
 input, 392

 arrays, 376 – 438
 allocation, with calloc, 707 – 708
 answer/score, 413
 arguments, 388 – 401 , 438
 of characters, 378 – 379 , 430

 I N D E X

I-2 Index

arrays (continued)
 common programming errors,

 437 – 438
 declaring/referencing, 376–379

(see also array declaration)
 defined, 376
 elements (see array elements)
 enumerated types, 407 – 414
 exchanging string elements of, 477
 graphics programs with, 428 – 437
 initialization, 378 (see also array

 initialization)
 as input arguments, 391 – 392
 manipulation statements, 377
 multidimensional, 414–418 (see also

multidimensional arrays)
 names, 378
 parallel, 406 – 407 , 592
 partially filled, 395 – 398
 of pointers, 477 – 482
 pointers in representation of, 701
 processing, 419 – 428
 random access, 419
 result, returning, 392 – 395
 search, 401 – 403
 sequential access, 419
 sorting, 401 , 403 – 406
 statistical computations with, 382 – 386
 of string constants, 482
 of strings, 455 – 456
 of structures, 592 – 593
 subscript (see array subscript)

 arrays of pointers, 477 – 482
 initializing, 482
 two orderings of, 479 – 482

 arrays of structures
 declaring, 592 – 593

 array subscript, 379 – 381
 defined, 376
 example, 380 – 381
 int as, 379
 loop control variables as, 385
 syntax, 380
 value, 379

artificial intelligence (AI), 9
 ASCII code (American Standard Code

for Information Interchange),
 58 – 59 , 486

 defined, 58
 assembly language, defined, 28

 assignment
 logical, 182 – 183
 strings, 460 , 462 – 463

 assignment operator (=), 223
 compound, 245 – 246
 in order of precedence, 178

 assignment statement, 60 – 62 , 182 – 183
 defined, 60
 example, 61
 mixed-type, 75 – 76

 associativity rule, 78
 auto storage class, 672

 defined, 671

 B
 \b, 626
 background color, 150
 backslash (\) character, 626
 bar function, 161
 batch mode, defined, 91
 binary files, 634 – 640

 advantage of, 636
 data I/O using, 637 – 638
 defined, 634
 integers, creation of, 634
 programming errors, 650 – 651

 binary numbers
 defined, 17

 binary operators
 associativity rule, 78
 defined, 77
 parentheses rule, 78
 precedence rule, 78

 binary search tree, 744 – 751
 algorithm for insertion in, 747
 building, 745 – 750
 creation, 748 – 750
 defined, 744
 displaying, 750 – 751
 searching, 745

 binary strings, 56
 binary trees, 743 – 751

 defined, 743
 disjoint subtrees, 743
 leaf nodes, 743
 left subtree, 743
 right subtree, 743
 root node, 743
 search (see binary search tree)

bioinformatics, 9
 bisection case study, 278 – 286

 analysis, 278 – 279
 design, 279 – 281
 implementation, 281 – 285
 problem, 278
 sample run with trace code, 286
 testing, 285

 bisection method, 277
 case study (see bisection case study)

 bit, 19
 booting the computer, defined, 25
 bottom-up testing, defined, 357
 breakpoint, 287
 break statement, 219
 buffer, defined, 294
 byte, 19
 bytes, 635

 C
 cable Internet access, 24
 calloc function

 dynamic array allocation with,
 707 – 708

 camelBack notation, 149
 cancellation error, defined, 81
 capital letters case study, 538 – 541

 analysis, 538 – 539
 design, 539
 find_caps function, 540
 problem, 538
 testing, 539 – 541

career opportunities
example occupations, 10
new, 12
unrepresented groups demand, 11
US demand, 10–11

 ceil function, 121
 central processing unit (CPU), 21 – 22

 circuitry of, 22
 defined, 21

 character comparisons, 181 – 182
 characters

 analysis/conversion, 485 – 488
 backslash (\), 626
 codes, 483
 counting, in string, 522 – 523
 eof, 625
 input/output, 483 – 485

Index I-3

 newline, 625
 null, 455
 operations, 483 – 488
 tab, 626
 vs. strings, 470 – 471

 char data type, 57 – 58 . see also data
types

 conversion to int data type, 76 , 77
 manipulation of, 82 – 85

 circle function, 152 – 155 , 162
 circle’s area and circumference case

study, 109 – 112
 analysis, 109 – 110
 design, 110
 implementation, 110 – 112
 problem, 109
 program, 111 – 112
 testing, 112

 C language
 arithmetic expressions, 72–87

(see also arithmetic expressions)
 ASCII code, 58 – 59
 batch mode, 91
 code reuse, 117 – 119
 compiler, 222 , 224 , 296 – 297
 conditions in, 180 – 181
 data types, 54 – 56
 defined, 46
 display modes, 146
 elements of, 46 – 53
 executable statements (see executable

statements)
 input redirection, 91
 interactive mode, 90 – 91
 libraries, 46
 library functions, 120 – 122
 main function, 49 – 50
 mathematical formulas in, 80 – 81
 number formatting, 87 – 90
 numeric constants in, 54
 output redirection, 91 – 93
 pointers in, 316–320 (see also

pointers)
 predefined functions, 117 – 119
 preprocessor directives, 46–48 (see

also preprocessor directives)
 program form, 69 – 72
 programming errors, 93–99 (see also

errors)
 program style, 52 – 53

 reserved words, 50 , 52
 standard identifiers, 50
 storage classes (see storage classes)
 syntax displays, 48 – 49
 type cast, 76
 UNIX and, 221 – 222
 uppercase/lowercase letters, 52
 user-defined identifiers, 51
 variable declarations, 53 – 54

 C++ language
 compilers, 222

 clearmouseclick function, 434 , 436
 clearviewport function, 295
 closegraph function, 162
 code reuse

 defined, 117
 functions and, 117 – 119

 cohesive functions, defined, 203
 coin processor case study, 82 – 85

 analysis, 82 – 83
 design, 83
 implementation, 83 – 85
 problem, 82
 testing, 85

 command line arguments, 683
 comments

 C++ style, 71
 defined, 48
 function interface, 141
 in programs, 70 , 132
 using, 70 – 72

 comparisons
 character, 181 – 182
 of loop kinds, 237
 nested if statement, 208 – 209
 nested if statements vs. switch

statement, 221
 one/two alternative if statements,

 188 – 189
 of prefix/postfix increments, 250
 strings, 474 – 477

 compilers, 28 – 29
 C++, 222
 C language, 222 , 296 – 297
 defined, 28

 complex numbers case study, 583 – 591
 analysis, 584 – 585
 design, 585 – 591
 implementation of type/operators

for, 587 – 591

 problem, 584
 specification, 585 – 586

 compound assignment operator,
 245 – 246

 compound statement
 defined, 174
 if statement with, 191 – 194 , 192

 computer
 booting, 25
 categories of, 15
 defined, 14
 electronic, 14 – 17
 elements of, 17
 graphics, 146–163 (see also graphics,

computer)
 hardware, 17–24 (see also hardware)
 mainframes, 15
 personal, 15 , 16
 software, 17, 25–33 (see also software)
 supercomputers, 15

 computer chip, 15
computer engineering, 6-7
computer forensics, 9
 computer programmers

 ethics for, 39 – 41
Computer Information Systems

(CIS), 7
computer science, 6
computer scientists

fields for, 2–3
“Joys of the Craft,” 4
traits, 3–4

 computer theft/fraud
 defined, 39

computing degrees, 5
computing disciplines

computer engineering, 6–7
computer science, 6
fields, 4–5
Information Systems (IS), 7
Information Technology (IT), 7–8
mixed disciplinary majors, 8–9
Software engineering (SE), 8

 concatenation, 469 – 470
 defined, 469

 conditional compilation, 678 – 682
 of tracing printf calls, 679 , 680

 conditional loops, 256 – 261
 parts, 256
 steps in, 260

I-4 Index

 conditions, 175 – 185
 characters comparison, 181 – 182
 defined, 175
 logical assignment, 182 – 183
 loop repetition, 239 , 241 , 298
 operator precedence, 178 – 179
 sample, 176
 short-circuit evaluation, 179 – 180
 terminating, 526
 writing, in C, 180 – 181

 constant
 strings, 454 , 482

 constant macro, 203 . see also macros
 defined, 48
 #define directive for creating, 49

 controlling expressions
 defined, 217 , 220
 matching permitted type, 224

 control structures
 conditions (see conditions)
 defined, 174
 types of, 174

 cos function, 121
 counter-controlled loop. see counting

loop
 count function, 521 – 523
 counting loop

 defined, 238
 format, 238
 loop control variable, 238 , 240
 nested, 271
 for statement in, 248
 uses, 237
 and while statement, 238 – 241

cryptology, 9
 cursor, defined, 22 , 64

 D
 data

 faulty, infinite loop on, 266 – 267
 flow information, 204 – 205
 input, 31
 numeric, manipulating, 347
 privacy/misuse of, computer

programmers and, 39
 standard deviation, 384

 data abstraction, 661 – 662
 defined, 661

 data areas, 331

 add_arrays, 394
 do_it, 387
 function, 144 – 145
 for scan_fraction function, 338
 scan_planet, 578
 of strcpy function, 477
 three pointer-type local variables, 704

 database
 defined, 568 , 640
 records, 568
 searching, 640 – 650

 database inquiry case study, 641 – 650
 analysis, 641 – 643
 design, 643
 function subprogram implementation,

 647 – 650
 implementation, 643 – 650
 problem, 641
 program, 644 – 647
 structure chart for, 643

 data retrieval, defined, 19
 data storage, defined, 19
 data structure

 defined, 376
 dynamic (see dynamic data

structures)
 stacks (see stacks)

 data types
 char, 57 – 58
 defined, 54
 double, 55 , 56
 of expression, 75
 int, 54 – 55 , 56
 objects of, 54

 dates, conversion functions, 491 – 494
 debugger program, 287
 debugging

 defined, 93
 programs, 287 – 289
 program system, 356 – 359
 without debugger, 287 – 288

 decision steps
 in algorithms, 194 – 204
 defined, 194

 decision tables, 211
 declarations

 array (see array declaration)
 defined, 49
 of global variable, 672
 variable (see variable declarations)

 decrement operator (–), 250
 #define directive, 46 , 47

 for creating constant macros, 49
 for defining identifiers, 48

 defined operator, 679
degrees, computing

computer engineering (CE), 6–7
computer science, 6
Information Systems (IS), 7
Information Technology (IT), 7–8
mixed disciplinary majors, 8–9
Software engineering (SE), 8
types of, 5

 delay function, 295 , 436
 delete function, 738 – 741

 algorithm for, 738 – 739
 iterative, 739 – 740
 recursive, 741

 delete_ordered_node function,
 740 , 741 – 742

 algorithm, 741
 recursive, 742

 DeMorgan’s theorem, 184
 denominator, 336
 descendants, 744
 design. see also software development

method
 bisection case study, 279 – 281
 capital letters case study, 539
 circle’s area and circumference case

study, 110
 coin processor case study, 83
 complex numbers case study,

 585 – 591
 database inquiry case study, 643
 defined, 34
 drawing diagrams case study, 125
 flat washers case study, 114
 fraction arithmetic case study,

 348 – 349
 hospital revenue case study, 420
 loops (see loop design)
 miles conversion case study, 37 – 38
 operations on sets case study, 545 – 546
 ordered list case study, 733
 recursive selection sort case study, 542
 solar collecting area size, 342 – 347
 text editor case study, 496 – 498
 top-down, 34
 Towers of Hanoi case study, 555 – 556

Index I-5

 universal measurement case study,
 595 – 596

 water bill case study, 196 – 198
 desk check

 defined, 35
 desk check, defined, 192
 direct component selection operator,

 571 – 572
 directory, defined, 21
 disjoint subtrees, 743
 disks

 defined, 20
 information stored on, 21

 display modes, 146
 division (/) operator, 73

 defined, 73
 examples of, 73
 relationship with% operator, 74

 documentation
 in building programs, 108
 program, defined, 70

 double buffering, defined, 294
 double data type, 55 . see also data

types
 assignment, 76
 errors associated with, 81
 format of, 56
 formatting values of, 88 – 90
 int data type vs., 56 – 57
 string conversion to, 488

 do-while Statement, 273 – 276
 common programming errors, 298
 example, 273
 input validation using, 275 – 276
 pseudocode for, 273
 syntax, 273

 drawGrid function, 431
 drawing diagrams case study

 analysis, 124
 design, 125
 problems, 124

 drawpoly function, 428 – 429 , 436
 driver function

 defined, 145
 fill_to_sentinel, 397
 testing with, 145 – 146

 drives
 disk, 20
 flash, 21
 optical, 20

 DSL (digital subscriber line)
connections, 23

 dynamic data structures
 binary trees, 743–751 (see also binary

trees)
 components, accessing, 706 – 707
 components, referencing, 707
 defined, 700
 linked lists (see linked lists)
 ordered lists, 731–743 (see also

ordered lists)
 with pointer components, 711 – 712
 pointers, 700 – 704
 programming errors, 753

 dynamic memory allocation, 704 – 710
 arrays, calloc function and,

 707 – 708

 E
 echo prints vs. prompt, 91
 ellipse function, 152 – 155 , 162
 else clause, 191
 empty lists, 713
 empty strings, defined, 467
 encapsulation

 defined, 662
 endfile-controlled loop

 design, 265 – 266
 pseudocode for, 266
 uses, 237

 ENIAC, 14
 enumerated types, 407 – 414

 defined, 407
 example, 410
 illustrated, 409 – 410
 syntax, 410

 enumeration constant
 defined, 407

 eof character, 625
 epsilon, 277
 equality operator (= =), 175 – 176 ,

 223
 errors

 cancellation, 81
 dynamic data structures, 753
 logic, 98 – 99 , 287 , 288
 macros, 690
 messages, 93
 programming, 163 , 223 – 224 ,

 296 – 298 , 359 , 437 – 438 , 504 – 506 ,
 558 – 559 , 610 , 690

 recursive function, 558 – 559
 representational, 56 , 81
 run-time, 96 , 163 , 287
 strings, 504 – 506
 structure types, 610
 subscript-range, 437
 syntax, 93 – 95 , 163 , 224 , 287
 text/binary file processing,

 650 – 651
 undetected, 96 , 97 – 98

 escape sequences, 626
 ethics, for computer programmers,

 39 – 41
 computer hacking, 40
 computer resources, misuse of, 41
 privacy/misuse of data, 39
 software piracy, 40 – 41

 evaluation trees, 78 , 79
 executable statements, 59 – 68

 defined, 49
 existing information

 building programs from, 108 – 117
 case studies, 109 – 116

 exit function, 676
 example, 677 – 678
 syntax, 677

 exp function, 121
 expressions

 arithmetic, 72–87 (see also arithmetic
expressions)

 controlling, 217 , 220 , 224
 data types of, 75
 english conditions as C, 180
 logical, 176
 mixed-type, 75
 with multiple operators, 77 – 80
 step-by-step evaluation, 79

 extern storage class, 671 , 672
 variables, 673

 F
 \f, 626
 fabs function, 121
 factorial function, 251 , 532 – 534 ,

 676 – 677
 implementation of, 533
 iterative, 534

I-6 Index

factorial function (continued)
 recursive, 532
 trace of, 533

 faulty data, infinite loops on, 266 – 267
 fclose function, 318 , 630 , 634 – 635
 fetching an instruction

 defined, 21
 fgets function, 471
 fibonacci function, 534 – 535
 Fibonacci numbers, 534
 field width, defined, 87
 file pointers, 318 – 319 . see also pointers

 arguments, functions taking, 629 – 630
 program using, 319
 user-defined, 630
 variables, 627 – 629

 files
 binary (see binary files)
 closing, 630
 defined, 21
 header (see header files)
 implementation (see implementation

file)
 input, 627 – 629
 input/output, 624 – 634
 object, 29
 output, 627 – 629
 source, 29
 standard header, 48
 text (see text file)

 file server, defined, 23
 fill_array function, 389
 fillellipse function, 158 – 161 , 162
 fillpoly function, 428 – 429 , 436
 fill_to_sentinel function,

 395 – 396
 driver for testing, 397

 find_caps function, 540
 first-in, first-out (FIFO), 725
 flag-controlled loops, 274 . see also

do-while Statement
 flag, defined, 274
 flash drive

 defined, 21
 flat washers case study, 112 – 116

 analysis, 113 – 114
 design, 114
 implementation, 114 – 116
 problem, 113

 program, 115 – 116
 testing, 116

 floating-point format, 56
 floating point numbers, 63
 floodfill function, 162
 floor function, 121
 flowcharts

 defined, 186
 of if statements, 186
 loop choice process, 237
 for while loop, 240

 fopen function, 318 , 627 , 628 , 629 ,
 634 – 635 , 639 , 651

 foreground color, 150
 formal parameter, 326 , 388 – 389

 defined, 138
 format strings

 defined, 63
 placeholders for printf, 627

 for statement, 247 – 255
 common programming errors

using, 296
 components, 247
 computation trace, 385
 in counting loop, 248
 effect of, 248
 example, 249
 feature of, 248
 formatting, 248
 loop body, 249
 sentinel-controlled, 265
 for sequential access, 381 – 386
 structure of, 254
 syntax, 249 , 296

 fprintf function, 318 , 630 , 635 , 651
 printf vs., 318

 fraction arithmetic case study
 analysis, 347 – 348
 design, 348 – 349
 implementation, 349
 problem, 347
 program, 350 – 354
 testing, 355

 fread function, 636 , 639 , 651
 free function, 708
 fscanf function, 318 , 629 , 630 , 651

 vs. scanf, 318
 function call

 defined, 63

 execution, 320
 function without arguments, 126
 incorrect order, 158
 multiple, with input/output

parameters, 328 – 334
 to multiply function, 524
 to output arguments, 322 – 324
 printf, syntax display for, 64
 print_list, 717
 reverse_input_words function, 525
 to scanf, 66

 function definitions, 128 – 130 ,
 140 – 141

 function keys, defined, 22
 function parameters

 formal, 138
 input, 574 – 580
 output, 320 – 328 , 336 – 340 , 574 – 580
 pointers as, 701

 functions
 abs, 121
 add_arrays, 393
 add_to_q, 728 – 729
 arc, 152 – 155 , 161
 arguments, 63
 bar, 161
 as “black box,” 118
 calloc, 707 – 708
 calls to evaluate, 278
 ceil, 121
 circle, 152 – 155 , 162
 clearmouseclick, 434 , 436
 clearviewport, 295
 closegraph, 162
 code reuse and, 117 – 119
 cohesive, 203
 for common fractions, 347
 comparing structured values, 575 – 576
 comp_tax, 212
 cos, 121
 count, 521 – 523
 data area, 144 – 145
 defined, 29
 delay, 295 , 436
 delete, 738 – 741
 display_quarter, 425 – 426
 to display structure, 605
 display_table, 424 – 426
 do_it, 387

Index I-7

 draw_circle, 128
 drawGrid, 431
 drawpoly, 428 – 429 , 436
 draw_triangle, 130
 ellipse, 152 – 155 , 162
 exit, 676 , 677 – 678
 exp, 121
 fabs, 121
 factorial, 251 , 532 – 534 , 676 – 677
 fclose, 318 , 630 , 634 – 635
 fgets, 471
 fibonacci, 534 – 535
 fill_array, 389
 fillellipse, 158 – 161 , 162
 fillpoly, 428 – 429 , 436
 fill_to_sentinel, 395 – 396
 find_area, 139 , 140
 find_caps function, 540
 find_circum, 139 , 140
 floodfill, 162
 floor, 121
 fopen, 318 , 627 , 628 , 629 , 634 – 635 ,

 639
 fprintf, 318 , 630 , 651
 fread, 636 , 639 , 651
 free, 708
 fscanf, 318 , 630 , 651
 fwrite, 635 , 639 , 651
 gcd, 535 – 536
 getc, 483 , 632 , 651
 getch, 162
 getchar, 483
 getmaxheight, 147 , 162
 getmaxwidth, 147 , 162
 getmaxx, 162
 getmaxy, 162
 getmouseclick, 435 , 436
 getpixel, 435 , 436
 gets, 471
 graphical, 146 – 149
 in graphics library, 161 – 162 , 295
 gridArray, 431
 heading, 128
 initgraph, 162
 with input arguments, 136 – 146
 input/output, 62
 insert, 733 , 737
 insert_in_order, 733
 instruct, 134 , 135

 interface comments, 141
 ismouseclick, 436
 kinds of, 332 – 333
 library, 120 – 122
 line, 162
 log, 121
 log 10 , 121
 main (see main function)
 malloc, 705
 with multiple arguments, 142 – 144
 multiply, 519 – 520 , 531
 multiply_fractions, 357
 name consistency in, 203
 order, 330
 with output parameters, 320 – 328
 outtextxy, 162
 parameters, 277 – 278
 pieslice, 158 – 161 , 162
 placement in program, 130 – 132
 pop, 398 – 399 , 723
 pow, 121
 predefined, 117 – 119
 printf, 63 – 65
 print_list, 717
 prototype, 126 – 128
 push, 398 – 399 , 723
 putc, 632 , 651
 rand, 430 – 431 , 436
 rectangle, 150 , 151 , 162
 recursive (see recursive function)
 remove_from_q, 728 – 729
 reverse_input_words, 525 – 528
 scale, 142 – 144
 scanf (see scanf function)
 scan_fraction, 336 – 338
 scanline, 484 – 485
 scan_planet, 576 – 578
 scan_table, 422 – 424
 search, 402
 select_sort, 405 , 544
 separate, 321
 setbkcolor, 162
 setcolor, 162
 setfillstyle, 155 – 156 , 162
 sin, 121
 sprintf, 489
 sqrt, 118 – 119 , 121
 srand, 436
 sscanf, 490

 strcat, 461 , 469 , 470
 strcmp, 461 , 474
 strcpy, 461 , 462 , 466 – 467
 strings library, 460 – 468
 strlen, 461
 strncat, 461
 strncmp, 461
 strncpy, 461 , 462 , 463 , 466 – 467
 strtok, 461
 with structured output argument, 577
 structured result values, 580 – 583
 subprograms (see function

subprograms)
 swapbuffers, 295
 tan, 121
 testing, with drivers, 145 – 146
 time, 431
 void, 127
 vs. macros, 685
 without arguments, 126 – 136
 writing, 123

 function subprograms
 advantages of, 133 – 134
 kinds of, 332
 order of execution of, 132 – 133
 performing loop processing in, 260
 procedural abstraction, 133 – 134
 program modification with, 205
 reuse of, 134
 scope of, 335

 fwrite function, 635 , 636 , 639 , 651

 G
 gcd function, 535 – 536
 general conditional loop

 example, 245
 for multiplying list of numbers,

 245
 uses, 237

 getc function, 483 , 632 , 651
 getchar function, 483
 getch function, 162
 get_list function, 718 – 719

 iterative, 720
 recursive, 719

 getmaxheight function, 147 , 162
 getmaxwidth function, 147 , 162
 getmaxx function, 162

I-8 Index

 getmaxy function, 162
 getmouseclick function, 435 , 436
 getpixel function, 435 , 436
 gets function, 471
 global variables, 671 – 674

 declaration of, 672
 defined, 672

 graphical user interface (GUI)
 defined, 23
 operating systems with, 26

 graphics, computer, 146 – 163
 animation, 292 – 296
 arrays and, 428 – 437
 background/foreground color, 150
 functions, 147 – 149
 library, 161 – 162 , 295
 programs, writing (see graphics

programs)
 graphics mode, 146
 graphics programs

 loops in, 289 – 296
 writing, 155 – 158

 greater-than operator, 486 – 487
 gridArray function, 431
 grid, two-dimensional

 drawing, 431 – 436

 H
 hand traces, defined, 192
 hard copy, defined, 22
 hard disks, 20
 hardware, 17 – 24

 components, 17 , 18
 CPU, 21 – 22
 defined, 17
 input/output (I/O) devices, 22
 memory, 17 – 21
 networks, 22 – 24

 header files, 663 – 668
 duplicate inclusion protection,

 681 – 682
 elements of, 668

 heap
 after program fragmentation, 709
 defined, 705
 multiple pointers to cell, 709
 overflow, 753
 returning cells to, 708 – 709

 hierarchical structure, defined, 570
 high-level languages

 defined, 28
 entering/translating/running, 30
 syntax rules, 29
 types of, 29

 hospital revenue case study, 419 – 427
 analysis, 419 – 420
 design, 420
 display_quarter function,

 425 – 426
 display_table function, 424 – 426
 implementation, 420 – 426
 main function, 420 – 421
 problem, 419
 scan_table function, 422 – 424
 testing, 427

 I
IBM System/360, 4
 icon, defined, 22
 identifiers

 and enumerated type definition, 411
 invalid, 51
 scope rules for, 408
 standard, 50
 user-defined, 51
 valid, 51
 in variable declarations, 53

 if statement, 185 – 193
 with compound statements, 191 – 194
 else keyword, 191
 with empty statement, 189
 format of, 189
 nested, 207 – 217
 with one alternative, 188
 parentheses, 223
 sequence of, 208 – 209
 tracing, 192 – 194 , 208 , 212
 with two alternatives, 186
 while statement vs., 239
 writing, 192

 implementation. see also software
development method

 bisection case study, 281 – 285
 circle’s area and circumference case

study, 110 – 112
 coin processor case study, 83 – 85

 database inquiry case study, 643 – 650
 defined, 35
 flat washers case study, 114 – 116
 fraction arithmetic case study, 349
 hospital revenue case study, 420 – 426
 miles conversion case study, 38 – 39
 operations on sets case study, 547 – 552
 ordered list case study, 733 – 737
 recursive selection sort case study,

 543 – 544
 text editor case study, 498 – 503
 universal measurement case

study, 596
 water bill case study, 198 – 202

 implementation file
 defined, 668

 #include directive, 47
 for defining identifiers, 48

 increment operator (++), 249 – 254
 in complex expressions, 250

 indexed for loop, 381
 indirect component selection operator

 defined, 576 , 577 , 706
 indirection (*) operator, 326
 indirect reference

 defined, 317
 indirect references, 326
 infilep, 627 , 628
 infinite loop

 defined, 240
 on faulty data, 266 – 267

 information hiding, defined, 662
Information Systems (IS), 7
Information Technology (IT), 7–8
 initgraph function, 162
 inner loop, 268
 inorder traversal, 750
 input

 characters, 483 – 485
 data, 31
 files, 627 – 629
 operation, 62
 redirection, 91
 strings, 476
 validation loop, 237

 input arguments
 arrays as, 391 – 392
 defined, 137
 functions with, 136 – 146

Index I-9

 with single result, 138 – 141
 void functions with, 137 – 138

 input/output functions
 defined, 62

 input/output (I/O)
 devices, 22
 files, 624 – 634

 input/output parameters
 identification, 331
 multiple function calls with, 328 – 334

 input parameters
 array, 392
 structured, function with, 575
 structure type data as, 574 – 580

 input stream
 defined, 624
 file backup program, 632
 keyboards, 625

 input validation loop
 uses, 237

 insert function, 733 , 736
 insert_in_order function, 733

 algorithm for, 736
 recursive, 736 – 737

 install, software
 defined, 27

 instruct function, 134 , 135
 int data type, 54 – 55 . see also data

types
 as array subscript, 379
 assignment, 76
 conversion from char data type to,

 76 , 77
 format of, 56
 formatting values of, 88
 manipulation of, 82 – 85
 and round-off error, 56
 vs. double data type, 56 – 57

 integrated development environment
(IDE), 31

 interactive mode, 90 – 91
 defined, 90

 Internet access, 24
 ismouseclick function, 436
 iterative approximations algorithms,

 276 – 278
 iterative function

 delete, 739 – 740
 get_list, 720

 K
 keyboards

 function keys, 22
 input stream, 625

 L
 language, 27 – 31

 assembly, 28
 C (see C language)
 machine, 27 – 28
 syntax, 29

 last-in, first-out (LIFO), 722
 leaf nodes, 743
 left associativity, 78
 left subtree, 743
 library

 defined, 46
 library functions, 120 – 122

 mathematical, 121
 linear search, 401
 line function, 162
 linked lists, 710 – 731

 advantages of, 714 – 715
 after deletion, 715
 after insertion, 714
 defined, 700 , 710
 empty, 713
 FIFO, 725
 LIFO, 722
 list head, 713
 node of (see nodes)
 operators, 716 – 721
 queues representation, 725 – 731
 searching, 719
 stack representation, 721 – 725
 three-element, 714

 linkers, 29 , 31
 defined, 29

 list head, 713
 local area network (LAN), 22 – 23

 defined, 22
 local variables, 335

 stacks, 528 – 530
 static, 675
 three pointer-type, 704

 log function, 121
 log10 function, 121
 logical assignment, 182 – 183

 logical complement (negation), 177
 logical expressions

 defined, 176
 evaluation of, 179 – 180
 precedence rules, 181

 logical operators, 176 – 177
 logic errors, 98 – 99 , 287 , 288

 defined, 98
 loop boundaries, defined, 288
 loop control variable, 238 , 240

 as array subscripts, 385
 loop design, 261 – 268

 endfile-controlled loops, 265 – 266
 problem-solving questions for, 262
 sentinel-controlled loops, 262 – 265

 loop repetition condition, 241 , 298
 defined, 239

 loops
 for, 381 – 386
 body, 236
 boundaries, 288
 conditional, 256–261 (see also

conditional loops)
 counters, 381
 counting (see counting loop)
 defined, 236
 design (see loop design)
 endfile-controlled, 237 , 265 – 266
 flag-controlled, 274
 general conditional, 237
 in graphics programs, 289 – 296
 infinite, 240
 input validation, 237
 kinds, comparison of, 237
 nested, 268 – 272
 processing in a function subprogram,

 260
 repetition condition, 239
 repetition trace, 244 , 253
 sentinel-controlled, 237 , 262 – 265
 sum/product computation,

 242 – 247
 writing general, 244

 lowercase letters, 52

 M
 machine language, 27 – 28

 defined, 27

I-10 Index

 macro expansion
 defined, 686
 of macro calls, 687 , 688

 macros
 body, parentheses in, 686 – 689
 calls, 685 , 687
 defined, 685
 expansion (see macro expansion)
 extending over multiple lines, 689
 functions vs., 685
 names, 685
 programming errors, 690

 mainframes, 15
 main function

 arguments to, 682 – 685
 beginning of, 49
 body, parts of, 49
 formal parameters, 683 , 684
 order of execution of, 132 – 133
 punctuation, 49
 special symbols, 49

 main memory. see also memory
 defined, 17
 memory cells in, 19
 types of, 19 – 20

 malloc function, 705
Management Information Systems

(MIS), 7
 mathematical formulas, 80 – 81
 mathematical library functions, 121
mechatronics, 9
 memory, 17 – 21

 cells (see memory cells)
 dynamic allocation (see dynamic

memory allocation)
 information storage/retrieval, 19
 main, 17, 19–20 (see also main

memory)
 programs in, 59 – 60
 RAM, 19 – 20
 volatile, 20

 memory cells
 address of, 18 , 19
 content of, 18 , 19
 defined, 18
 in main memory, 19
 retrieving from, 19
 returning to heap, 708 – 709
 storing to, 19

 microprocessor chip, 15
 miles conversion case study, 36 – 39

 analysis, 36 – 37
 design, 37 – 38
 implementation, 38 – 39
 problem, 36
 testing, 39

Millennials, 2
 minus sign (-), 178
 mistyping

 and syntax errors, 94 , 95
mixed disciplinary majors, 8-9
 mixed-type assignment statement,

 75 – 76
 mixed-type expressions, 75
 modem (modulator/demodulator), 23
 mouse, defined, 22
 multidimensional arrays, 414 – 418

 declaration, 414 , 415
 defined, 414
 examples, 415
 initialization, 416
 syntax, 415

 multiple-alternative decision, nested if
statement, 209 – 213

 in decision table implementation, 211
 defined, 209
 order of conditions in, 210 – 212
 syntax, 209

 multiplication (*) operator, 73
 multiply_fractions function, 357
 multiply function, 519 – 520

 function call, 524
 self-tracing, 531
 trace of, 525

 multiprocessors, defined, 22

 N
 names

 array, 378
 consistency, 203
 macros, 685
 scope of, 334 – 336
 structure types, 573

 negation, 177
 nested if statement, 207 – 217 . see also

if statement
 comparison, 208 – 209

 defined, 207
 multiple-alternative decision form,

 209 – 213
 with multiple variables, 213 – 217
 vs. switch statement, 221
 writing, 224

 nested loops, 268 – 272
 counting loop program, 271
 inner loop, 268
 outer loop, 268

 networks, 22 – 24
 LAN, 22 – 23
 WAN, 23 , 24

 newline character, 625
 newline (n) escape sequence, 63 , 626
 nodes

 connecting, 712 – 714
 data components of, 711
 defined, 700
 leaf, 743
 of linked lists, 711
 linking, 712
 parent, 744
 root, 743
 siblings, 744

 not (!) operator, 177 , 178
 null character, 455
 null pointers, 471

 defined, 629
 numbers

 double data type, 88 – 90
 Fibonacci, 534
 formatting, 87 – 90
 int data type, 88
 leading blanks and, 90
 list, multiplying, 245
 to strings conversion, 488 – 495

 numerator, 336
 numeric constants, 54
 numeric data

 manipulating, 347

 O
 object file, defined, 29
 operands, 73
 operating system (OS), 25 – 26

 defined, 25
 graphical user interface, 26

Index I-11

 loading, 25
 prompt, 25
 responsibilities, 25

 operations on sets case study, 545 – 552
 analysis, 545
 design, 545 – 546
 implementation, 547 – 552
 problem, 545
 program, 547 – 552
 testing, 552

 operators
 and (&&), 177
 address-of (&), 325
 assignment, 178
 binary, 77
 decrement, 250
 defined, 679
 direct component selection, 571 – 572
 equality, 175 – 176 , 223
 functions of, 73
 greater-than, 486 – 487
 increment, 249 – 254
 indirect component selection, 576 ,

 577 , 706
 indirection (*), 326
 linked lists, 716 – 721
 logical, 176 – 177
 multiple, expressions with, 77 – 81
 not (!), 177 , 178
 or (||), 177
 precedence, 178 – 179 , 572 – 573
 relational, 175 – 176 , 184 , 223
 sizeof, 635 , 704 – 705
 types of, 73
 unary, 77 , 178

 optical drives
 defined, 20

 ordered list case study, 732 – 743
 analysis, 732 – 733
 delete function, 738 – 741
 delete_ordered_node function, 740 ,

 741 – 742
 design, 733
 implementation, 733 – 737
 insert function, 733
 insert_in_order function, 733
 problem, 732

 ordered lists, 731 – 743
 building, 734 – 735

 defined, 731
 order function, 330
 or (||) operator, 177
 outer loop, 268
 outfilep, 627 , 628
 output

 characters, 483 – 485
 files, 627 – 629
 formatting, with printf, 626 – 627
 operation, 62
 redirection, 91 – 93

 output arguments
 defined, 137
 function call to, 322 – 324
 structured, function with, 577

 output parameters
 as actual arguments, 336 – 340
 functions with, 320 – 328
 pointers as, 702
 structure type data as, 574 – 580

 output stream
 defined, 624
 file backup program, 632

 outtextxy function, 162

 P
 parallel arrays, 406 – 407 , 592

 defined, 406
 example, 406 – 407
 illustrated, 408

 parameters
 argument correspondence, 389 – 390
 arrays, 388 – 390
 declaration, 390
 defining macros with, 685 – 690
 formal, 138 , 326 , 335 , 388 – 389
 input (see input parameters)
 input/output, 328 – 334
 output (see output parameters)
 values, 320

 parentheses
 if statement, 223
 in macro body, 686 – 689
 in operator precedence, 178
 rule, 78

 parent node, 744
 partially filled arrays, 395 – 398
 personal computers, 15 , 16

 personal libraries
 function modification for, 675 – 678
 header files, 663 – 668
 using, 668 , 670

 pieslice function, 158 – 161 , 162
 pixels, defined, 147
 placeholders

 defined, 63
 in format string, 63 , 64 , 89
 multiple, 63
 for printf format strings, 627

 plus sign (+), 178
 pointers, 316 – 320

 arrays of, 477 – 482
 declaration, 316
 defined, 316
 in dynamic data structures, 700 – 704
 files (see file pointers)
 as function parameters, 701
 indirect reference, 317
 null, 471 , 629
 as output parameters, 702
 references with, 317
 referencing variable through, 317
 in representation of array/strings, 701
 to structures, 702
 uses, summary of, 702 – 703
 variable, 316 , 318 , 701

 pop function, 398 – 399
 illustrated, 399
 stack manipulation with, 723 – 724

 popping, stacks, 398
 postcondition, defined, 141
 postfix increment, 250
 pow function, 121
 precedence, operator, 178 – 179 ,

 572 – 573
 precedence rule, operator, 78
 precondition, defined, 141
 predefined functions, 117 – 119
 prefix increment, 250
 preprocessor, defined, 46
 preprocessor directives

 #define, 46 , 47 , 48 , 679 , 680 , 685
 defined, 46
 #elif, 679 , 680
 #else, 680
 #if, 679 , 680
 #include, 47 , 48 , 680

I-12 Index

preprocessor directives (continued)
 syntax displays, 48 – 49
 #undef, 680

 printf function, 48 , 63 – 65
 arguments, 454
 conditional compilation of tracing,

 679 , 680
 diagnostic calls to, 287 – 288
 formatting output with, 626 – 627
 input/output with, 456 – 460
 placeholders used with, 489
 string arguments, 456
 as string manipulators, 489
 syntax display for, 64
 vs. fprintf, 318

 print list, defined, 63
 print_list function, 717

 call, 717
 recursive function, 717 – 718

 problem
 ordered list case study, 732

 problems. see also software
development method

 analysis, 33 – 34
 bisection case study, 278
 capital letters case study, 538
 circle’s area and circumference case

study, 109
 coin processor case study, 82
 complex numbers case study, 584
 database inquiry case study, 641
 drawing diagrams case study, 124
 flat washers case study, 113
 fraction arithmetic case study,

 347
 hospital revenue case study, 419
 miles conversion case study, 36
 operations on sets case study, 545
 recursive selection sort case study,

 541 – 542
 requirements specification, 33
 simple case, 518
 solar collecting area size, 340 – 341
 splitting, 519
 text editor case study, 495
 Towers of Hanoi case study, 553
 universal measurement case

study, 594
 water bill case study, 195

 water bill conservation case study, 205
 problem solving

 with recursion, 545 – 553
 with structure types, 583 – 592

 problem statement, 36
 procedural abstraction, 133 – 134 ,

 660 – 661
 defined, 134 , 660

 programming errors. see also errors
 common, 163 , 223 – 224 , 296 – 298 ,

 359 , 437 – 438 , 504 – 506 , 610 , 690
 dynamic data structures, 753
 logic, 98 – 99
 macros, 690
 messages, 93
 recursive function, 558 – 559
 run-time, 96
 strings, 504 – 506
 structure types, 610
 syntax, 93 – 95
 text/binary file processing, 650 – 651
 undetected, 96 , 97 – 98

 programs
 to approximate solar collecting area

size, 344 – 347
 building from existing information,

 108 – 117
 C, form of, 69 – 72
 comments in, 70 , 132
 to compute area/perimeter of

geometric figures, 606 – 609
 to compute company payroll, 242 – 243
 debugging of, 93
 debugging/testing, 287 – 289
 defined, 17
 documentation, 70
 to draw a moving ball, 292 – 293
 to draw a quilt, 291 – 292
 executing, 31 – 32
 functions placement in, 130 – 132
 graphics, writing, 155 – 158
 if statement, 187
 maintaining/updating, 35
 in memory, 59 – 60
 to monitor gasoline storage tank,

 257 – 259
 output, 31
 pitfall, 158
 to print a table of differences, 382 – 383

 repetition in, 236 – 238
 sorting, 329 – 330
 spaces in, 70
 style, 52 – 53 , 70 – 72 , 91 , 132 , 149 ,

 189 , 192 , 203 – 204 , 213
 testing/verifying, 35
 using file pointers, 319
 using macro with formal

parameters, 686
 using switch statement, 218 – 219
 for water bill problem, 199 – 202

 program system
 debugging/testing, 356 – 359

 prompt
 defined, 25 , 65
 echo prints vs., 91

 prototype, function, 126 – 128
 pseudocode

 defined, 198
 for do-while Statement, 273
 endfile-controlled loop, 266

 pseudo-random numbers, 430
 punctuation, 49
 push function, 398 – 399

 illustrated, 399
 stack manipulation with, 723 – 724

 pushing onto stacks, 398
 putc function, 632 , 651

 Q
 queues

 adding to, 729
 creating/maintaining, 726 – 727
 defined, 725
 linked list representation, 725 – 731
 removal from, 730

 R
 \r, 626
 rand function, 430 – 431 , 436
 random access, array processing, 419
 random access memory (RAM), 19 – 20

 defined, 19
 read-only memory (ROM)

 defined, 20
 records

 defined, 568

Index I-13

 rectangle function, 150 , 151 , 162
 recursion, 518 – 559

 multiply, 519 – 520 , 522
 nature of, 518 – 524
 problem solving with, 545 – 553
 Towers of Hanoi case study, 553 – 558

 recursive function
 with array/string parameters, 538
 defined, 518
 delete, 741
 delete_ordered_node, 742
 factorial, 532 – 533
 fibonacci, 535
 find_caps, 540
 gcd, 535 – 536
 get_list, 719
 insert_in_order, 736 – 737
 iterative, 558
 iterative vs., 558
 mathematical, 532 – 538
 print_list, 717 – 718
 programming errors, 558 – 559
 tracing, 524 – 532
 void tracing, 524 – 528

 recursive selection sort case study,
 541 – 544

 analysis, 542
 design, 542
 implementation, 543 – 544
 problem, 541 – 542

 redirection
 input, 91
 output, 91 – 93

 references
 address-of (&) operator effect

on, 325
 indirect, 326

 registers, defined, 22
 register storage class, 675
 relational operators, 175 – 176 , 184 , 223
 remainder (%) operator

 defined, 74
 example of, 74
 relationship with / operator, 74

 remove_from_q function, 728 – 729
 repetition

 loop, condition, 239 , 241 , 298
 in programs, 236 – 238
 traces, 244

 representational error
 defined, 81

 reserved words
 defined, 50 , 52

 return statement, 67 – 68
 syntax display for, 68

 reusable code, 663
 reuse, of function subprograms, 134
 reverse_input_words function,

 525 – 528
 call to, 525 , 528
 sequence of events, 527
 trace of, 527

 right associativity, 78
 right subtree, 743
 root node, 743

 ancestor, 744
 descendants, 744

 roots
 bisection method, 278 – 286
 defined, 277
 finding, 282 – 285

 round-off error. see also
representational error

 int data type and, 56
 run-time errors, 96 , 163

 cause of, 287

 S
 scale function, 142 – 144

 testing, 143 – 144
 scanf function, 48 , 65 – 67 , 471

 arguments, 454
 call to, 66
 endfile-controlled loops, 265
 execution of, 458 , 459
 facts of, 66
 fscanf vs., 318
 infinite loop on, 266
 input/output with, 456 – 460
 string arguments, 456
 as string manipulators, 489
 syntax display, 67
 use of, 488
 whitespace and, 458

 scan_fraction function, 336 – 338
 data areas for, 338
 driver for, 358

 output parameters, 336
 scanline function

 faulty, 505
 implementation of, 484 – 485

 scan_planet function, 576 – 578
 data areas, 578

 scope of names, 334 – 336
 defined, 334
 program outline for studying, 334 – 335

 search
 arrays, 401 – 403
 binary search tree, 745
 database, 640 – 650
 linear, 401
 linked lists, 719

 search function, 402
 secondary storage devices, 20 – 21

 accessing through Windows, 26 , 27
 defined, 20

 seeds, defined, 431
 selection control structure

 defined, 174
 if statement (see if statement)
 switch statement (see switch

statement)
 selection operator

 direct component, 571 – 572
 indirect component, 576 , 577

 selection sort
 algorithm for, 403
 recursive, 541 – 544
 trace of, 404
 traces of, 542

 select_sort function, 544
 sentinel-controlled loop, 288

 correct/incorrect, 263
 design, 262 – 265
 for statement, 265
 steps, 263
 to store input data in array, 396 – 397
 for string input, 476
 uses, 237
 while statement, 264

 sentinel value
 defined, 262

 separate function, 321
 function call, 324
 with multiple results, 322
 parameter correspondence for, 325

I-14 Index

 sequences
 Fibonacci, 534

 sequential access
 array processing, 419
 for loops, 381 – 386

 server, file, 23
 setbkcolor function, 162
 setcolor function, 162
 setfillstyle function, 155 – 156 , 162
 short-circuit evaluation, 179 – 180
 siblings, 744
 side effect

 defined, 249
 simple case, problems, 518
 sin function, 121
 single buffering, defined, 294
 single-step execution, 287
 size of operator, 704 – 705

 defined, 635
 software, 25 – 33

 application, 26 – 27
 computer languages, 27 – 31
 defined, 17
 IDE, 31
 linkers, 29 , 31
 operating system, 25 – 26
 piracy, 40 – 41

 software development method
 algorithm (see algorithms)
 applying, 36 – 39
 defined, 33
 failure, 35
 maintaining and updating, 35
 problem analysis, 33 – 34
 problem requirements specification, 33
 testing and verification, 35

Software engineering (SE), 8
 software piracy, 40 – 41

 defined, 41
 Solar collecting area size

 analysis, 341
 design, 342 – 347
 problem, 340 – 341
 program to approximate, 344 – 347

 sort
 arrays, 401 , 403 – 406
 defined, 328
 program, 329 – 330
 selection (see selection sort)

 trace of program, 330
 source file, defined, 29
 spaces, in programs, 70
 special symbols, 49
 sprintf function, 489
 sqrt function, 118 , 121

 calling, 118
 result, 119

 square root program, 119 – 120
 srand function, 436
 sscanf function, 490
 stacks

 after program fragmentation, 709
 defined, 398 , 528 , 705 , 721
 implementation of, 530
 linked lists representation, 721 – 725
 manipulation with push/pop

functions, 723 – 724
 overflow, 753
 parameter/local variable, 528 – 530
 popping, 398
 pushing onto, 398
 system, 530

 standard deviation, 384
 standard header files, 48
 standard identifiers, defined, 50
 static storage class, 674 – 675
 stderr system file pointer, 625
 stdin system file pointer, 625
 stdout system file pointer, 625
 stepwise refinement, defined, 34
 stick figure drawing program, 130 – 132
 storage classes, 671 – 675

 auto, 671
 extern, 671
 register, 675
 static, 674 – 675

 stored program concept, 18
 strcat function, 461 , 469 , 470
 strcmp function, 461 , 474 , 486

 results of, 475
 strcpy function, 461 , 462 , 463 ,

 466 – 467
 data area of, 477
 execution, 478

 string length, defined, 467
 strings, 454 – 506

 arrays of, 455 – 456
 assignment, 460 , 462 – 463

 basics, 454 – 460
 characters vs., 470 – 471
 comparison, 474 – 477
 concatenation, 469 – 470
 constant, 454
 constants, arrays of, 482
 counting occurrences of character in,

 522 – 523
 defined, 454
 empty, 467
 finding capital letters in, 538 – 541
 input/output with scanf/printf,

 456 – 460
 input, sentinel-controlled loop for, 476
 length, 467
 library functions, 460 – 468
 longer, 469 – 474
 to number conversions, 488 – 495
 pointers in representation of, 701
 processing, 495 – 503
 right/left justification of, 457
 substring, 463 – 468
 variables, 455
 whole-line input, 472 – 473

 strlen function, 461
 strncat function, 461 , 469
 strncmp function, 461
 strncpy function, 461 , 462 – 463 ,

 466 – 467
 execution of, 463

 strtok function, 461
 structure chart

 for database inquiry problem, 643
 structure charts

 data flow information, 204 – 205
 defined, 124
 text editor program, 497
 top-down design and, 124 – 126

 structures. see also arrays; structure types
 binary trees (see binary trees)
 FIFO, 725
 functions to display, 605
 hierarchical, 570
 LIFO, 722
 linked lists (see linked lists)
 multiple pointers to, 711
 ordered lists (see ordered lists)
 with pointer components, 711 – 712
 pointers to, 702

Index I-15

 union, 603 – 609
 variables, 569 – 570
 whole, manipulating, 573

 structure tag, 711
 structure types

 components, 569
 data as input/output parameters,

 574 – 580
 definition, 568 – 571
 errors, 610
 example, 570 – 571
 for linked list implementation

(queue), 725
 for linked list implementation (stack),

 722
 naming convention for, 573
 operator precedence, 572 – 573
 problem solving with, 583 – 592
 syntax, 570
 user-defined, 568 – 574

 stub
 defined, 349
 for multiply_fractions function, 357
 sample run of program containing, 355

 subdirectory, defined, 21
 subprograms, function

 advantages of, 133 – 134
 order of execution of, 132 – 133
 performing loop processing in, 260
 procedural abstraction, 133 – 134
 program modification with, 205
 reuse of, 134

 subscripted variable, defined, 376
 subscript-range error, 437
 substring, 463 – 468
 subtraction (-) operator, 73
 supercomputers, 15
 swapbuffers function, 295
 switch statement, 217 – 223

 break statement and, 219
 controlling expressions, 217
 example, 220
 message display, 219
 nested if statement vs., 221
 program using, 218 – 219
 syntax, 219 – 220

 syntax errors, 93 – 95 , 163 , 224
 defined, 93
 error messages, 94

 mistyping and, 94 , 95
 quotation marks and, 95

 system integration tests, defined, 357
 system stack, defined, 530

 T
 \t, 626
 tab character, 626
 tail recursion

 defined, 717
 tan function, 121
 terminating condition, defined, 526
 testing. see also software development

method
 bisection case study, 285
 bottom-up, 357
 capital letters case study, 539 – 541
 circle’s area and circumference case

study, 112
 coin processor case study, 85
 defined, 35
 flat washers case study, 116
 fraction arithmetic case study, 355
 hospital revenue case study, 427
 miles conversion case study, 39
 operations on sets case study, 552
 programs, 287 – 289
 program system, 356 – 359
 scale function, 143 – 144
 system integration, 357
 text editor case study, 503
 top-down, 356
 unit, 357
 universal measurement case study, 596
 water bill case study, 202

 text editor case study, 495 – 503
 analysis, 495 – 496
 design, 496 – 498
 implementation, 498 – 503
 problem, 495
 program, 498 – 503
 sample run, 503
 structure chart, 497
 testing, 503

 text file. see also files
 backup copies, 630 – 632
 data I/O using, 637 – 638
 defined, 624
 programming errors, 650 – 651

 text mode, 146
 time function, 431
 top-down design

 defined, 34 , 124
 and structure charts, 124 – 126

 top-down testing, defined, 356
 Towers of Hanoi case study,

 553 – 558
 analysis, 553 – 555
 design, 555 – 556
 problem, 553
 traces, 557

 traces
 hand, 192
 if statement, 192 – 194 , 208 , 212
 recursive function, 524 – 532
 repetition, 244 , 253
 sort program, 330
 Towers of Hanoi, 557
 tree display algorithm, 750 – 751

 tracks, defined, 20
 transfer of control, 133
 traversing a list, 716 – 718

 defined, 716
 two-dimensional grid

 drawing, 431 – 436
 type cast

 defined, 76
 examples of, 77

 typedef statement, 569 , 673

 U
 unary operators

 defined, 77 , 178
 undetected errors, 96 , 97 – 98
 union, 603 – 609

 declaration, 603
 defined, 603
 format of, 604

 unit test, defined, 357
 universal measurement case study,

 594 – 602
 analysis, 594 – 595
 design, 595 – 596
 implementation, 596
 problem, 594
 program, 597 – 601
 sample run of, 602
 testing, 596

I-16 Index

 UNIX
 C and, connection between, 221 – 222
 commands, 25 , 26

 uppercase letters, 52
 user-defined identifiers, 51
 user instructions, displaying, 134

 V
 values

 array elements, 379
 array subscript, 379
 assignment, to dynamically allocated

variables, 706
 parameters, 320
 sentinel, 262
 table of, displaying, 254
 variable, validating, 213

 variable declarations
 defined, 53
 identifiers in, 53
 syntax display, 54

 variables
 accumulator, 242
 defined, 53
 dynamic allocation of, 705
 extern storage class, 673
 file pointers, 627 – 629
 global, 671 – 674

 local, 335
 loop control, 238 , 240
 nested if statement with multiple,

 213 – 217
 pointer, 316 , 318
 referencing, pointers and, 317
 strings, 455
 structures, 569 – 570
 subscripted, 376
 value of, validating, 213

 video conferencing, 751 – 752
 virus, defined, 40
 Vivo 320 , 751 – 752
 void functions

 defined, 127
 with input arguments, 137 – 138

 volatile memory
 defined, 20

 W
 water bill case study, 195 – 202

 analysis, 195
 comp_late_charge, 197 – 198
 comp_use_charge, 197
 design, 196 – 198
 display_bill, 198
 implementation, 198 – 202
 problem, 195

 program for, 199 – 202
 testing, 202

 water bill conservation case study,
 205 – 207

 analysis, 205 – 207
 comp_use_charge, 206 – 207
 problem, 205

 while statement, 238 – 241 , 256
 common programming errors

using, 296
 example, 240
 flowchart, 240
 if statement vs., 239
 sentinel-controlled, 264
 syntax of, 240

 whitespace, 458
 wide area network (WAN)

 defined, 23
 illustrated, 24

 window
 composition of, 147
 drawing, using lines.c, 149

 World Wide Web (WWW)
 defined, 23

 worm, defined, 40

This page intentionally left blank

REFERENCE GUIDE TO ANSI C CONSTRUCTS

Construct Page Example of Use

library header inclusion 48 #include <stdio.h>

constant macro definition 47 #define LIMIT 100

macro with parameters 691 #define AVG(x,y) (((x) + (y)) / 2.0)

structure type definition 567 typedef struct {
 char name[20];
 int quantity;
 double price;
} part_t;

linked list node type definition 720 typedef struct node_s {
 int data;
 struct node_s *restp;
} node_t;

function prototype 127 double next_approx(double previous);

comment 48 /* C construct examples */

main function heading 49 int
main(void)

 with parameters 688 int
main(int argc, char *argv[])

variable declaration int q, r;

 simple 53 double x, y;
char ch;

 array 382 int ages[LIMIT];

 structure 567 part_t one_part;

 pointer 294 double *fracp;
node_t *listp;

 array of pointers 471 char *words[20];

 file pointer 90 FILE *infilep, *outfilep;

 with initialization 253 int sum = 0;

385 char hex[16] = {'0','1','2','3','4','5','6',
 '7','8','9','A','B','C','D','E','F'};

478 char *greetings[2] = {"Hi", "Bye"};

	Cover
	Title Page
	Copyright Page
	Preface
	Acknowledgments
	Contents
	0. Computer Science as a Career Path
	Section 1 Why Computer Science May be the Right Field for You
	Section 2 The College Experience: Computer Disciplines and Majors to Choose From
	Section 3 Career Opportunities

	1. Overview of Computers and Programming
	1.1 Electronic Computers Then and Now
	1.2 Computer Hardware
	1.3 Computer Software
	1.4 The Software Development Method
	1.5 Applying the Software Development Method
	Case Study: Converting Miles to Kilometers

	1.6 Professional Ethics for Computer Programmers
	Chapter Review

	2. Overview of C
	2.1 C Language Elements
	2.2 Variable Declarations and Data Types
	2.3 Executable Statements
	2.4 General Form of a C Program
	2.5 Arithmetic Expressions
	Case Study: Supermarket Coin Processor

	2.6 Formatting Numbers in Program Output
	2.7 Interactive Mode, Batch Mode, and Data Files
	2.8 Common Programming Errors
	Chapter Review

	3. Top-Down Design with Functions
	3.1 Building Programs from Existing Information
	Case Study: Finding the Area and Circumference of a Circle
	Case Study: Computing the Weight of a Batch of Flat Washers

	3.2 Library Functions
	3.3 Top-Down Design and Structure Charts
	Case Study: Drawing Simple Diagrams

	3.4 Functions without Arguments
	3.5 Functions with Input Arguments
	3.6 Introduction to Computer Graphics (Optional)
	3.7 Common Programming Errors
	Chapter Review

	4. Selection Structures: if and switch Statements
	4.1 Control Structures
	4.2 Conditions
	4.3 The if Statement
	4.4 If Statements with Compound Statements
	4.5 Decision Steps in Algorithms
	Case Study: Water Bill Problem

	4.6 More Problem Solving
	Case Study: Water Bill with Conservation Requirements

	4.7 Nested if Statements and Multiple-Alternative Decisions
	4.8 The switch Statement
	4.9 Common Programming Errors
	Chapter Review

	5. Repetition and Loop Statements
	5.1 Repetition in Programs
	5.2 Counting Loops and the while Statement
	5.3 Computing a Sum or a Product in a Loop
	5.4 The for Statement
	5.5 Conditional Loops
	5.6 Loop Design
	5.7 Nested Loops
	5.8 The do-while Statement and Flag-Controlled Loops
	5.9 Iterative Approximations
	Case Study: Bisection Method for Finding Roots

	5.10 How to Debug and Test Programs
	5.11 Loops in Graphics Programs (Optional)
	5.12 Common Programming Errors
	Chapter Review

	6. Pointers and Modular Programming
	6.1 Pointers and the Indirection Operator
	6.2 Functions with Output Parameters
	6.3 Multiple Calls to a Function with Input/Output Parameters
	6.4 Scope of Names
	6.5 Formal Output Parameters as Actual Arguments
	6.6 Problem Solving Illustrated
	Case Study: Collecting Area For Solar-Heated House
	Case Study: Arithmetic with Common Fractions

	6.7 Debugging and Testing a Program System
	6.8 Common Programming Errors
	Chapter Review

	7. Arrays
	7.1 Declaring and Referencing Arrays
	7.2 Array Subscripts
	7.3 Using for Loops for Sequential Access
	7.4 Using Array Elements as Function Arguments
	7.5 Array Arguments
	7.6 Searching and Sorting an Array
	7.7 Parallel Arrays and Enumerated Types
	7.8 Multidimensional Arrays
	7.9 Array Processing Illustrated
	Case Study: Summary of Hospital Revenue

	7.10 Graphics Programs with Arrays (Optional)
	7.11 Common Programming Errors
	Chapter Review

	8. Strings
	8.1 String Basics
	8.2 String Library Functions: Assignment and Substrings
	8.3 Longer Strings: Concatenation and Whole-Line Input
	8.4 String Comparison
	8.5 Arrays of Pointers
	8.6 Character Operations
	8.7 String-to-Number and Number-to-String Conversions
	8.8 String Processing Illustrated
	Case Study: Text Editor

	8.9 Common Programming Errors
	Chapter Review

	9. Recursion
	9.1 The Nature of Recursion
	9.2 Tracing a Recursive Function
	9.3 Recursive Mathematical Functions
	9.4 Recursive Functions with Array and String Parameters
	Case Study: Finding Capital Letters in a String
	Case Study: Recursive Selection Sort

	9.5 Problem Solving with Recursion
	Case Study: Operations on Sets

	9.6 A Classic Case Study in Recursion: Towers of Hanoi
	9.7 Common Programming Errors
	Chapter Review

	10. Structure and Union Types
	10.1 User-Defined Structure Types
	10.2 Structure Type Data as Input and Output Parameters
	10.3 Functions Whose Result Values Are Structured
	10.4 Problem Solving with Structure Types
	Case Study: A User-Defined Type for Complex Numbers

	10.5 Parallel Arrays and Arrays of Structures
	Case Study: Universal Measurement Conversion

	10.6 Union Types (Optional)
	10.7 Common Programming Errors
	Chapter Review

	11. Text and Binary File Processing
	11.1 Input/Output Files: Review and Further Study
	11.2 Binary Files
	11.3 Searching a Database
	Case Study: Database Inquiry

	11.4 Common Programming Errors
	Chapter Review

	12. Programming in the Large
	12.1 Using Abstraction to Manage Complexity
	12.2 Personal Libraries: Header Files
	12.3 Personal Libraries: Implementation Files
	12.4 Storage Classes
	12.5 Modifying Functions for Inclusion in a Library
	12.6 Conditional Compilation
	12.7 Arguments to Function main
	12.8 Defining Macros with Parameters
	12.9 Common Programming Errors
	Chapter Review

	13. Dynamic Data Structures
	13.1 Pointers
	13.2 Dynamic Memory Allocation
	13.3 Linked Lists
	13.4 Linked List Operators
	13.5 Representing a Stack with a Linked List
	13.6 Representing a Queue with a Linked List
	13.7 Ordered Lists
	Case Study: Maintaining an Ordered List of Integers

	13.8 Binary Trees
	13.9 Common Programming Errors
	Chapter Review

	14. Multiprocessing Using Processes and Threads
	14.1 Multitasking
	14.2 Processes
	14.3 Interprocess Communications and Pipes
	14.4 Threads
	14.5 Threads Illustrated
	Case Study: The Producer/Consumer Model

	14.6 Common Programming Errors
	Chapter Review

	15. On to C++
	15.1 C++ Control Structures, Input/Output, and Functions
	15.2 C++ Support for Object-Oriented Programming
	Chapter Review

	Appendices
	A: More about Pointers
	B: ANSI C Standard Libraries
	C: C Operators
	D: Character Sets
	E: ANSI C Reserved Words

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

