CREATING DATABASE-BACKED

Using Open Source Tools

STEPHEN R. WESTMAN

CREATING DATABASE-BACKED

STEPHEN R. WESTMAN

American Library Association
Chicago 2006

Stephen Westman is the Digital Information Services librarian at the University of
North Carolina at Charlotte, where he has been since 2003. In that capacity, he is exten-
sively involved in creating databases to organize and provide access to information on the
Web. He has held similar positions at Georgia College and State University, the
University of Texas at San Antonio, and Ohio State University. Throughout his career,
Westman has been very interested in information retrieval issues. He has worked exten-
sively with databases for almost eighteen years, focusing for the last ten years on using
relational databases to create Web pages and applications. In addition to his work in
library technology, Stephen is also a trained musician, having studied at Michigan State
University, the University of Michigan, Louisiana State University, and the University of
Mlinois at Urbana-Champaign, where he also earned his MS in Library and Information
Science in 1990.

While extensive effort has gone into ensuring the reliability of information appearing in this
book, the publisher makes no warranty, express or implied, on the accuracy or reliability of
the information, and does not assume and hereby disclaims any liability to any person for
any loss or damage caused by errors or omissions in this publication.

The paper used in this publication meets the minimum requirements of American National
Standard for Information Sciences—Permanence of Paper for Printed Library Materials,
ANSI 7.39.48-1992.

Library of Congress Cataloging-in-Publication Data

Westman, Stephen R.

Creating database-backed library Web pages : using open source tools /

Stephen R. Westman.
p. cm.

Includes bibliographical references and index.

ISBN 0-8389-0910-8

1. Library Web sites—Design. 2. Web databases. 3. Web site development.
4. Open source software. I. Title.

7674.75.W67 W47 2006

006.7'6—dc22 2005022408

Copyright © 2006 by the American Library Association. All rights reserved except those
which may be granted by Sections 107 and 108 of the Copyright Revision Act of 1976.

Printed in the United States of America

10 09 08 07 06 5 4 3 21

Contents

Foreword
by Eric Lease Morgan

Acknowledgments

INTRODUCTION

DATABASE BASICS

SETUP AND ADMINISTRATION
INTRODUCTORY PROGRAMMING
CREATING REPORTS

PROJECT DESIGN

PROGRAMMING THE APPLICATION
SECURITY-RELATED TECHNIQUES

C W 1 O VU = WD

CREATING PUBLIC INTERFACES

[-—
=)

DEVELOPMENT PROCEDURES

Appendixes
A CREATING SHRIMP ETOUFEE

B PROGRAMMING STANDARDS

Glossary
Index

vii

Xi

14
42
67
89
112
145
183
201
219

225
232

243
255

iii

To Phillip, who taught me how to listen to myself

Foreword

Libraries are full of lists. Lists of books. Lists of magazines and
journals. Videos. People. Internet resources. And so on. It can be
a monumental task trying to manage all of them.

That’s where the relational database comes in. In a digital environment, the
relational database is the most efficient way to manage large lists of information,
limiting the number of places you need to store data to one place. Make an edit
there and the change ripples through your Web site, eliminating the need for you
to touch every page. With their efficiencies in maintaining data, relational data-
bases are well suited to the highly structured data of libraries.

The purpose of this book is to teach you about these databases and how they
can be used to create database-driven Web sites. Written by a librarian for librar-
ians, the methods and examples of this book should strike a chord with readers,
making the learning process easier. The process is not easy, but it is no more dif-
ficult than learning the intricacies of the MARC record or the nuances of a par-
ticular bibliographic index.

In today’s globally networked computer environment, people increasingly
expect to interact with a library’s collections and services through a Web browser.
This means that libraries must maintain a Web presence, if not Web servers.
Creating and maintaining small sets of static HTML files (perhaps a hundred) is
not too difficult. On the other hand, when you start maintaining sets of thou-
sands of pages, the process gets old pretty quickly. Moreover, the implementa-
tion of relational databases forces you to think very critically about the data being
stored and reported upon. Thinking critically about data, information, and
knowledge is a core characteristic of librarianship. It seems as if relational data-
bases were made expressly for libraries and librarians.

This book will provide solutions to the challenges of maintaining lists of data
in an era of globally networked computers. First, it describes in great detail what
it means to design and maintain a relational database. Second, it demonstrates

viii FOREWORD

how to write computer programs, in the open source language PHP, against the
relational database for the purposes of generating HTML pages and searching
the database’s content.

By exploiting these two techniques it is possible for a minimum of people,
with an albeit diverse set of skills, to maintain large sets of data and distribute
that data immediately and accurately on the Web. If you take advantage of the
techniques described in this book, you likely will be able to drastically reduce the
amount of time your team spends writing HTML. You and your library will be
able to work more efficiently. Content specialists will be able to focus more on
content, and infrastructure providers will be able to focus on access.

If there were two higher-level computer skills I could teach every librarian,
the first would be designing and maintaining relational databases, and the sec-
ond would be indexing. Each technology represents two sides of the same infor-
mation retrieval coin. On one side is data maintenance, and on the other is
searching and finding. This book fills a particular niche in Libraryland.
Specifically, it provides a structured method for learning relational databases and
applying them to the problem of maintaining large sets of HTML pages for a
library Web site. In turn, this book empowers you to put into practice the prin-
ciples of librarianship in a “webbed” environment.

The subtitle of this book, “Using Open Source Tools,” represents a topic
near and dear to my heart. Open source software is just as much about freedom
as it is about computer technology. In fact, it uses computer technology to
express freedom. These principles are not too far from the principles of modern
librarianship, and therefore, the use of open source software is a natural fit for
librarians. Information has never been free. As information professionals we
understand this better than most people. There are real costs to collecting,
organizing, archiving, and disseminating data, information, and knowledge.
Despite these costs, you don’t need your checkbook when visiting a library. The
reasoning behind this is based on the belief that free access to the world’s data
and information will enlarge the sphere of knowledge and understanding. These
same principles form the basis of open source software. It allows the individual
or group to take control over hardware and software instead of the other way
around. Open source software provides you with more choice and more oppor-
tunity. Just as we believe free access to data and information will expand the
sphere of knowledge and better humanity, the free access to computer programs
will enable us to expand our ability to use computers as tools to improve our
lives, not become slaves to them.

FOREWORD ix

As you read this book, Stephen Westman will make these themes more
apparent. First, you will learn how to collect, organize, and disseminate your
data, information, and knowledge in a digital, globally networked environment.
Second, you will learn how to do this in an open source environment. A power-
ful combination. Read on and become empowered.

—Eric Lease Morgan

Acknowledgments

For any large project to be successful a number of people need
to be involved. This book is no exception. Many people have pro-
vided inspiration, support, helpful criticism, and encouragement.

First, I want to thank Judy Myers of the University of Houston Library.
Throughout my fifteen years in ALA, Judy has served as a mentor, a coach, and
a source of ideas, as well as a wise and gentle critic. It was through her that I
became involved in my first major Web-based database project, well before such
things were even talked about.

I also want to thank the staff at ALA Editions for their considerable help and
patience in working with me on this project. In particular, I want to thank Laura
Pelehach for her kindness and for being able to resolve problems with humor,
grace, and incredible understanding. I also want to express my sincere gratitude
to Helen Court for her wisdom, experience, patience, and expertise as copy edi-
tor of this volume. Her understanding of Web development was incredibly help-
ful in resolving knotty technical issues. In addition, I would like to thank Russell
Harper for helping with the last-minute changes that are inevitable when deal-
ing with open source software. His efforts are greatly appreciated.

I also want to acknowledge several others who have both encouraged and
supported my explorations in this technology. They include Sue Tyner (my boss
at the University of Texas at San Antonio), under whom I began working in this
area and who encouraged my experimenting in it, and Michael Winecoff (my
current supervisor), who not only read the book but has supported further work
in this area. I also want to thank Ladd Hanson of the University of Texas at
Austin, who first introduced me to Web-based database programming and who
gave me my first taste of PHP.

I also want to thank those who have read various parts of the book and made
good suggestions. Two people were especially helpful in reviewing early drafts of
this book and helping me to clarify my ideas. One is my brother, Ronald
Westman, from whom I got my first computer and who helped me overcome

xi

xii ACKNOWLEDGMENTS

programming challenges that arose as I wrote this book. Another is Jeffrey
Millman of Similarity Systems, who made many wonderful suggestions, pointed
out issues with which I would need to deal, and helped me clarify my writing. I
also would like to acknowledge Trisha Davis, Allison Pittman, Jonathan Champ, Jo
Earle, and Michael Winecoff for reading drafts of the manuscript and making sug-
gestions. Any problems with the contents of this book are due to my not listening.

I also want to express my gratitude to all who have provided ideas, sugges-
tions, and support in the creation of the function file included in this book, espe-
cially Seth Hall (who helped to develop the initial code that served as a model
for the current library), Jonathan Champ, and Ronald Westman. In particular, I
would like to acknowledge Ohio State University for their permission to use
ideas and code that I developed in my work there to serve as the foundation for
the creation of this library.

I would like to acknowledge the staff and my supervisors at Ohio State
University (Sally Rogers) and the University of North Carolina at Charlotte
(Michael Winecoff) for allowing me to have the time needed to complete this task.

On a more personal level, I want to thank my family for their support and
encouragement in a project that was far greater than I initially imagined it would be.

Last, but not least, I want to thank Janis for her wisdom, love, support,
patience, and the incredible beauty that she has brought to my life.

Chapter

INTRODUCTION

Perhaps you've heard of others using databases on their Web

sites, but are not sure how they are doing it. You understand that

using databases can make site maintenance and data publishing
much easier. However, you might be afraid that only extremely technically savvy
people, or those able to hire such individuals, can do these things. This book is
for you. It is intended for librarians who would like to try their hand at develop-
ing database-backed Web pages but are not sure where to start. I deal with a
broad range of programming and other technical issues, approaches, and tech-
niques, but I do not assume anything beyond a basic level of familiarity with
HTML and the ability to create HTML forms. I explore such concepts as rela-
tional databases, Structured Query Language (SQL), data modeling, server-side
scripting, “maintaining state,” and user authentication. I explain each of these
concepts in straightforward English within the framework of creating useful Web
pages. Where more detail is needed, appropriate readings, Web sites, and other
information sources are provided.!

The other part of this titte—"Using Open Source Tools"—defines the sec-
ond goal of the book: to introduce a very exciting and powerful way of develop-
ing and distributing software. In these times of expanding budget needs and
shrinking revenues, the last thing we as librarians need to do is to spend large
amounts of money on hardware and software to enhance our Web presence. The
good news is that you can use open source tools to build a complete—and very
powerful and dynamic—database-Web presence for the cost of a basic PC (say
$1,000). In fact, using the information in this book along with the companion

2 [INTRODUCTION

materials available at http://www.ala.org/editions/extras/Westman09108, you too
can become your own Webmaster using your own PC. In the process, you can
strike a blow for truth, justice, and the library way!

I show you how you can take data from legacy systems and create searchable
Web-based resources. I also step you through a complete database-backed Web
project from initial concept through data modeling and database creation to pro-
gramming and actual implementation. The code for creating the project is pro-
vided and explained. The idea is that, by using the information in this book, you
will be able to start exploring this very useful and exciting world. Along the way,
I examine possible pitfalls and problems you may encounter and provide alter-
native approaches to solving those problems.

Although I focus on open source tools, I concentrate as much on what is
being done and why as on the specific details of how it is being done. The goal
is to help you understand the process, and thus be able to apply it to whatever
programming syntax and platform you choose.

Information for developers and library administrators overseeing this type of
project is also provided. This includes the following:

e comparisons of various open source tools currently available
e programming and documentation procedures for the development process
¢ list of development standards

e forms and templates to define and implement a project of your own

Wherever administrative issues need to be addressed, I present information
and recommendations that will enable you to deal with those issues.

The goal of this book is to acquaint you with all of the basic processes
involved in creating database-backed Web applications, not to go into any great
depth in any particular area. We will look at rather simple applications without a
lot of advanced programming or design techniques. The thought is that, by
learning the basics, you will be able to investigate any particular area of interest
further. To that end, I include a bibliography of Web sites and books for further
research in the online companion materials.

ANOTHER BOOK ON DATABASES AND THE WEB?

Some of you may be asking, “With all of the books currently available that deal
with database-backed Web pages, why another one?” This is a fair question. The
quick answer is that this book is designed to be different in a number of ways:

INTRODUCTION 3

I focus on the entire process rather than on individual aspects (such as
coding, database design, and the like). Doing so will illuminate all
aspects of this type of project.

I explain concepts using familiar, real-world terms and metaphors rather
than technical language.

I write as a librarian and for librarians, using library terminology and
explaining things with library-based examples and concepts.

I emphasize searching techniques and investigate ways to implement
the types of searches that librarians have come to expect from their
systems.

I provide information on good programming practices, documentation
techniques, and process planning that can be useful to developers
and library administrators.

I provide sample forms to help you get started, fully annotated source
code for all sample applications, and a PHP programming library
that gives you access to some rather advanced techniques and infor-
mation on how you can use these resources to set up your own data-
base/Web server on your PC.

After working through the examples in this book, you will have the tools with
which to begin working in this most exciting area of Web publishing.

WHAT ARE DATABASE-BACKED WEB PAGES?

The first thing to explain about database-backed Web pages is what they are.
Right now you’re possibly asking yourself: “Don’t you write HTML pages using
Web editors, such as Dreamweaver or FrontPage, and then transfer them to a
Web server? What do databases have to do with publishing Web pages?”

The answer is that, although they differ in details, all database-backed Web
pages are essentially Web-based reports. Many of you are already familiar with
the reports (such as overdue notices) that your local online library system pro-
duces. You (or those who create your reports) write the programs that tell the
system what pieces of information you want. The programs then respond to user
input and

e search the database using the query designed into the report

e compile a list of information that matches the designated criteria

4 INTRODUCTION

e take the data and format them using rules built into the program
e print the report

Web pages are no different in their basics in that they also search a database,
embed the results within HTML tags, and output the results to a Web server.

Approaches

The Old-Fashioned Way

To begin understanding how database-backed Web pages work, let’s look at how
a typical Web page is retrieved. As shown in figure 1-1, the publisher (Web page
creator), usually using Web-editing software of some kind, creates a file contain-
ing the data the user is intended to see, formats it using HTML (1) and places it
on the Web server (2). A user who wants to view the information then clicks on
a link to request the page (3), which sends a request (via a URL) for that partic-
ular page to the Web server (4), and the Web server retrieves that file (5, 6) and
sends it to the browser (7) for viewing (8). Note that creating and retrieving are
separate processes: the only time the information that the user sees changes is
when the publisher edits the page and uploads it to the server.

HTML Editor

2. Place

page on

1. Create page server

Server

HTML Browser Document
4. Send Area
3. Request page Request
Web
Server
& Display 6. Page
page retrieved

Figure 1-1

INTRODUCTION 35

Creating Static Web Page Reports

Database-driven information can be created two ways. In the first, as illustrated in
figure 1-2, the publisher enters a query using Web report writing software (1)
and the query is then sent to the database (2). The database is searched (3), the
results are returned to the report writer (4), which then formats the results as a
Web page (5). The publisher then transfers the file to the Web server (6), where the
user retrieves it in the same manner as the Web page demonstrated in figure 1-1.

Here again, the process of Web page creation and page retrieval are discrete
acts; once the HTML report has been written out and placed on the server, any
changes to the database will not be reflected on the Web page until someone
executes another report and places the new page on the Web server.

HTML Report
Writer
6. Place
1. Create 5. Format o on
query results e
as Web page
Server
Document
3. Search database and retrieve results
Area
HTML
Browser
7. Request page 8. Send 9, Get
Request page
Web
Server
12. Display 1. Send 19 Pa
= : retrieved
oy V_& -

Figure 1-2

6 INTRODUCTION

This approach can be appropriate with data that doesn’t change very often
and when only a few pages need to be maintained. If you need several database
reports using the same data (such as new book lists organized by subject, author,
publication dates, and holding library), you must create each one individually
and republish each of them should the data in the database change. This is of
course possible, but can be horribly inefficient in terms of time and energy.

Creating Dynamic Web Page Reports

The alternative is to output the information “in real time” (“just in time” publish-
ing, if you will). Rather than creating a static page that contains the information
from the database the way it was when the publisher created it, the user receives
a page that contains the contents of the database as it is at the time of the user
request, thereby allowing the library to provide the most accurate and up-to-date
information possible.

The process of creating a dynamic database-backed Web page is illustrated
in figure 1-3. It is similar to that shown in figure 1-2, with one important differ-
ence. Once the programmer has written the program to search the database and
to output the data as an HTML report, the only person involved in the Web page
creation is the user, who initiates the process either by clicking on a link or by
filling in a search form and clicking the Submit button (1). When this happens,
the browser sends two types of information to the server: the name and location
of the program that will create the report; and the parameters for that report
(2).2 The server then notes that the requested resource is a program (3) and it
then calls the requested program and passes the appropriate parameters to it (4).
The program takes the parameters and constructs one or more queries, opens a
connection to the database (5), and passes the query or queries to it (6). The
database then executes the requested search or searches and creates a retrieval
set (7), which it then passes back to the program (8), where the results are for-
matted as an HTML document (9). The resulting Web page is then returned to
the Web server (10), which treats it as a Web page (11) and passes it back to the
browser (12), where it is displayed (13).

For this process, you need three things:

1. A database—some way to store the data in a structured manner that will
allow for retrieval and output. We will deal with databases in chapters 2,
3, and 6.

2. A program or application—the means to create and pass the user’s
request to the database and format its output to HTML. We will take a
look at these in chapters 4, 5, and 7-10.

INTRODUCTION 7

Batch
Data
Loads

Database
7. Database searched using passed queries and creates retrieval set

#, Retum Results

Program or Application Server

Data
Maintenance
Application

5, Open dbconnection 9, Format results using.
Create quenies using HTML tags
passed or embedded
parameters

A, Call
program

10, Return
Web page

Web Browser Web Server
1. Request page 3. Examines request to see if it is a program. In this case, the answer is "yes”
13. Display page 11. Server sends out page as a "normal® Web page

Figure 1-3

3. A Web server—to mediate between the user (Web browser) and the
application server or program. In the bibliography, I provide links to a
number of sites that provide information on how to set up your Web
server. Also, I show you how to configure your Apache/MySQL/PHP
installation to use the examples provided in the book in Setup.pdf.

WHAT CAN DATABASE-BACKED PAGES BE USED FOR?

One of the first things we need to look at is when the use of a database is appro-
priate. Although it certainly is the latest news in Web publishing, a database is
neither a silver bullet nor a tool that can be used in all contexts. There are times

8 INTRODUCTION

when a plain HTML page is a more appropriate approach. We therefore need to
ask, “When should I use a database for my Web publishing?” Although it is dif-
ficult to provide hard and fast rules, there are certain guidelines that may help.
In general, databases can be useful where

Data are made up of discrete pieces of information about persons or
things. That is, items are described with individual metadata ele-
ments. One example is a page with Web sites containing at least
three such elements: name, URL, and description.

Data are highly and regularly structured. That is, the information has a
defined structure that repeats throughout the data. Examples include
address and new book lists.

Information changes often or reuse of the same data in a variety of con-
texts is desirable. Using a database permits input/edit screens that
make keeping information up-to-date much easier. They also allow
you to enter once and use many times. For example, a list of person-
nel could be used to populate a telephone list, departmental con-
tacts, and the basis for a password file to protect sensitive or other-
wise restricted resources.

You wish to search on discrete elements within the data. By structuring
data, databases make it possible to search and display data as
requested by a user. One such example is being able to search a new
book list based on subject, author, or date of publication.

On the other hand, databases—particularly the type with which we will be
dealing—are not well suited for pages that

Are very complex and have significant amounts of textual data. Being
highly structured critters, databases don’t handle certain types of com-
plexity well. Pages that include many different types of data from a vari-
ety of sources and formats may not fit well into a database structure.

Contain hierarchically organized data. XML documents, such as TEI
documents and EAD finding aids, are not necessarily good candi-
dates for a database (at least for public searching/outputting).3

Are more document-like and require specialized layout. To take one
example, due to their prose-like nature and often specialized lay-
outs, departmental information pages would require significant pro-
gramming to meet the needs of users.

INTRODUCTION 9

Time does not permit an exhaustive look at projects that libraries have
undertaken. However, I provide a list of sites and articles in the bibliography that
contain articles and pointers to various types of sites currently using databases to
produce Web pages.

OPEN SOURCE SOFTWARE

As noted, one of the major goals of this book is to provide an introduction to
open source tools. The open source movement is one of the most exciting devel-
opments in software in years. Using a model of cooperation and sharing, rather
than competition and profit, open source licensing allows users to freely (most of
the time) download and to modify and redistribute software without incurring
licensing costs.* The advantages of such an approach are many and powerful:

Open source provides an extremely low-cost alternative to commercial
systems. Using the software tools provided here—along with an open
source operating system such as Linux, FreeBSD, or OpenBSD—
one can set up a fully functioning Web infrastructure essentially for
the cost of an average computer workstation or personal computer.

Open source tools are usually cross-platform and can run on all forms of
Unix (including Linux), various flavors of Windows, and increasingly
on Macintosh OS X. Thus, any application you develop can be
moved to other platforms, should your computing infrastructure
change down the road.

Open source products are extremely powerful and provide most—if not
all (and in some cases more)—functionality that one can find in
commercial products.

Product development is undertaken by individual developers rather
than a central commercial entity. Because source code is freely
available and modifiable, anyone with the interest and skills is free
to do so. This means that, particularly on more popular products
such as those detailed here, new features and bug fixes can be added
very quickly. In addition, because the source code is available, the
user can modify it to do whatever is needed, rather than submit
enhancement requests that may or may not be honored.

Open source programs are extremely popular. In fact, the tools used in
this book are among the most popular applications—commercial or

10 INTRODUCTION

open source—on the Internet. For example, Apache is running on
almost fifty-two million sites (71 percent of all Web servers—more
than three times as many sites as Microsoft’s Internet Information
Server); MySQL is active on more than five million sites with thirty-
five thousand downloads daily; and PHP is running on just over
twenty-two million domains.® This popularity translates into (1) a
robust aftermarket of books on these tools, (2) a large number of
users with whom you can network to obtain support, (3) a large sup-
port base to fix problems and bugs as they arise, and (4) a large num-
ber of applications and code libraries available for use in your projects.

Another reason the open source movement is valuable to librarians is the
number of similarities between it and librarianship:

Both seek to make their product, be it programs or information, as freely
available as possible.

Both are based on a collaborative philosophy, not dissimilar to peer
review, in which cooperation rather than profit-seeking and a group
approach to developing the product and solving problems are fun-
damental tenets.

Both seek to disseminate information in such a way that it furthers the
quality and diversity of the products and services they provide.

Both seek to empower the user rather than maintain centralized control
of development and distribution.

STRUCTURE OF THIS BOOK

This book is divided into three sections. We first focus on data management tools
and techniques. Chapter 2 explores the data storage options, focusing on rela-
tional database management system (RDBMS) technologies. We will explore
how an RDBMS works and the features it provides; briefly examine Structured
Query Language (SQL), the standard language used to interact with RDBMSs;
look at features provided by RDBMS products; and briefly look at the various
open source alternatives for relational database systems. In chapter 3, we look at
what is involved in setting up a database within an RDBMS, using MySQL as our
product. In undertaking this task, we will be using another open source prod-
uct—phpMyAdmin—as our graphical MySQL management tool. I will show you
how to create and define a database and its constituent tables; load data into the

INTRODUCTION 11

database; enable database security by creating user accounts; and discuss some
of the issues you will encounter in database management.

In the second section, we look at the process of creating programs to search
and output data from the database. In chapter 4, I introduce programming (I
hope painlessly). My approach is to use a cooking metaphor to introduce the
concepts you need to know. In using the familiar to explain the unfamiliar, it is
my hope that some of the angst normally associated with programming might be
avoided. I conclude by showing you how to “program” the cooking of one of my
favorite dishes: Shrimp Etouffée. Once we have these basics down, we proceed
to chapter 5, where I walk through the creation of a variety of reports you can
use to output data from your database. Because searching is an intrinsic part of
the process, I also introduce you to basic searching applications.

The third section covers the creation of a complete database-backed Web
application. In chapter 6, I address planning issues, data modeling, and database
design. This includes forms and grids you can use to gather the information
needed to create robust applications. Chapter 7 takes the gathered information
and shows how it can be used to create an application. This application will
include pages to add, edit, and delete records as well as how to create a front-
end to enable end-user searching. which I cover in chapter 9. T also discuss user
authentication and security in chapter 8, searching techniques in chapter 9,
application development issues in chapter 10, and a number of other topics
throughout.

I also provide two forms of supplementary information. First are three
appendices:

a recipe for shrimp étouffée in both traditional and programmed format
programming standards used to create the examples in this book
a glossary of terms

Second are the companion files and resources available online at http://www
.ala.org/editions/extras/Westman09108. These include a bibliography of useful
resources and updates for this book.

A download file containing numerous types of documents and resources is
also available. These include

Setup.pdf—various aspects of setting up the environment used in this

book

Fully annotated source code—for all example apps and scripts, in ASCII
and PDF format

12 INTRODUCTION

ala_functions—a library of programming code (functions) used in this
book, in ASCII and PDF format

Functions_Guide.pdf—an introduction to these functions

Data and configuration files—to set up your own database/Web server
applications

Project planning forms and grids—used in chapter 6, in Word and Excel
format

Throughout this book, I will refer to a variety of PDF files that contain infor-
mation, examples, and other types of resources. Copies are included in the
download file.

DEVELOPMENT ENVIRONMENT
AND TOOLS IN THIS BOOK

All the tools used in this guide are open source. Among their advantages are that
they are nicely priced (free for noncommercial use), cross-platform (they run on
Windows, Linux, Unix, and Mac OS X), and extremely feature-filled and powerful.

Apache is the world’s most popular and widely used Web server. In addition,
Apache also incorporates a highly modular design that makes it very easy to inte-
grate other modules and capabilities as needed, something that is very important
with the other tools we will be using here.

MySQL is a relational database system (RDBMS) originally created in
Sweden that moved to open source licensing in 2000. Both extremely fast
(matched only by Oracle) and easy to use, it is the most popular open source
database server for Web-based applications.

PHP is a scripting language that integrates with Apache to allow you to
embed short bits of programming code directly into HTML-like files. It also has
a number of products, libraries, and third-party written applications that can
make development easier (or be scavenged for code).

PhpMyAdmin is a PHP-based GUI (graphical user interface) tool that
greatly facilitates the administration of MySQL databases. This product will be
discussed in more detail in chapter 3.

I also provide programming code created especially for this book to facilitate
Web application development. This code, named ala_functions.php, is in fact a
collection and is available for download as part of the online companion materi-
als. The file includes instructions on how to set this environment up for your-

INTRODUCTION 13

self on your own computer so that you can work through the exercises in this

book.

TYPOGRAPHICAL CONVENTIONS USED IN THIS BOOK

This font is used for code, including field, record, and table names as well
as arrays, commands, functions, and variables.

This font is used for grid, interface, and menu elements and names.

Notes

1.

The focus of this book is not on providing a complete compendium of every technique
and task you might want to undertake. However, I try to provide you with a solid con-
ceptual understanding of database-backed Web pages—an understanding that will allow
you to approach other books—such as those in the bibliography available as part of this
book’s online companion materials—and have an understanding of how to include them
in your project.

In the form, program name is included as the action attribute of the <form> tag and
the parameters are the names of the various inputting boxes, lists, and checkboxes. In
the link, the URL consists of the program name and the parameters are listed at the
end as a list of name and value pairs, such as search.cgi?Author=Faulkner&Title=
Sanctuary. We go into greater detail on this in chapter 5.

Ronald Bourret’s XML and Databases, cited in the bibliography, provides an interesting
and useful distinction between data-centric and document-centric information, the
former being much more amenable to relational database technology.

There are some copyright and licensing restrictions on certain open source tools, usu-
ally restricting the types of copyright restrictions that can be placed on modified code
or limiting free use of the package to noncommercial applications. If you want to redis-
tribute the application or use it in work for hire, consult the licensing agreement that
comes with the open source tool or tools you are using.

If this is to be used in a production environment, you will also need to provide backup
and other systems support services.

“Webserver Survey,” Netcraft, http:/news.netcraft.com/archives/2005/12/02/december_
2005_web_server_survey.html. Company Fact Sheet, MySQL, http:/Avww.mysql
.com/company/factsheet.html; Usage stats, PHP, http://www.php.net/usage.php.

DATABASE
BASICS

Chapter

Now that we have an idea of how database-backed Web pages

and applications work, let’s look under the hood. We begin by

examining how we can use databases to store and retrieve data.
Although I will be throwing about a lot of technical terms such as Structured
Query Language, setting relations, and normalization, my goal is to take some of
the mystery out of such words and phrases (see glossary). The concepts they
describe are not that complicated and many are quite familiar to librarians (albeit
under different names). Understanding them will not only make the rest of this
book easier to follow, but also allow you to impress your friends and confound
your critics as you talk about “normalizing your data model to ensure its referen-
tial integrity.”

Here we will look at some essentials of database management systems. We
begin by exploring various approaches to storing and retrieving data, focusing in
particular on relational database management systems (RDBMS). We then
examine elements of database structures and modeling and see how we can use
them to design solid databases for use in our Web applications. After that, I
introduce you to Structured Query Language (SQL) and show how we can use
it to interact with databases. I then present some of the techniques RDBMSs
provide for ensuring data integrity and security. We finish up by discussing vari-
ous open source database implementations currently available.

14

DATABASE BASICS 15

DATA MANAGEMENT APPROACHES

Although data management techniques may come in many shapes, sizes, and col-
ors, they all have one basic characteristic in common: they structure the informa-
tion that they store.! To paraphrase a maxim: “a place for every datum and every
datum in its place.” Putting each piece of data in its own unique and identifiable
cubbyhole allows programs to find and display it when requested. You can take
two approaches to structuring data: structured text files and database manage-
ment software. We look at both approaches.

Structured Text Files

A delimited text file is an ASCII file in which we store data, placing a delimiter
(specific character) between each piece of information (field) that we want to
store. This effectively tells a program where one field ends and the next one
begins. A delimited text file is similar to a spreadsheet, in which each row (or
record) represents a single thing (book, or person, for example) and each row has
a number of fields (title, author, and the like) separated from each other by the
delimiter. You then write programs in languages such as Perl that will parse the
data (break them down into their constituent components) and look through
those components to find and output the information contained in these files.2
In creating delimited text files, you need to observe three rules:

1. The character used for the delimiter must appear only as a delimiter and
must not be one used within the data. Otherwise the program, when
encountering that character within a field, will assume that the text after
the character is a new field—clearly not what you intend.

2. Each line (record) within the file must have the same number of fields.
Because computers need to find information in predictable places, if a
certain piece of information is not available, you must still add a delim-
iter to create an empty field to hold that piece of data’s place, just as you
would do with a spreadsheet.

3. Each line (record) must have its pieces of information in the exact order
as every other record within the text file.

In this example, we are creating a text file phone directory comprising three
fields (elements of information): name, email address, and phone
number. Into this file, we place the name, e-mail address, and telephone num-

16 DATABASE BASICS

ber of three people. In building the file, we decide that the first field will always
be the name, the second field will always be the e-mail address, and the third will
always be the phone number. If we use the pipe (vertical bar) character as our
delimeter, our resulting file would look like this:

Smith, John|jsmith@mylib.net|555-1212
Doe, July|jdoe@mylib.net|555-2121

Jones, Fred] |555-3123

Note that Fred does not have an e-mail address. Rather than ignoring that
field altogether, we hold its place with a delimiter character in the appropriate
spot. If we follow the rules we established in the previous paragraph, programs
using this data will assume that the second field is the e-mail address. If we don't
add the placeholder, the phone number (555-3123) would be in the e-mail record’s
position and there would then be no field to represent the phone number.

Comma-Separated Values

Probably the most commonly used delimited text file format is comma-separated
values (CSV). It is used by programs such as Microsoft Access and Excel as one
way of exporting and importing data. CSV files have quotation marks around
each field and a comma separating the fields. A CSV version of our example
above would look like this:

"Smith, John","jsmith@mylib.net","555-1212"
"Doe, July","jdoe@mylib.net","555-2121"

"Jones, Fred","","555-3123"

Although CSV files are very popular, they do have one drawback: they are
built more for traditional database data—such as personnel and payroll sys-
tems—than for the more textual type of information librarians deal with. In par-
ticular, the use of quotation marks as an end-of-field indicator raises a question.
“What if the data has a quote within it?” Remember that the delimiting charac-
ter or characters should not appear in the data being represented in the file.
Placing data with quotation marks within the data in a CSV file can create seri-
ous problems during processing. Although there are ways to get around this dif-
ficulty, the limitation essentially means that, if you have data you want to trans-
mit from one system to another that contains quotation marks, you will probably
need to find another technique for transferring it.

DATABASE BASICS 17

Database Structure

On the one hand, using text files requires low overhead in terms of their creation
and storage. On the other, it demands that the developer write a search engine
to extract information. This approach may work well for simple applications, but
it quickly breaks down as information becomes more complex or searching
requirements become more sophisticated. The alternative is to use database
management software. Such systems not only provide structure to the data, mak-
ing it easier to search and retrieve data, but they also provide tools to facilitate
searching, data maintenance, and system security.

Systems vary wildly in capabilities, size, and characteristics, but most data-
base programs have certain structures in common. These include

Database. The basic container in a database management system, a data-
base contains the table or tables in which we place our data.

Table. Similar to the delimited file, a table is the base unit within a data-
base that contains the actual data. Tables generally store informa-
tion on a specific and (if the database is well structured) unique?
entity (concept), such as books, authors, orders, and such.

Record. The structure within tables that contains descriptions of individ-
ual instances of the entity that the table in question represents,
records are the database equivalent of the rows in the delimited file.

Field. Database fields are the individual parts of the record that describe
specific aspects of the entity being represented in an individual
record (such as the individual elements contained between the ver-
tical bars above).

Index. Just as books contain indexes to help you find information
quickly, database systems create similar indexes that facilitate quick
and easy retrieval of information from the database. Some types,
such as UNTQUE indexes, can enforce certain rules about data entry.
We will look at different types of indexes later in this chapter.

Database products come in many shapes and sizes. Let’s now take a look at
some of the more popular types and see how they relate to Web publishing.

Single-Table, Fixed-Field

Database programs that store all information in a single table were very popular
in early PC database and information managers. Packages such as PC-File

18 DATABASE BASICS

and VP-Info provided a quick and inexpensive way of maintaining simple infor-
mation collections, such as address lists and phone numbers. Unfortunately, a
number of problems limited their usefulness:

Data in one database created using these packages were inaccessible to
any other database.

Each record was required to contain all possible fields. In most cases,
these were fixed length, which meant that it took up the same
amount of space on the disk whether the field contained any data or
not. Both features meant an often inordinate amount of duplicated
information, wasted space, and unused space.

Customized data entry screens were generally not an option.

Few if any of these programs are Web aware. To use the data in such sys-
tems, you need to extract their information and load it into a Web-
aware database.#

Personal Bibliography

Similar to single-table databases, what is known as personal bibliography soft-
ware has been extremely popular in the library community for a number of years.
These packages use variable length fields, which take only as much space as is
necessary to store the data. They still have the drawback of using only a single
table, but have been invaluable in helping users create bibliographies, pathfind-
ers, and a world of information support tools. Examples include Notebook II,
ProCite, EndNote, and LibraryMaster. Such products are beyond the scope of
this book, but several tools mentioned in the bibliography can assist you in pub-
lishing data from these programs on the Web.

Personal Information Managers

A type of application very popular in the 1990s, PIMs (as they were called)
allowed you to place all sorts of different kinds of unstructured data into the
application, including numeric, date, and textual materials. They would then
allow you to do a free text search through the database to find the information
you needed. Again, as with personal bibliography software, we do not deal with
these applications here but tools to help you place such information on the Web

are included in the bibliography.

Relational Databases

Based on the research of E. J. Codd and others, relational database management
systems (RDBMS) were first developed in the 1970s. In its simplest form, this

DATABASE BASICS 19

approach focuses on efficient storing, searching, and retrieving. Data are broken
into separate concepts or components (tables) associated by a series of relation-
ships. RDBMS applications are extremely powerful and flexible. Because of this,
they are used throughout the Web, from simple applications to integrated library
systems and massive online financial systems.

Object-Oriented Databases

At the cutting edge of database technology, object-oriented database manage-
ment systems (OODBMS) have made quite a splash in some quarters. The idea
is that data, rather than being stored in records, are stored as objects (individual
data elements) that can be brought together on the fly by the calling program.
Early OODBMS were difficult to program for and to use. They are becoming
more readily usable, but are really designed for large-scale applications, involve
complex programming techniques and languages, and provide much more
power and complexity than is required by the average library-created applica-
tion.>

XML Databases

Another new type of database product is the XML database. Designed to store
and to search/output XML documents using XPath or XQuery statements (or
both), these programs are able to maintain the internal structure of XML docu-
ments and serve them up as needed. Their capacity to store and search hierar-
chically structured data make them well adapted to dealing with such library-
based resources as EAD finding aids and TEI-encoded documents. Although
there are a number of open source tools—such as eXist and Xindice—available,
they address a different set of problems from those we deal with here and we will
therefore not cover them.

MARC Systems

Before proceeding, I would like to briefly discuss the MARC record format and
the possible confusion it may create in our later discussions. Some earlier library
systems did store their records in something approaching MARC format, but
later systems usually do not. Although MARC is used to transfer records into and
out of these systems, the way that the data are stored internally is quite different
from the single-record MARC screen we have come to know and love. In fact, a
growing number of systems are actually using relational database management
systems—usually Oracle or Sybase—as their underlying database technology to
store the data. Then, when a particular record is requested, these systems use

20 DATABASE BASICS

programs to retrieve the data elements from wherever they reside and recon-
struct a single MARC record on the fly for display to the user.

It is important to keep this distinction in mind as we proceed through this
book. There may be times when the metaphor of the MARC record—which on
the surface runs counter to many of the foundation principles of relational data-
base design—may cause some confusion. Examples include the concepts of
repeatable fields and subfields, and the idea of storing all data in a single record.
In such cases, it may be helpful to remember the distinction between how the
information is presented (as a MARC record) on the screen and how it is actu-
ally stored in the system.

RELATIONAL DATABASE MANAGEMENT SYSTEMS

To show how RDBMSs structure data, let’s take a look at the differences
between an RDBMS product (which is relational) and a single-table database
(which is not). We begin by examining how we might use a single-table database
to create a checkout system for books. Such a table might look like figure 2-1. As
you can see, if a person were to want to check out five books, the system would
need to update five records (one for each book), putting the same patron name,
patron address, patron city, patron state,

patron zip code, patron phone number, and
patron email address into each record. Talk title
about wasted time, effort, and disk space (to say
nothing of possibility for errors)! Wouldn't it be a
lot easier to put the patron information into one
place and then point to it when needed?

This is exactly what relational databases permit
you to do. Rather than entering that information
over and over again, you merely create a second
table—a patrons table—where information on the
patron is kept. When a patron checks out a book,
you place a pointer to the patron record inside
the books table. Then, by looking at the book

publisher

copyright date

call number

bar code number

due date

patron name

patron address

patron city

patron state

record, you can follow the link back to the
patrons table to see who has it checked out (see
figure 2-2). This is known as linking or setting a
relation—a concept we will explore later in this
chapter.6

patron zip code

patron phone number

patron email address

Figure 2-1

DATABASE BASICS 21

patrons books
Field Data Type |Size |Key Field Data Type |Size |Key
patron_id |Character [40 P title Character |100
first_name |Character (40 \ publisher Character [100
last_name |Character |40 patron_id Character |12 F
address Character |50 due_date Date
city Character |50 call_number Character |12
state Character |50 copyright_date [Date
zip Character |10
email Character |50

Figure 2-2

Let’s now take a look in some more detail at how relational database systems
are put together.

Tables and Records and Links, Oh MY!

Relational database management systems store information in multiple tables with
each table representing a separate logical entity (concept) within the database.
For example, in a library system, you can have a books table, a publishers
table, a subjects table, and so on. For each individual entity within the data-
base, a separate table will be created. There are two reasons why this is good.
First is that information on a given entity is stored in only one place. Second is
that, by keeping entities separate from each other, it allows the same information
to be used in multiple ways. For example, a patron’s list could be used to check
out books, create a searchable phone directory, build a mailing list, or authenti-
cate users for a library proxy server. Placing this information inside a books
record would make this reuse virtually impossible.

Having broken down our information into separate tables, we need to find a
way to bring them together as needed. We do this by creating links (relations)
between the records that in turn link the various tables. Tables are linked
through what are called primary/foreign key pairs—a pair of fields, one in each
table, that share a common value. We set relations—as in the example above—
by taking a unique value (primary key) from a field in one entity and placing it

22 DATABASE BASICS

in a corresponding field in another record in another table (foreign key) so that
a link is established between the two records.

For example, in figure 2-2 we place the patron_id (primary key) from the
patrons table into the patron_id (foreign key) field in the books table for the
records that the user wishes to charge out. Then, when we later want to know
what books a person has checked out, we look up the name, find out the person’s
patron_id, and then search for all of the books records that have that value in
the patron_id field in the books table.

As noted, a primary key is a unique value in a record (the value doesn’t
appear in that primary key field in any other record in that table) that is used to
identify that—and only that—record.” In our figure 2-2 example, the
patron_id in the patrons table is the primary key for that table (hence, the
P in the key column). Just as all U.S. citizens need a social security number to
identify them, so tables need primary keys to identify an individual record in the
database.

Foreign keys, on the other hand, are fields in one table into which the pri-
mary key of another table has been placed, thereby linking records in the two
tables with this common piece of information. Because you may have multiple
records in one table that point to a single primary key record in another table
(patrons may have more than one book checked out, for example), foreign keys
are not required to be unique. Thus, in our example, the patron_id in the
patrons table (or patrons.patron_id) is the primary key and the
patron_id field in the books table (or books.patron_id) contains the for-
eign key.8

One way to look at this is to think of the primary key as a surrogate (or, if you
will, a database telephone number) for the record that contains it. As new linked
records are added to the system, the database gives this phone number to the
new record (placing it in the foreign key field) saying, “If you need this informa-
tion, call this number.”

In looking at figure 2-2, note that the arrow points from the books table to
the patrons table, even though we spoke about taking the patron_id from the
latter and placing it in the former. This is because the function of the arrow is not
to indicate the direction of movement of the linking information, but to show
where a field containing such information is pointing.

In the next pages, we will be talking about some of the essentials of data
modeling—the process of taking the pieces of information that you want to
include in your system and structuring them in a way that will make storage and
retrieval of that data more efficient. Although this is a rather cursory treatment
of the subject, we will be going into greater depth in chapter 6.

DATABASE BASICS 23

Tables and Fields

In general, we will be using three types of tables in our applications in this book.
Please note that these distinctions may sometimes blur in that a table may serve
multiple purposes in a complex application:

Data tables are the primary bearers of information within a database.
They contain the information content that your application wishes
to store and make available.

Linking tables define many-to-many relationships, that is, when we have
multiple records in one table that are to be related to multiple
records in another. We will discuss these in more detail.

Lookup (or authority) tables restrict the set of values for a field to a pre-
defined list stored in the table, such as the state abbreviations
allowed by the U.S. postal service.? We will use these extensively in
our programs in later chapters.

Setting Relations

In establishing links between them, there are generally three types of relation-
ships that can exist between tables:

One-to-one. A record in one table is related to only one record in
another table. This usually is done where information in the second
table amplifies information contained in the first table or where, for
security purposes, certain fields have been placed in a table with
more restrictions on access. For example, in a personnel system, you
may wish to keep public information on an employee (name, phone
number, office number) separate from more sensitive information
(SSN, salary, job performance rating, and the like). One-to-one
tables allow that.

One-to-many. A record in one table may be related to multiple records
in a second table. In our example above, one book may be checked
out by only one person, but one person may have many books
checked out.

Many-to-many. Multiple records in one table are related to multiple
records in another table. Again using our online library system
example, a single book table record may be linked to multiple
subject table records and a single subject table record may be
linked to multiple book table records.

24 DATABASE BASICS

Let’s take a look at each of these types in some more detail.

ONE-TO-ONE In general, one-to-one relationships are used with subset
tables—tables that contain information that provide additional information on
the subject in the primary data table. Figure 2-3 shows how this can be done
using a one-to-one relationship.

We create a separate patron_private_information table and define
additional fields to hold that information. Included in those fields is a
patron_id field that will be linked to the patron_id field in the patrons record
by having the patrons.patron_id primary key placed in it. In figure 2-4, we can
see what this would look like with filled-in fields.

vate inf i
Field Type Size |Key Field Type Size |Key
patron_id |Character |40 P leg——patron_id Character |12 F
first_name [Character |40 ssh Character |11
last_name |Character [40 fines_owed Number |8
address |Character |50 fines_paid_to_date |Number (8
city Character |50
state Character |50
zip Character |10
email Character |50

Figure 2-3

patrons patron_private_information

Field Contents Field Contents

patron_id |25 |f——— patron_id 25
first_name |John ssn 999-99-9999
last_name |Smith fines_owed £500.00
address 25 Main Street fines_paid_to_date $1000.00
city MNormalville
state Narth Carolina
zip 99999
email jsmth@isp.com

Figure 2-4

DATABASE BASICS 25

ONE-TO-MANY One-to-many relationships are essentially the same as one-to-
one relationships except that a record in one data table may be linked to multi-
ple records in the other table or tables. It involves placing the primary key of
your main record into the foreign key field of multiple foreign records.

In figure 2-5, we see an example of this type of relationship. Here we have
a books table where we store information about printed materials in our collec-
tion. Assuming for the moment that a book can have only one publisher, we cre-
ate a separate table for publisher information. We can use this table to store
information about the publisher, such as address, phone number, and the like.
Then, when we enter a book into the system, we select the correct publisher
from that list and store its primary key as a foreign key in the books table.

This type of relationship can be very useful in creating database applications.
As we will see later, it allows us to create authority tables, which enforce uniform
entry of information and which end users can use to select from when searching
a database.

MANY-TO-MANY As noted, one side of a relationship must always be unique,
identifying one and only one record. However, data do not always work that way.
Many times a single record in table A may point to multiple records in table B and
vice versa. The question then becomes how you can create this type of relationship.

The answer is by creating a third (or linking) table that takes the primary
keys from the books and subjects tables and stores them in foreign key fields
in the third table. Then when we need to find associated information, we follow

publishars books

Field Type |Size| Key Value Fleld Type |Size| Key Value
publishems |Integer 1 P %0 - | author Character [100 Dioe, John A
publisher Charagter | 100 Eill's Publishing House Lithe Charaster 100 PhipTor Fun & Profit
address | Gharacter | 100 25 Maini Stret puthisher_no [Character [100 | £ [10
city Characier | 100 Hemetownville | copyright Character |4 2006
state Character |2 Litah pages Integer 1050
zip_code Character | 10 pgile]
phane Character [12 555-555-5555

Figure 2-5

26 DATABASE BASICS

the primary_key -> secondary_key/secondary_key -> primary_key chain to find
that information.

Let’s see how this works. Using figure 2-6 as an example, let’s say the person
has chosen to search for a particular Library of Congress Subject Heading
(LCSH). The system needs to

1. Find the primary key (subject) for the desired LCSH entry in the
lcsh field.

2. Collect all records in the linking table that have that value as the linked
foreign key (books_subjects_links.subject).

3. Find out what the books_subjects_links.bib_no is for each
books_subjects_links record retrieved.

4. Use the information it has gathered to retrieve the record for each num-
ber it finds where that value can be found in books.bib_no.

For each subject that is assigned to a book, a new books_subjects_
links record is created, placing the value from bib_no field in the linking table’s
bib_no field and placing the subject into the linking table’s subject field. A pro-
gram can then follow these links from books -> books_subjects_links ->
subjects to see what subjects have been assigned to the book as well as going
the other direction to see which books have used a given subject heading.

Figure 2-7 shows a variation on this theme—one that provides a more cor-
rect way of handling the basic book checkout system presented in figure 2-2.
Note several things about the graphic. First, the list has been divided into three
separate entities, each of which has its own table: books, checkouts, and
patrons. Second, there are three types of tables: data (books), authority
(patrons), and linking (checkouts), the linking table—checkout s—defining
an intersection (relation) between books and patrons. Third, checkouts is a
good example of a table that serves two purposes simultaneously. In addition to

books books_subjects_links
 Fleld Type sw Key| Value FI-:Id Ku.;r Value =ubjects
Bib 0o Integer P |10 - bib no | F 10 Fieid Type |Size |Key Value |
auther Character (100 Coe, John A subject| F |PHP — B subject Character |40 P |PHF
tille Character | 100 EHPlor Fun lash Character | 100 Programming Languages-PHP
publsher |Characher | 100 Bill's scope_note |Character (100 Pnpfor Fun |
call_number |Character |35 W00 58258
copyright | Character [4 2008

Figure 2-6

DATABASE BASICS 27

books checkouts patrons
Field Type |Size|Key Value Field Key| Vvalue Field Type |Size|Key Value

biz_no Integer P |10 - bib_no F 1o patron_id Integer P |205
author Character | 100 DCoe, John A patron_id F 208 /Irs!_nsme Characler |40 Fred
litke Character 100 Php for Fun due_date 200504 15 last_name |Character |40 Emith
puclisher |Character | 100 Bill's Character |50 50 North Elm
call_number |Character |33 M 1001 58255 ity Character |50 Homeatownville
copyright Character [4 2005 ctate Charactar |2 OH

Zp Character |12 5085

emall Character |50 famithgBisp net
Figure 2-7

being a linking table between books and patrons, we have also placed the
due_date field in the same table, thereby having it participate as a data table as
well.

Arbitrary vs. Descriptive Keys

Two types of values can be used in creating primary keys: arbitrary and descrip-
tive. The first can be seen in the books table in figure 2.6, where a numeric value
(automatically generated by the system) is used for the primary key field
(bib_no) value. The second can be seen in the subjects table, where a mean-
ingful word (subject), whose value is guaranteed to be unique, is used as the
primary key. Each of these approaches has its pros and cons.

Descriptive keys are useful because they are easier for people to understand
and they allow users to more easily see links and debug data problems. However,
arbitrary keys can be (are usually) auto-generated by the system, saving you the
effort of ensuring that the keys are unique. In addition, because arbitrary keys
are not descriptive, they are unlikely to change should the content of the record
change. Remember that when a primary key changes, all linked foreign keys
must also change. By using an unchanging value for the key, many data integrity
issues can be avoided.

Designing Good Databases

In setting up databases, it is important to follow certain rules to ensure that find-
ing information is both easy and predictable. This process—known as
normalization—involves following standard procedures in designing and imple-
menting the database. The following basic rules are recommended:10

28 DATABASE BASICS

Do not place more than one piece of information in a single field.
Otherwise, it can be more difficult to maintain and retrieve data.
Multiple values of the same type for a field should be placed in a
separate table and linked to the main table. If you find that you need
subfields, you may be better advised to break out the information
into separate fields, perhaps into a separate table (in a one-to-many
relationship) if you need them to be treated as a unit.1!

Do not enter the same type of information (user’s name, subject head-
ing, for example) into a given record more than once (for example,
subjectl, subject2, and so on). Doing so is inefficient and makes
searching awkward. If you need to have repeatable fields, you
should create a separate table for them and link it to the primary
table.

Do not enter the same information in more than one place. If you do,
you will need to make changes in more than one table should the
data change.

Each table should be “about” only one thing. For example, don’t mix
books and patron information in the same table.

If information could be used in more than one context, consider moving
it to a separate table.

Note that I said that these are guidelines and not laws—the reason being
that there may be times that you will choose to not follow one or more of them.
The thing is that this should be done only after careful thinking through of the
ramifications of doing so and for very good reasons.

Structured Query Language (SQL)

Now that we have briefly looked at how a relational database structures data, let’s
look at how we can interact with those structures. To support such interactions,
a special language was developed concurrently with the relational database the-
ory.12 Called Structured Query Language (or SQL), it is used to create queries
(requests to the database to do something) that are used in all interactions with
the system, and partakes of many of the qualities of a language. SQL was inten-
tionally designed to be understandable and constitutes a database lingua franca
that is used in virtually all RDBMSs. There may be individual differences in how
each product implements its particular dialect of SQL, but the essentials of the
language are the same.

DATABASE BASICS 29

The structure portion of the acronym certainly lives up to its name. In their
most basic form, SQL statements are built up from the following structured
templates:

e searching
SELECT <field names> FROM <table(s)> {WHERE
<conditions>} {ORDER BY <field(s)>}
e adding
INSERT INTO <table> (<field names>) VALUES

(<corresponding field values>)

e editing
UPDATE <table> SET <field name> = '<corresponding field
value>', <field name> = '<field corresponding value>'
. WHERE <condition>
* deleting

DELETE FROM <table> WHERE <condition>

In the rest of this section, we take a very brief look at basic SQL queries and
explain how they work. This is not intended to be a tutorial but instead an intro-
duction that will allow you to understand the examples in this book. For exam-
ple, in the first bullet above—searching—the last two phrases are enclosed within
curly braces, which indicates that the values are optional. This practice will be
used throughout the book. To delve into the complexities and richness of SQL,
you should consult one of the books or Web sites listed in the bibliography.13

SELECT

The keyword (command) that we use to retrieve records from the database is
SELECT. The use of the SELECT statement is one of the most complex of the
SQL queries we will see.1* This is understandable because it is used to search
the database, and searching itself can be quite complex. In the following sec-
tions, I illustrate how some very basic SQL searching statements are constructed.
Then, in later chapters, I expand on these techniques to show how they can be
used in real life.

SINGLE TABLE The simplest search is to find all records in a table. For exam-
ple, were we to want to know the names, stored in the patron_name field, of all
of the patrons in the patrons table above, we could use the following query:

SELECT patron_name FROM patrons

30 DATABASE BASICS

If we wanted to have their address information as well (say for a mass mailing),
we would enter the name of each field, separated by commas:

SELECT patron_name, address, city, state, zip_code FROM

patrons

If you don’t want to type out every field name, you can use an asterisk to retrieve
all fields in a table. For example, SELECT * FROM patrons would bring back
all fields from all records in the patrons table.

Usually you want to be more selective, and retrieve information that matches
certain criteria. In such cases, you would use the WHERE statement. For example,
say you want to know all of the books in the books table (shown in figure
2-6) published by ALA, but not by anybody else. Using the structure shown in
figure 2-7, you would then specify the search:

SELECT title FROM books WHERE publisher='American Library

Association'

In this example, the database has been asked to go into the books table and
select all records in which the publisher field is equal to American Library
Association. That means that the entire contents of the field must be ' American
Library Association'. Note in the example that we are enclosing search val-
ues in single quotes. This is required by the SQL standard.

As librarians know all too well, users either do not always know the entire
contents of a given field or would like to do keyword or phrase searches within
fields. It was to be able to search parts of individual fields that the LIKE state-
ment was created. When searching a table, you may specify a substring by using
the word LIKE instead of = and then use % as a truncation symbol, before and/or
after the string for which you wish to search.

For example, were we to search for all titles that began with the words
“Introduction to” we could use the following SQL statement to find all such

books:

SELECT * FROM books WHERE title LIKE 'Introduction to%'

On the other hand, if we were looking for books with the word France anywhere
in the title, we might use:

SELECT * FROM books WHERE title LIKE '%France%'15

One thing I need to mention is that, unlike other database servers (including
PostgreSQL), MySQL searches are by default not case sensitive. That is, a search
for France will retrieve records containing France, france, and even fRAncE.16

DATABASE BASICS 31

However, it is possible to force case sensitivity by using the BINARY operator on
one of the elements in the search. For example, the following two (equivalent)
searches will retrieve records where France (but not france) is in the title field:

SELECT * FROM books WHERE BINARY title LIKE 'S&France$%'

SELECT * FROM books WHERE title LIKE BINARY 'S&France%'

Just as command line searching in OPACs, SQL does enable you to provide mul-
tiple conditions with its Boolean operators AND and OR. For example,

SELECT * FROM books WHERE title LIKE '%Perl$%' AND
publisher = 'SAMS'

would bring up all records from the books table that had Perl in the tit1le field
and that were published by SAMS. On the other hand,

SELECT * FROM books WHERE title LIKE '$Paris?®' OR title
LIKE '%London%'

would retrieve a result that contained all books that had Paris, London, or both
in their titles.

Although the use of LIKE does provide a kind of poor persons keyword
searching capability, it suffers from one fatal weakness: it is utterly unaware of
what constitutes a word or phrase. For example, if you were to use LIKE '%ton%’
in the title field, it would retrieve records containing polytonality, atonement,
stone, tonnage, Washington, and the like. This obviously is a rather inexact—and
not terribly satisfactory—way to implement keyword searching. We will explore
some alternatives in subsequent chapters.

Searching for records that do not contain certain values can also be useful.
To do this, you can use either of two operators to signify does not equal: != or
<>. For example, you can use either of the following queries to find all records
in which the e-mail field is not blank (that is, where it contains an e-mail

address):
SELECT * FROM patrons WHERE email != "'
or

SELECT * FROM patrons WHERE email <> ''

All the above searches bring back records in an unspecified order. However,
this may not always be the most useful way in which to view or process records.
You can therefore specify the ordering of the records via the use of the ORDER

32 DATABASE BASICS

BY keyword. For example, if you wanted to see all subjects in alphabetical order,
you would use the following query:

SELECT subject FROM subjects ORDER BY subject

You can also order by multiple fields. For example, to print out an alphabetical
list of patrons, you could use this one:

SELECT * FROM patrons ORDER BY last_name, first_name

The result of this search would be the entire contents of the patrons table,
ordered by last_name and, within last_name, by first_name.

MULTIPLE TABLES Although the previous queries are useful in querying sin-
gle tables, the full power of relational databases comes in the user’s being able to
retrieve information from anywhere in the system. Doing this involves being able
to search multiple tables at the same time. Note that it is here that we begin to
use the primary and foreign keys to which we have been referring so often in this
chapter.

To search multiple tables, you need to create your SQL queries to follow the
relations to join the tables into a single entity. This allows you to access all other
information from the joined tables. It is important to note the differences
between these queries and those we have encountered:

If there are two or more fields in any part of your query with exactly the
same name, you need to qualify them by appending the table name
in front of them (for example, patrons . patron_name). Otherwise,
the system will get confused. It is for this reason that I have adopted
a standard in this book where each field within a database is uniquely
named, thereby eliminating such problems before they begin.17

All tables involved in the join must be included in the tables list coming
after the FrROM keyword.

All linking information must be contained in the <condition> section of
the query after the wHERE keyword and each condition must be sep-
arated by AND.

The condition used to select the records should be the last condition.

TWO-TABLE JOINS In the following examples, we will use the tables in figure
2-8 to demonstrate how to search using a two-table join. Note that the two fields
are the same type (character) and size (ten characters). This is an important prac-
tice to follow in that it helps ensure that the same value is placed in each.

DATABASE BASICS 33

books publishers

Field Type Size |Key Field Type Size |Key

bib_id Mumber |11 P publisher_code Character 10 P

title Character [100 ‘ publisher_mame Character 50

pub_code Character|10 F publisher_address1 |Character 75

copyright_date |Date publisher_address2 |Character 75

call_number Character|12 publisher_city Character 50
publisher_state Character 50
publisher_zip Character 10
publisher_phone Character 15
publisher_email Character 100

Figure 2-8

The basic syntax for a multiple-table search is

SELECT <fields> FROM <all_tables_involved> WHERE <linking
path(s)> AND <conditions>

Let us suppose that we were to want to find all books published in New York.
The linking path provides the primary/foreign key path from the main data table
being searched (books) to the table with the field you are searching on (pub-
lishers). In this case, the syntax would be

books.pub_code=publishers.publisher_code

Note that we have qualified each of the fields (pub_code and publisher_
code) with the table where the field is found. Given that the names are differ-
ent, we could also have made it

pub_code=publisher_code

However, including the names of the tables where the fields are found helps to
make the path clearer. Using this construct, the query to do the multiple-table
search would be

SELECT books.title FROM books,publishers WHERE
books.pub_code=publishers.publisher_code AND
publishers.publisher_city='New York'

THREE-TABLE JOINS The above syntax will work where only two tables are
involved in one-to-one or one-to-many relationships. However, there will
inevitably be times when you will have many-to-many relationships from which
you will want to retrieve records. For example, say you wanted to find all the

34 DATABASE BASICS

books that use Anthropology as a Library of Congress Subject Heading in a data-
base structured like that in figure 2-6.

To create a query to search these tables, you would first replace
<all_tables_involved> with the names of the three tables. In this case, these are
books, books_subjects_links, and subjects. You would neﬂ:rephce
<linking_path(s)> with the path the database needs to take to follow the rela-
tions. Here, the path would be books.bib_no=books_subjects_links
.bib_no AND books_subjects_links.subject=subjects.subject. Last,
you would replace <conditions> with what you want to look for in the database,
in this case, 1csh="'Anthropology'. The resulting query would be

SELECT Title

FROM books, books_subjects_links, subjects

WHERE books .bib_no=books_subjects_links.bib_no

AND books_subjects_links.subject=subjects.subject
AND lcsh="'Anthropology"

We will look at more detailed examples in chapters 7 and 9.

Database Maintenance

As we discussed, the three main SQL commands for updating the database include
INSERT (for adding records), UPDATE (for updating records in the database), and
DELETE (for deleting records). Let’s take a brief look at each of these in turn.

INSERT The basic syntax for an insertion query is INSERT INTO <table>
(<field names>) VALUES (<corresponding field values>).

In this case, <field names> is a comma-parsed list of field names for which
you wish to add values. Note that using this list is not required. It is, however,
needed if you don’t want to add values for every field in the table or if for some
reason you want to add values in an order other than the order of the fields inside
the table.

In the same way, <corresponding field values> contains the values
you wish to add. If you have defined <field names>, you must place the val-
ues in the same order as they appear in the field name list. On the other hand, if
you don’t have a field name list, you must place the value of each non-
auto_increment field in the same order as they appear in the table definition.
Note that, in entering the values, you must enclose each of them in single quote
marks (*John', 'Doe', '125 Main Street').

UPDATE The command to update the database is similar to INSERT except
that, rather than having a list of fields followed by a list of values, it uses SET

DATABASE BASICS 35

<fieldl>='<valuel>',<field2>='<value2>' to define the field/value
pairs. In the case of updating a particular record, we use the syntax UPDATE
<table> SET <field name>='<corresponding field value>',<field
name>='<corresponding field value>' . . . WHERE <primary key
field>='<primary key value>'. Note we have indicated that the database
should update the record where the primary key field has the value of the record
that we have edited (otherwise, every record in the table would be updated with
the same information).

DELETE As with updating, the DELETE command needs to have a condition
telling it which record to delete (otherwise, all records in the table will be
deleted!). Again, we use the WHERE <primary key fields>='<primary key
value>' condition to delete only that record we wish to delete.

Data Security

One of the most important tasks any system has—particularly a Web-based sys-
tem—is to protect the data from unauthorized access and manipulation. We
need to make sure that only those people we want to have access have access to
the data. To address this, all RDBMSs support some kind of user security. We
will see how MySQL does so in the next chapter.

Database Integrity

Beyond user security, we need to make sure that the integrity of the data is main-
tained. It is important not only that the information is inserted into the database
correctly, but also that complete and proper relations are set and maintained. If
these are not handled properly, severe problems can develop and make a system
unusable.

Referring to the checkout system just mentioned, think what would happen
if the integrity of the link between the checkout and patron record were to be
lost. Not only would you not know who had the book checked out, but you might
also not even know that it was ever gone. You certainly want to have the system
make sure that that would never happen.

Many RDBMSs have a number of built-in mechanisms designed to maintain
data integrity that you can use in addition to those you might program in your-
self. The advantages of letting the RDBMS do the work are that it saves devel-
opment time and avoids problems due to bugs in the coding. In this section, we
look at some of those techniques.

36 DATABASE BASICS

TABLE/ROW LOCKING When working in a multiuser environment, one chal-
lenge is to ensure that two people do not try to try to save their edits on the same
record at the same time. If that is permitted, the record can be corrupted and
the database compromised.

To keep this from happening, database systems permit you to lock the
resource you are editing, either at the table or at the row level. Two kinds of locks
can be used. What is called a wRITE lock allows you to read/write data to the
table/row and prevents everyone else from reading or writing until you finish
your work and release the lock. What is known as a READ lock allows you and all
others to read the table/row, but prevents everyone (including you) from writing
to the table or row.

Locking can be at the table level or the individual record level. Table-level
locking is adequate for small-scale applications, but does not work in larger
applications in which many users access the database. The good news is that

MySQL supports both types of locking.!8

TRANSACTIONS When changing data in a database, you want to make sure
either that all actions are completed or that none of them are. Incomplete inter-
actions are a major cause of data integrity problems. One useful technique when
there are multiple interactions with the database is transactions. Transactions
allow all interactions that would modify the database to be performed, but not
actually saved to the database until all interactions are successfully completed.
The data can then be committed (stored) to the database. If there is a problem
with any of the interactions, the system can do a rollback, placing the system in
the state that it was before the transaction was attempted. Transactions are par-
ticularly useful in systems with large numbers of users or in those that deal with
information where retracing steps could be difficult—or even impossible.

For example, perhaps you had a system that tracked the number of vacation
days each employee had. Word then came down that everyone was to be given
an extra five days of vacation. You therefore go into the database to update it to
give everyone those extra five days. However, midway through the process,
something happens and the processing stops. At this point, you probably have no
easy way of knowing who has been given the extra five days and who has not. In
a system that supported transactions, there would be no cause for concern.

FOREIGN KEY CONSTRAINTS Given that the keys are the mechanism that
permits the bringing together of information from multiple tables, it is crucial
that those links are carefully and properly maintained. If the value of the primary
key is changed without changing the values in all related foreign keys, the rela-
tionship is lost and the ability to retrieve that related information is gone.19

DATABASE BASICS 37

This integrity support can be done manually with programming. Every time
a primary key is changed, a corollary SQL updating query must be run to make
the same change for each associated foreign key field, in whatever table it may
reside. You can do this, but all such queries must be run successfully and all for-
eign key fields must be included. If there is any problem (such as neglecting to
include all required queries), relational links are broken.

RDBMS products with foreign key constraints, on the other hand, allow for-
eign keys to be updated automatically. In such systems, tables are defined in such
a way that primary key/foreign key relationships are directly established in the
table definitions. Whenever a change is made in a primary key, the RDBMS can
then automatically make the appropriate changes in the foreign keys.

Other Features

Indexes

As with books, journal articles, and the Web, finding information in a database is
alot easier if an index is available. In creating a standard index, the database soft-
ware creates a list of all of the values contained in a field or fields and collects
pointers to the records containing those values. Searching this index instead of
the tables can dramatically increase the speed with which records are retrieved.
RDBMS products can create other types of indexes as well. In the case of
MySQL, there are three others, PRIMARY, UNIQUE, and FULLTEXT.

The PRIMARY index is the one that is used for the primary key for a field. It
ensures uniqueness and that NULL values are not stored there. It is also used in
creating foreign key constraints (see below). A UNIQUE index keeps track of val-
ues that have been placed into a field and does not allow more than one record’s
field to contain that value. A FULLTEXT index is a proprietary type that MySQL
provides to support keyword indexing. As we will see, this type does have some
limitations.

In general, it is a good idea to take a balanced approach to indexing. On the
one hand, indexing can make retrieval quicker when searching often-searched
fields—particularly in large databases. On the other hand, overuse can slow
down record inserts/updates and takes up additional disk space.

Views

Views (sometimes called virtual tables) are a way of creating structures within
the database across table lines. Such structuring involves taking fields from var-
ious tables and bringing them together and forming a logical construct (a sort of
single virtual table) with which the programmer can interact. Although this is not

38 DATABASE BASICS

needed when working with a single table, once you begin working with multiple
tables, it can be time-consuming to bring these fields together by hand using
joins or other techniques. Views can make this process much easier in that the
system does the multitable joins for you to create a virtual table (allowing you to
query that virtual table), rather than forcing you to write the SQL join statements
by hand. MySQL 5.0 implements views.

Stored Procedures and Triggers

Stored procedures are pieces (modules) of programming code or SQL queries
(or both) stored in the database for use by the database or applications. These
modules have a number of advantages:

They are precompiled and optimized so that they can run faster than
ordinary routines.
They are stored in the database and are available throughout the system.

They reduce network traffic by allowing the module to be run within the
server, rather than requiring that it be called from a network-based
application.

They are reusable and thus can reduce maintenance and recoding.

They are inside the database and thus can execute code and access tables to
which the user may not otherwise have access. This can be extremely
valuable in that it can dramatically increase application security.

Triggers are essentially stored procedures that are automatically performed
when changes are made to the table to which the trigger is attached. They can
be extremely useful in maintaining data integrity and enforcing business rules.
Support for both stored procedures and triggers is included in MySQL 5.0.

Choosing an RDBMS

In selecting an open source relational database management system, you have
several choices, each with a varying degree of open source-ness and each with
its own pros and cons. The main candidates are

MySQL. Originally an internal database developed at TcX in Sweden,
this RDBMS was initially made available on the Internet in the form
of Linux and Solaris binaries and later released under the GNU Public
License (GPL) in June 2000. It has become the leading open source
database management system on the Web. Sites that use MySQL
include Yahoo, NASA, the U.S. Census Bureau, and Amazon.com.

DATABASE BASICS 39

PostgreSQL. Essentially a third-generation Berkeley database manage-
ment system (ancestors include Ingres and Illustra, the second was
merged into Informix), PostgreSQL is the most feature-filled open
source RDBMS system currently available (although MySQL is
quickly catching up). Users include Reuters, MIT’s DSpace project,
Utah State University, and the Biblioteca Civica Pablo Neruda di
Grugliasco online library system.

Firebird. Released initially as an open source version of Borland’s
Interbase 6.0 product, this system is now being managed by a sepa-
rate group. The developers intend to maintain interoperability with
Borland’s product (which is no longer open source) in any new code
that they write. Although a very robust and capable system, it is hav-
ing a hard time making inroads into the open source arena.

mSQL (or miniSQL). One of the early pioneer free database servers on the
scene, mSQLS lack of features makes it mainly a niche market player.

Ingres. Older brother of PostgreSQL, Ingres was initially developed at
UC Berkeley and later commercialized, eventually being purchased
by Computer Associates in 1994. Then, in 2004, CA released a ver-
sion under an open source license. In November 2005, the software
was purchased by Garnett & Helfrich Capital, who then set up
Ingres Corp to provide support.20 Ingres is a highly sophisticated
database engine that offers a number of very good features. However,
news of its availability came too late to include a review in this book.
Links to information on Ingres can be found in the bibliography.

Genezzo. A new relational database—written entirely in Perl—that is cur-
rently under development and whose goal is both to provide a small
footprint and to be able to support shared data clusters.

MySQL vs. PostgreSQL

The only two serious contenders among open source relational databases at the
time of writing are MySQL and PostgreSQL. Both are excellent systems (which
I use) and each has valuable characteristics. First, they are easily installed.
Although PostgreSQL initially required special libraries to run on the Windows
platform, version 8.0 saw the creation of a native version for the platform (see
bibliography). Second, both have a number of useful internal features, including
functions that can make database development and data processing much easier,
and powerful regular expression engines that can allow for sophisticated search-
ing and data processing (as we will see later).2! Last, they are both truly cross-

40 DATABASE BASICS

platform and run on all varieties of Unix/Linux as well as on Win32 and Mac OS
X machines. However, several factors led me to choose MySQL.:

It is fast. Benchmark tests have shown that MySQL is virtually tied with
Oracle as the fastest database product available on the market.

It is more forgiving. MySQL is somewhat more forgiving of nonstandard
or incorrect SQL statements. It is important to bear in mind, how-
ever, that this permissiveness can create problems elsewhere.

It is widely supported. As noted earlier, MySQL has a significant follow-
ing, which means that a large (and growing) number of books, Web
sites, and other resources are available to help you get started using it.

It is easy to use. It has implemented extensions to the SQL command set
that, rather than requiring knowledge of complex SQL command
syntax, allows the administrator to use such straightforward com-
mands as SHOW FTELDS IN <table> to list the characteristics of
a particular table.

PostgreSQL has traditionally led MySQL in two areas: stability under heavy
workloads and advanced features, such as stored procedures and triggers, trans-
actions, and views. In terms of stability, MySQL has made great strides in its per-
formance and is currently being used for a number of high-volume, large-scale
systems. As to features, though PostgreSQL still does have an advantage in some
of these areas, it is slowly diminishing with MySQL:s inclusion of InnoDB tables
(supporting foreign key constraints, field-level locking, and transactions) and the
recent release of MySQL 5.22

The bottom line is that MySQL is the easier to learn and to begin using.
Also, given its popularity, it is much easier to find support for it. The downsides
to using it primarily have to do with the features it does not yet support—fea-
tures that most basic Web applications typically would not use. Besides, given
the MySQL rate of growth, it is quite likely that by the time this book is pub-
lished, many of the remaining features will have been included.

Notes

1. Although you can put information in an unstructured file and use free-text searching on
it, this is inefficient and you lose a great deal of precision in searching.

2. For information on and examples of how to process text files, see Andrea Peterson,
Simplify Web Site Management with Server-Side Includes, Cascading Style Sheets, and
Perl (Chicago: LITA, 2002).

3. The uniqueness is an important concept in maintaining data integrity (something that
we will explain). Just as a bibliographic record in an online system represents a single
unique entity, so it must in other databases.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

DATABASE BASICS 41

A Web-aware database is one that allows you to publish information contained in it
directly to the Web.

Although PostgreSQL, Oracle, and others bill themselves as object-oriented relational
database systems, that merely means that some object-oriented elements have been
added to a relational database management system—a much different proposition than
a pure OODBMS system.

This example is not ideal, in that it keeps the due_date field in the books table. I will
illustrate a better way of handling this later.

A good example of a primary key is the Bibliographic Record (BR) number in the
MARC record. Each BR number refers to a specific record in the bibliographic data-
base. This record, in turn, provides information about the item to which the BR num-
ber has been assigned.

This formulation—<tablename>.<fieldname>—is a standard way to identify fields in SQL.
See http://Avww.usps.com/ncsc/lookups/usps_abbreviations.html.

A set of formalized rules govern normalization. I have included some resources in the
bibliography on data modeling. Note, in particular, Michael J. Hernandez, Database
Design for Mere Mortals (Reading, MA: Addison-Wesley, 1997).

There may be times when this approach may seem like using a thermonuclear device to
kill a mosquito—as we will see in our discussion on rights in the user authorization
application in chapter 8. However, if you want values to be under authority control, you
will need to create the second table.

For more background on the history of relational database theory and SQL, consult the
bibliography.

The examples I provide here are rudimentary and only scratch the surface of what
SQL can do. For more information, consult the bibliography in the online companion
materials.

Note that though the SQL standard doesn’t require it, for ease of reading, I have put all
SQL operators into all uppercase to help distinguish them from other parts of the query.
Note the space on either side of the word France. This technique can be used to imple-
ment a simple—if not very accurate—kind of keyword searching. The problem is that
this search would not pick up a record that began with “France, at the beginning of the
17th century.” In any case, there are better ways of doing this (as we shall see later).

As of MySQL 4.1, this can be modified by changing the collation (sorting order) when
creating the database. See chapter 3.

Although such an approach is not mandatory, doing so makes creating the functions
used in the library presented in chapters 7 through 9 much easier to program.

To use record-level locking, you must use MySQLs InnoDB file type.

Note that this is a good reason why one should use arbitrary—and therefore
unchanging—primary keys.

Information from http://en.wikipedia.org/wiki/Ingres.

Regular expressions are a set of advanced pattern-matching techniques that permit
sophisticated searching and string manipulation functions. How they work is beyond
our scope here, but a number of the functions included in the ala_functions.php file
use them.

While the main focus of this book is on MySQL, I have also included support for
PostgreSQL. This support can be found in (a) the ala_functions.php library, written to
use either RDBMS, (b) copies of the examples and data files for use with Postgre SQL,
and (c) Setup.pdf and Functions_Guide.pdf in the download materials file, which con-
tain information on the setup and use of PostgreSQL.

SETUP AND
ADMINISTRATION

Chapter

Now that we have explored the basics of relational database tech-

nology, it is time to put that information to use. In this chapter,

we take data already stored in another system and move it into
MySQL. We will work through selecting appropriate fields, creating data struc-
tures to hold that data, taking downloaded data from the legacy system and
importing it into newly created MySQL tables, and then establishing user
accounts that can access that data via a Web-based output page. In the process,
we will be building a database that we can use in chapter 5 to create reports and
search pages. We conclude by exploring some of the tasks involved in administer-
ing the database, database backup strategies, and setting up user security and
access controls.

PLANNING

Before you create a database—to say nothing of the Web pages that the database
will generate—you need to figure how you want to use those pages, what data
must populate the database for it to fulfill that purpose, and where to find that
data. Say, for example, you want to create an online staff directory for your
library. What information would you want included? Certainly you would include
the person’s name, office address, and telephone number. You might also want
to include the e-mail address, job title, type of position (civil service, faculty,
administrative, and so forth), or areas of expertise.

42

SETUP AND ADMINISTRATION 43

In making this decision, it is helpful to define the purpose of your page: a
directory, a contact list for departmental home pages, or a resource page to direct
users to staff who can assist them. You might also consider how the database
might be used in the future, such as an authentication mechanism for interactive
Web applications. As you can see, a page’s purpose strongly influences what data
you need—and thus the database used to create the page.

Once you have what you think is a complete list, sit down, have a latte, and
look at what you have written. Is there any information that you might want that
isn’t there? How many lists do you want? How do you want the list or lists to dis-
play and in what order? How do you want to group the items in the list? Do you
want to output subgroups that constitute only part of the full list? If so, what
piece of information (subject, location, department, or what have you) do you
want to use to separate the wheat from the chaff?! All these questions have an
impact on what data you include in your database.

SETTING UP THE DATABASE

Once you have decided what to include, you need to determine where to get the
data. Additionally, you need to decide how you are going to get the data into your
new system. You can take a number of different paths, but they boil down to two
basic techniques. You can create the database in MySQL manually, obtain the
data from the other system, and then load the data into the database you've just
created. Alternatively, you can take the automated route, using products to con-
nect to your current database and then loading the data directly into MySQL,
creating your tables and loading the data in a single step.

Although the second option is considerably easier and more efficient for the
user, only a few systems can be connected this way. We will therefore focus on
the manual option. A list of products that support the second option, however, is

included in the bibliography.

Manual Conversion

A manual data load involves four steps: defining which data elements you wish
to include; developing a way to download data from the existing system; setting
up your MySQL database, defining the tables and fields to be included; and
loading the data. We will take each of these steps in order.

44 SETUP AND ADMINISTRATION

Defining the Data

In our present staff directory example, we have decided what we want (person-
nel information with phone numbers) and where to get it (our library’s HR sys-
tem). Next we sit down and identify the fields with the data we want. Having
decided that we want to create a simple address list, we look through the avail-
able pieces of information. We choose the following fields: last_name,
first_name, phone, email, department, location.

In preparing the list of data elements, you will need to know some things
about each piece of data to be included in the database:2

Name. We all have to have a name and fields are no exception.
Otherwise, how will the database know what to look for?

Type. What type of datum is it? Is it a word or phrase? a number? a date?
Data types most often encountered in relational databases include

* char—character data of a fixed length, causes every record in the
table to occupy that length, whether it contains data or not, nor-
mally limited to 256 characters

* varchar—character data in which there is likely to be wide varia-
tion in the length of the data going into that field, particularly use-
ful in saving space, limited to 256 characters in MySQL

e text—can store more than 256 characters of textual data
* integer—numeric whole numbers
e float—numbers with decimals

* date—numeric, calendar dates that allow for doing calculations
based on date; normal format in MySQL is YYYY-MM-DD

¢ Y/N or Boolean—one of two values—on and off—used to indicate
whether something is or is not the case; when not available, as in
MySQL, can be mimicked by one-character v/ field

Size. How large is the data segment likely to be? Plan on the largest pos-
sible value to avoid data loss. MySQL will not warn you if you try to
input more data to a field than it can hold.

Search. Do you want to be able to search (or limit output) by this
datum? If so, what type of searching? keyword? phrase? compara-
tive (earlier than, less than, and so on)?

Description. What is the usefulness of this field within the output? Why
is it here? Where will the value for this field come from?

SETUP AND ADMINISTRATION 45

Figure 3-1 provides an example of how we might fill in these values. It has
seven data elements (six plus the primary key phoneno—a necessary addition for
a number of reasons). You also may note that we have put all of the field names
in lowercase. The reason for this is that MySQL, even on the Windows platform,
does have times when it is case sensitive. Therefore, rather than spending time
on dealing with these vagaries, I have standardized on lowercase for all database,
table, and field names, something that is fairly normal in relational databases.

MNarre Type Sie Search Description
1 phoneno Auto 11 N Primary key - sy stemgenerated
2 last_narre Ve 50 Y Person's last narre- from /narre field
3 first_name Ve 80 Y Person's first name- from fname field
4 phone vC 15 N Phone nurrber - from phone field
5§ errail VC 25 N Orecarrpus email address - from joc_emsil field
6 departrrent vC 50 Y Prirary departmert - from cat! field
7 location VC 60 Y Office address - from adcessd field
Figure 3-1

NULL vs. NOT NULL ~ Before going on, let me take a minute and explain the
potentially very confusing concept of NULL versus NOT NULL. Essentially, NULL
means undefined—in essence that the individual record being defined “ain’t got
one of those.” Although it is perfectly possible—and for the most part legal in
MySQL—to define a field as NOT NULL and then define the default as an empty
string, the two are not the same and can cause you problems in the most unex-
pected ways.

The root of the problem comes in that the difference between a blank string
and a NULL value is that a blank string has a value—of a 0-length string—whereas
a NULL value has none for that field. It becomes clearer if we look at numbers.
The equivalent value of " " in an integer field is 0 (an integer), not " " (a string).
If you want to have a lack of value in an integer field—as opposed to a value of
0—you should allow it to be NULL and then indicate that state by setting the value
to NULL. The same should hold for all fields. As we go through the book, we will
be setting most of the fields we create to NULL (read “NULL entries are allowed”).

One aspect of MySQL that makes understanding this more difficult is that
MySQL blurs the distinctions between an empty string and a NULL value in ways
that can mess you up. For example, in dealing with date type fields, saving an
empty string to a MySQL date field causes 0000-00-00 to be stored there. Then,
when you retrieve that record and display the date, it will output 0000-00-00,

46 SETUP AND ADMINISTRATION

unless you do some filtering before displaying. This behavior is definitely non-
standard and can create problems when working with other database systems.
While it is nice that it can be so forgiving, it is best to get into good programming
habits from the beginning.

In some cases, MySQL will object if you use an empty string instead of a
NULL value. For example, when using values as primary/foreign key pairs in set-
ting foreign key constraints, unless you have a record in the authority table with
a primary key of " (something that doesn’t make much sense), MySQL will not
allow you to set the value of an associated foreign key field to " . In such cases,
you must set the field to allow NULL entries. Therefore, you should only use NOT
NULL if the field is to have a default value.

To make matters easier—and to allow things to work properly with the func-
tions library and elsewhere—I strongly suggest that you follow these guidelines
in defining your fields to NULL and NOT NULL in MySQL:

If a field is to have a default value, then set that field to NOT NULL and
put the appropriate value in as the default value.

If a field is defined as an auto_increment primary key field, it should be
set to NOT NULL.

If a field does not have a default value, then make it NULL (the corollary
of this is that if a field is set to NULL, then it should not have a default
value). Note that phpMyAdmin will not make this easy in that the
drop-down box for setting the value for NULL in the page where you
create a table defaults to NOT NULL. This means you have to make
a change for every field for which you do not have a default value.

If a field is a date type, never set it to NOT NULL. If you want a default
date, have that date sent to the database as part of your programming.

One final point to make about NULL fields: you need to handle searching for
records where fields have been set to NULL somewhat differently from the ways
we discussed in the last chapter. Specifically, because NULL is the absence of any
value, it is somewhat illogical to say “give me records where the value is no
value.” Rather than doing so, in creating the appropriate SQL statement, you use
WHERE <field> IS NULL, not WHERE <field>=NULL.

Offloading the Data—Text Files

Once you have found the data, you will need to get the information out of that
system so you can load it into MySQL. For example, you might use the library’s

SETUP AND ADMINISTRATION 47

online system to create a new books list. On the other hand, you may have a bib-
liography residing in a PC-based database or word processing document. In the
case of the former, the database software may have a way you can export it to a
structured file for loading. In the latter case, you might write macros (minipro-
grams within your word processor) to go through and put the information into
one of the manual load formats described below. The basic idea is that it doesn’t
matter where the data reside, as long as you can get them out of the system and
into the proper format for loading.

There are a number of file formats you can use to transfer data between sys-
tems. These include

delimited text files—discussed in chapter 2

CSV or comma-separated values—a special type of delimited text file
also discussed in chapter 2

SQL files—a series of SQL statements—in the form of INSERT state-
ments—that can load the data into the database (see examples in the
companion materials download file)

XML files—a markup language that can be used to encode data for
transfer between systems

Data can be output in other formats as well. For example, you might output
in MARC or other formats and then run conversion utilities to get the data into
the proper shape for importing into the database.3

INTERMEDIARY APPLICATIONS In many cases, tools will create the upload
files for you. For example, many integrated library systems (ILS) can save data
into intermediary software packages from which a data file can be created in a
format appropriate for loading the data into MySQL. Users of RDBM-based sys-
tems such as Voyager and ExLibris can use ODBC connections between those
systems and MS Access or Excel to obtain data.* Other systems, such as those
using Innovative Interface’s proprietary database backend, enable saving search
results to a CSV file to load the data into MySQL.

Creating the Database (Implementing the Data Model)

We begin by creating the data structures into which the data will be imported.
This can be done in one of two ways. If you're adventurous, you can learn all of
the appropriate SQL queries for creating databases, log into your database
server, and then type in and run each query to create your structures. Although

48 SETUP AND ADMINISTRATION

it is good to be able to do this, the process can be very tedious and, unless you

are a very good typist, take a long time to get everything right.

DATABASE ADMINISTRATION TOOLS—phpMyAdmin The alternative is to
use a graphical interface—one that allows you to point-and-click and fill-in-the-
blanks as much as possible. A number of such tools—often called GUI (graphi-
cal user interface) tools—are available for MySQL databases.> The one I use—
and present in this book—is phpMyAdmin. It provides good features and allows
you to accomplish virtually all common (and many uncommon) tasks very easily.
Where it doesn't, it provides you with its own version of the SQL character com-
mand line, where you can enter commands manually to do something the GUI
doesn’t currently support.

Figure 3-2 shows the login screen for phpMyAdmin. There are three ways
in which you can set up user authentication for phpMyAdmin, but its built-in
authentication mechanism is the most flexible and, if you use SSL, the most

[phoMyAdmin 2.6.2 - Mazilla R ad.ﬂl_l
T He E Yew go Tock window i
é..-qk \331 e —— . = . 1—.
= (3w . et et e 3t ;U
:':}um b Bockmarks lmm Lvictial #rade #oecple £ Vel pages o Dowrlosd - Calendoe i Channels o ditdey
phpMuAdmin
Welcome to phpMyAdmin 2.6.2
Language: [English {en-ua) =] o
Legin
{Cookies must be enabled pastthis point)
Usermame: |root
Password:
Login
b i 2 [3 o | Done Tk

Figure 3-2

SETUP AND ADMINISTRATION 49

secure (see chapter 8 and Setup.pdf in the companion materials download file
for more information). This screen uses username and password combinations,
defined in the MySQL authentication tables, to provide you access to those data-
bases and fields for which your account specifies permissions.

In this case, because we have already set up a root user, we will use that
account and the password you have provided for root. Note that if you have not
already done so, you must before going any further (consult your MySQL user
documentation on how to do this). Otherwise, anyone on the Internet will have
full access to all of your databases and possibly create untold mayhem.

Once you have successfully logged in, you will be presented with the screen
shown in figure 3-3. There are several useful points to be aware of about this screen:

Multiple languages for the interface screens are supported (fifty as of
version 2.6.2, which was released as this book went to press). To
change the language, click on the drop-down list next to Language(*)
to select the language you prefer.

[E localhost > > localbost | phpMyAdmin 2.6.2 - Mozilla lol 5_!
Ble Edt Yew Go ks Tools Window el
a,,}_‘asn - ke |
Rt |4 er-itf olation_cornectior | _I

" boma | Whbookmarks 2 Tnstank Message - wiebital 4 Rado 2 People 4 velow Pages & Dowrlosd o Calendar ichannels 2 dibdev

Welcome to phpMyAdmin 262

MySOL 4.1.10a-nt 0 s 100
— php:'l._, yamin
A= @68 '
Database: MySOL phpkyidmin
(Databases) ... = i Create new datahase @ & Language (. [English (en-ut-8) =]

[wet_sites Collation =] Lot | [E] MySoL charset UTF.8 Unicote (utrs)

Please select a database W snhow MySOL runtime (nformation [MysoL connection collation

(E) snow MySOL systern variables @ ulfB_genaral_i -I @
5 Show processas (B & Themesstie:[Ongnal =]

[character Sets and Collations
[Storage Engines

Ik Reload MySoL &

o Privileges

g Databases

il Export

@ Change password

5 Logout

B phpMyfidmin documentation

EB Show PHP information

@} oficial phpmyadmin Homepage
[Changetog] |CVS] [Lists]

e & 2 (@ @ | T

Figure 3-3

50 SETUP AND ADMINISTRATION

Both the MySQL version and the server on which it is running are indi-
cated.5 Several clickable links enable you to check system status,
access documentation on the application, and load the phpMy-
Admin homepage.

You can, if you are logged in as root, set up and change users, assign priv-
ileges on databases, and examine system diagnostic information.

A drop-down list with a complete listing of all databases on the admin-
istered server for which the logged-in user has rights is accessible in
the left-hand frame. To work with any of them, simply click on the
down arrow to select the database. You are then presented with that
database and a complete list of all tables within it.

You have the option of choosing among a potentially bewildering array
of possible character sets and collations (sorting rules), all of which
were new as of version 4.1. We discuss these options below.

ADDING A DATABASE You create a new database from this opening phpMy-
Admin page by typing in the name of the database—in this case, web_info—
into the Create new database text entry field. When adding the database, we
decide what collation we would like to use.

The basis for this question is that different languages often use different dia-
critics with the same letter. For example, what is a in English can be a, 4, a, or &
in French. Similarly, o in English might be o, 6, or ¢ in Norwegian. Once you
introduce non-Western European languages, things get even more complicated.
Because each of these characters is represented by a different numeric code—
none of which are in any particular numeric order—the database must be told
what rules to use to sort its output correctly. However strange it might initially
seem to U.S. users, the general rule is to either use latin1_swedish_ci (ci stand-
ing for case insensitive) if you are using latin1 as the default character set for the
database (the most likely alternative), or utf8_swedish_ci if you are using utf8. In
this case, we will just accept the default value, that is, not select anything in the
Collation drop-down list.

Clicking on the Create button to its right takes you to a screen where you can
begin adding tables to the newly created database (figure 3-4).

To add our new table, we take our list and use the categories we defined
there to create the new database. We begin by entering the name of the table
that will contain the data in the Name input box. Because the table is to be used

SETUP AND ADMINISTRATION 51

[localhost > localhost == web_info | php™yAdmin 2.5.1-pl3 - Mozilla |
2.2 -3 83 e
Horne | sbBonimarts 2 Tnstent bessage L webisl Lisdo. & People o elow Pages o Dowrlosd . Clendsr (2 charncls 2 ey |
Server: gilocalhost » Database. Gweb_info
& || /msaL || gexpont || - Search || Query || & Operations || 5 0ron |
phpiiyidmin : _infa . e
) A8 R0 CREATE DATABASE ‘wal_fifs’
Database:
{Databases) .. - [EdH] [Create PHP Code]
web_info
Mo tables found [n gatabase
No tables found in ol ©r new table web_info:
Name. |Dhunes
Flelds: |7 o |
ke B 2 @ @ | ow Fo-lmi i
Figure 3-4

for a phone list, we call it phones. We then type in the number of fields (7) to
be included in the box after Fields and click the Go button.”

Next, we define the seven fields we asked for in the previous step. Figure
3-5 shows this screen. In it we see the values for three columns from our form
entered into the field definition form—datum, type, and size—being entered
into the Field, Type, and Length/Values columns in the screen. As noted, because
we wish to have a default value—the library’s main telephone number—defined
as the phone number to enter into the record, we define phone as NOT NULL,
giving it the default value. In addition, because it is to be both auto_increment
and the primary key field, we define phoneno as NOT NULL. We define the five
remaining fields as NULL—meaning that they are allowed to have NULL values
in them.

We finish by defining which fields get which type of indexing: phoneno will
have the primary key index and set to auto_increment and the regular indexes

32 SETUP AND ADMINISTRATION

L b o hestalbost weh_iedo pharees | phisMy Adderan 2.0, 1 -pl3 - Mosila
i';a-ssp-‘-—samu_uw-m' :
! aa“c'. T P ru?.d mx EXT oy X cenerd, 0 |
L R L e T e o |
Sener Giocamest § Diataie iweb info b Table [phanes
Tisda TRl Lenghiaues Cotiaion T S Deta'” s [l B]
A freasea [WT =1 | =1 =] [rotoun =] [[avio_mcrement 5] & & 0 £
- T e I E | [ra S [wicieiciellC
_GAEEBRD | froum [wrows 3] Fa I =] Bl I Hofccr
Databsa: Frame [wncram =] 5 [=] i | e | SRR [sEEhCEN
1~-hﬂ°_l_'_>_ 3'_ | T e | || Al = [£ fai ol ot
wieb_infa Joswsamen " [arce =] | | [Fil e n
focaon LT T | | T | [S
Ho xables found in
database. Table commants Tadiy bea Cobiasion:
s swa [
S I
¥ “easn” or gal, formst 0"
1Ty v et i pit @ Batkslagh (1) 00 4 e TR 0r B
= elnatn amie st 8 wingia valus, o quetes, uaing s
@
ATl | e)

Figure 3-5

in the fields on which we will want to search—1last_name, first_name, and
department. In addition, we create a FULLTEXT index for the 1location field, so
that we can keyword search it. Finally, to make sure that our FULLTEXT indexing
will work properly, we make sure that the table type is set to MyISAM (other
types do not support FULLTEXT searching; see chapter 7 for more information).

Once the user clicks Save, the table definition is used to create the table in
the database and the user is taken to a page showing the structure of the success-
fully created table (shown in figure 3-6). Note that phpMyAdmin has printed out
the SQL query used to create the table—something that can be useful both for
learning SQL and for making sure that the system did what you wanted. You can
even cut and paste it into a file for later use.

Loading the Data

The next step is to take our data and load it into the newly created database. As
noted in chapter 2, CSV files are a commonly used format in transferring data
between applications. In this case, we have obtained such a file from our person-
nel database for this project. Figure 3-7 shows the sample CSV file we have

SETUP AND ADMINISTRATION 53

tmmmmmmwmtmﬁmwm
Btever Gflocaibons ¢ Databats Fuweb_infa » Tatse [shoons]
| g Stuctura || [rowse || S5l || [Searcn || et || [Eort || 58 Ot st || [Empty || 36 Do |
AEEaR
Database:
|mb_'ﬂ’em !
:Mil
Pei = Myiaid SOt = Puabs bt st =
g forante PR el
Atiem
r REMmy
i REmE
r REDE
i xmEnm
SArEEDR
I sean : : o8 M ZrEmEmnm
I icason varchae(S0) tssni_swesah. th os MULL SEXRED®
T CrecmunmeckAl Witseeaed # X B OB Om B
- =4
A B2 R e ol

Figure 3-6

Document Fgvortes Took Heln
Dﬁuﬁ.ilﬂl}i anajn W
w -

£ 5 T YT 1 B A T T T T e rrreey T T T T T 2 gy
"illen®, "Barbara®, "6-83467", "ballen”, "Cataloging™, "030 JDI\GI Hemorial Libracy™ =
“Alton®, "Judy”, "9-7466%, “Jaleon”, "Foreign Languagea”, 225 Jones Nemoriml Libeary”
“Antony", "Hagc", "$-§788", "mancony”, "Refecenca”, "126 Jones Memorisl Libcary™
“Arnoid®, "Fred”, "E-4744", 7E 1d", e . "490C Libracy®
-) » "B-BA4E",] +®126 Jones Memorial Libcacy

TAusTin®, "Steve”, "9-7464", "saustin®, "Himan Resources”,"i24 Jones Memorisl Library”
“Ballard”, “Terci®, "1-2017", "ballard, 28", "Fhyzical Education”,"ED244 Mayes Sports Center™
"Baltara®, “Sam®, "7-2980", "sbaltero®, "Newspaper™, "224 Jones Memorial Library™

“Bardell®, *William®,"5-1223", "vbardell™, "English”, “222 Jonea NMemorial Library™

“Barton", "Clara”, "5-4323%, “charton®, "Nuraing®, "2215 VWoodruff Mospital®

"Batchelenikov®, "Sergel”, "4-4727", “sbatchel”, "Cataloging™, *030 Jones Memorial Libracy®
"Bayley”, "George™, "7-7460", "gbayley”, "Business”, "030 Jones Nemoriasl Library”

“Bennett®, *¥illiam®, #7-S554", "sbennett®, "Philoscphy”, "036 Jones Memorial Library®
"Bandix”, "¥illiam", TT-6559", "ehendix”, "Theater”, "04% Jones Hemorial Library”

“Blackwell®, “John®, *5-B121%, “iblackeel®, “Special Collections™, #1234 Jones Memorial Library™
"Blankenstein”, "Hilda", "8-4577%, "hblanken”, "Azian Studies”, "200 Haynes Hall"™

"Bleck®, "Hancy”, "7-£769", "nblock”, "Eusinesa”, "030 Jones Memorial Libracy™

“Bloom®, “Harold”, "7-5464%, “hhioem™, "Classica®, “2B08 Jones Memorial Libracy”
"Bell"”,"Joshua®, "7-3898", "jbell", "Husic™, "150 Hahler Cencecr"™

"Benton”, "Jim", "9-4544", “benton”, "Nap”, "280 Jones Memorial Library"”

*“Bosley”, "Thomas®, "6-T661", "thosley”, "Administrar fon®, “106H Jones Memorial Libracy®
“Bradley®, "Villiam®, “6-4739", "wbeadley”, "Political Science,“106A Jones Hemorial Library™
“Brannigan®, “Oven”, "6=4440", “obrannigan”, "Husic”, "150 Mahler Center”

*Brandon®, “Herbert”, *£-7568%, "hbrandon®, "Adminiatcation®, *106F Jones Memorial Library™
"Brinkley"”, "Cher™, “6-3422", "cbhrinkley"”, "Journalism™, 110 Special Collections Bullding™
“Britten”, "Benjamin®, *5-3773%, "bbritten”, "Classica®, 2008 Jones Meworiml Libracy®
"Brooks”, "Albert*®, *4-3236", "abrooka”, "Refecence”, "400 Shawshank Building®

“Brooks"™, "B111ly", "6-7847%, "Ehrooks®, *Journalism®, *105 Journalism Bldg®

“Brown®, "Buster”™, "4-2645", "cbrown”, "Special Collections”,"124 Jones Memorial Building™
Brown®, “Char les”, *5-7480%, "cbrown®, "thsxu-l Education”, "030 Jones Memorial Libl:-l"" :j

Figure 3-7

534 SETUP AND ADMINISTRATION

obtained.8 In the first line, we have six entities, each in quotation marks and sep-
arated by commas. These correspond to the six fields we created above. (The
seventh, phoneno, as you may recall, was defined as auto_increment. This
definition instructs MySQL to automatically create an incremented value for
each record it creates to hold the data coming from the CSV file. We therefore
don’t include it here.)

To get this data into the database, we select the phones table, and click on
the SQL tab. This brings up the screen shown in figure 3-8. We click on the
Insert data from a textfile into table link at the bottom of the right-hand frame.

This brings up the screen in figure 3-9, where we tell phpMyAdmin certain
things about the file we are importing and how it is to be handled. The first is the
file to be loaded and its location. If we do not know the exact path and file name,
we can click on Browse and look through our local and network drives for the
file. Ultimately, we need to navigate to where we unzipped the download file,

[57 lucalhast == localhost > web_info. > phones | phpMyfAdmin 2.6.1-p13 - Mozilla o AEIEJ
DD R wew Go momals Tok Wndow beb
T g B [i T P Wﬂ
pome | boooimarts lwmmme Lvctinsi Lraro Lpeopse £ ehonPoges £ vowrioad £ Coender (chanonts £ doder
Server: Gilocalhost » Database: [ghweb_info » Table: [[jphones
| e structure || [jBrowse | [FSOL| | - Search || S<insert || [fjExort | |52 operations || [fgEmsty | | 32 0rop |
NMJWMJ Phone numbersfemall addressses
SE B OO | runsow queniqueries on database web_info D) Fields: _
Catabacel [SELECT * FROM ‘phones” WHERE 1 [phoneno =
- fast e
web_info (1) > har:l::::m
- phong
wieb_info LJ ermail
@ ehones | departmant
location >
i Show this query here again Go i
Or Location of the textfile:
Location of the textfile:
[Biowe, | (Max 2.0488)
Comprassion;
& Autodetect ¢ None [“gzipped”
Character set of the me:|u|rs vi
Go |
Ingen data from a texifiie into table
% D 2 @ | Hom

Figure 3-8

SETUP AND ADMINISTRATION 55

=5 phones | phpMyAdmin 2.6.1-pi3 - Mozilly

[E localhost > localhost > web_info

Server: gliocalhost » Database: [Gyweb_info » Table: [[jphones
£ Structure | | IfiBrowse || #soL || Search | [Féinsert || fjExport || 92 operations | | ety || 3 oron |

phpiiyidmin Fhane numberaemall addressses
A5 E QY i

= S| [|emnihe CrDownoadita_book: | Biowsa.. | (Hax 2,048KB)
Database:)
[web_infa (1) =l Replace table data | = pocice The condents of the file replaces the contents of the selected table for rows with
||| with e Identical primary or unique key.
web_info =
B phones Fields terminated by | [, The terminator of ihe fields

| Often quatation marks. OPTIONALLY means that only char and varchar fields
PTIGMNALLY
Frlgs enclosed by Eoema are enclosed by the "enclosed by-character,

|| Fielgz escaped by i\ Optional. Controls how to write of read special characters,
. Camiage refurmn:
Lines tarminated by in Linefsed: \n
Column names ,m ::;&I:;snmlnaﬂ oy same of a table's columns, specily 3 camma separated
i - DATA SER
LOAD method DATALOCAL The best mathod |2 checked by default, but you can change if it fails.
@
| submit | Resel
b S 2 @ B | e,

Figure 3-9

selecting the phones.csv file from within that path’s data directory (see Setup.pdf
for more info). After that, we skip the Replace option, and fill in the Fields termi-
nated by with a comma, the Fields enclosed by with a double-quote, and the
Column names, with the field names for each of the fields represented in the
CSV file, separated by commas, in the same order as they appear in the CSV file
(last_name, first_name, phone, email, department, location). Finally,
we select DATA as the LOAD method.

Clicking on Submit causes phpMyAdmin to load the contents of the selected
file into the phones table. To verify, click on Browse, and you should see the
loaded data (figure 3-10).

Conversion Programs

Another approach to acquiring data is to use conversion programs to move the
data directly into MySQL. This allows you to connect directly to the MySQL

56 SETUP AND ADMINISTRATION

alhost > localhost =% web_info > phones | phpMyAdmin 2.6.1-pl3 - Mozilla =101 %]
o &k Yew Go fdms Dok Wi b __ |
22 2 B [T st e =] sl 2 - [T
| “Wtioms | bpocimarks £ irstant Messsgs £webial £ Rade £ people £ veboupages & Donnload £ Calendse Cichannals . dbde
Server. Bjlocalhost » Database [Giweb_info » Table: [phones =
[structure | [FiBrowse]| | f2sot | [search || §<isert | | ffEsvort | | 82 operations | | fiiEnwey || Beioron |
=
'Dm”: Showing rows 0 - 29 {235 total, Query took 0.0019 sec)
[webnfa () =
i = BELECT "
FROM ‘phenes
wieb_infe LIMIT 30
LRt [Edi] [Explain S0L] [Creats PHP Code] [Refrash]
Show: ||30 roves) slaning from record # [30
Inlhnnmnlal ,_ vfmn:?e and repeal headers: aﬂerW cells ;ILI Page »umner@
sonbyiey [None =] G| il
‘T -+ phonenc last_name firsi_name phone email department location
I 1 Allen Barbara 6-8457 ballen Cafaloging 030 Jonas Memaorial Librany
W s 2 Aon Judy 9-74E6 |altan Foreign Languages 226 Jones Memorial Library
r#X 3 Antony. Marc 9-8788 mantory Reference 126 Jones Memaorial Library
X 4 Amold Fred B-4744 famold Seience 450C Stience Library
(R 5 Afienborough Richard 9-8448 raflenbo Reference 126 Jones Memaorial Library
n#x 6 Austin Sleve 97464 sausin Human Resources 224 Jones Memorial Lisrary
Wl 7 Batlard Ter 32017 ballard 28 Physical Education ED244 Hayes Sports Center
r2x 4 Ballero Samn 7-0080 shaltero Mowspaper 234 Jones Mermorial Library
2% & Bardell Williarm 5-1223 whardell English 222 Jones Memarial Library
r#Xx 10 Barton Clara 54323 cbaon Mursing 275 Woodnf Hospital
(i 11 Batchelenikov Sergei 4-4727 sbatchel Cataloging 030 Jones Memorial Library =l
e S 2 @ @ | el
Figure 3-10

server (usually using an ODBC connection); automatically create databases,
tables, and indexes; and then load the data into the resulting database. The
advantage of this approach is that much of the work described is handled auto-
matically (assuming that the structure and data of the existing database will pro-
vide the output you desire). If you have a system that is supported by one of
these programs and you merely want to make the database available more or less
as is on the Web, this is clearly an attractive alternative.

Several such programs are available (see the bibliography for a list). One I
have found very useful is DBManager from DBTools Software.? The program is
currently available in both freeware and commercial versions, both of which can
be used for data migration from a wide variety of database formats (including
various versions of MS Access and Excel, dBase, FoxPro, Paradox, and any data-
base that supports ODBC) into either MySQL or PostgreSQL.

SETUP AND ADMINISTRATION 57

CREATING THE USER ACCOUNT

One final thing needs to be done in MySQL to enable publishing data to the
Web. To run a report, you will need to create an account in the RDBMS that has
permission to log into the database and execute the desired query. Although you
can use any account that has access to the database in question, it is a good idea
to create unique user accounts for each application and to provide those
accounts only those permissions that are necessary for the application to do its
job. Especially if you are working in a multidatabase environment, you don’t
want people to be able to access—let alone change—other users’ data.

To set the user permissions for this database click on Home inside
phpMyAdmin and then click on the Privileges link in the right-hand frame.
Doing so brings up the screen shown in figure 3-11.

7 localhs -.,Jnm
o S i
[I - | :fi et 7o . sewa| &
Homak " Fened ot 3 £ dobon.sorve 2 8. WJ
z tioms | Mbtoomats -lmnmm Lot Lross £oscpie £ veion vons £ oowrioad 4 Caendar (charres tm
Server glocalhost
GiDatabases || g Status || [E) Varishies || [[]Charsets | | 23 Pravieges | | &Processes || (Export |
phpidyssmin
& User overview
_Q.—ELEE’_EL ABCDEFGHIJKLMNOPAORSTUYWXY Z [Showall
Database: User Host Password Global privieges Grant
[web_info (1] Zl| oot tocstnost es . pRrvnLEEE ves &
eabilnfo Note: MySQL privilege names are expressed in Engliah
B phones 1+ checkan § Uncheckal
£ Add a new User
. Remove selected users
= Justdeiete the users from the privilege tables.
" Revoke all active privileges from the users and delete them afterwards.
¢ Delete the users and reload the privileges afterwards.
™ Dropthe databages that have the same names as the users.
Go I
Mote. phphty gels the users’ priv directly from MySQL's privilege tables, The content of these tables may differ from the
privileges Ihe senver uses, ifthey have been changed manually. In this ease, you should reload the privileges before you continue
4] (|
& z@ea | I Fel=l&

Figure 3-11

38 SETUP AND ADMINISTRATION

This screen allows you to view and edit all of the permissions for all regis-
tered user accounts residing in the MySQL database.1? In addition to being able
to edit (add and revoke permissions) and delete existing accounts, you may also
click on Add a new User link to add an account. Doing so brings up the screen
shown in figure 3-12.

There are two parts to this screen. In the first, you can set the User name
(account name), the host from which they will be allowed to connect, and their
password. When creating user names, it is generally a good idea to have the
name be based on the name of the application for which you are providing
access. This makes it much easier to track and maintain accounts as the number
of databases and applications grows. Each field in the form has drop-down
option lists in the left column that you can use when creating the accounts.

(o x|
S B et e Ay = ::.-s.
DS - LT RS R ‘*J_ﬂ_l Pk m
| Thtiome | WiBockmarks o Tnstark Mossage #wiebMal P Rado #Peaple o VelowPoges #Downioad o Calendar channck o dibdey
Senver glocahost =
[@ibstsheses| [status || 0 Varistis | [[fjcharsets | g5 Priiaoes)] | @y Processes || @Eswort |
BhDSyAcwia & Add a new User
d4ED 0 Login Information
Database: Username: | Usetedtnield] [Phones
[web_info (1) =l| Host [Local =] [iocathost
;vub_lnfn Password: |Usetetfiely: =] [
0 phones Re-pe: T
Global privileges
Alole ! My SOL prvilege Aaesres soe expmsred In English
Check All UncheckAll
Data Stuchire Adrminis tratfon
M mer [oo I o
M omor [em I~ oo
M wwe [C pexo I~ mems
I mm [o T o
I |re [T erar ToEmAR TANLEY T swomaas
I ames parazases
Resource limits T o mees
Wato: Setting these apions b 0 fvo) o the Narit.
X QREILD PIR BOR il | moroeiers
1B TFDATED T BOW [e ™ =
B EOMSECTIONS PR B 0 T =icacion crimw
[T mticarros sLae
6o =
% & 2 [& | ooe B

Figure 3-12

SETUP AND ADMINISTRATION 59

User Name. We select Use text field and give the account the name
Phones.

Host. Because the application that will be running reports will be on the
same server as MySQL, we select localhost from the drop-down
for the host.

Password. Again, we use Use text field to enter a password, where we
type in Fone_Usr. If you are placing this on an Internet-available
server, you should change the user name and password to something
else. Otherwise, anyone reading this book will have access to your
database. Note that, if you do make a change, you need to be sure
that you place the same information in any scripts that access this
database.

Re-type. Requires the administrator to verify the password by typing it
in again. If it does not match, a Javascript box appears notifying him
or her of the fact. He or she is then unable to proceed until the two
passwords do match.

The second section asks which GLOBAL privileges (in any and every database
that is now or ever will be entered into this system) you wish to assign to the user.
These list the SQL commands the user is authorized to run in the system.
Because it is best not to grant any global permissions to any users other than data-
base administrators, we do not check any of the GLOBAL privileges.

Once you have clicked on Go, the account will be created and the screen
shown in figure 3-13 will be displayed.

Because our new Phones@localhost account currently has no privileges to
any database, we need to add such permissions here. We do so by first clicking
on the Add privileges on the following database drop-down list toward the bot-
tom of the page. We then select web_info, which causes the database to load in
the right frame. If it does not, you probably have Javascript turned off. Just click
on the Go button. This brings up the screen shown in figure 3-14.

Here we can specify which SQL commands this user will be able to run on
this database. As you can see, they are a subset of those commands given above.
Because we are setting this account up to only read from the database and then
output the results, we click only the SELECT box in the left-most column. Once we
click on Go just below that grid, the new user rights will be added to the database.

Because the privilege tables are normally read only when MySQL starts up,
we need to get the database to reread them so that our new user account has
access. To do that, we click on Privileges at the top of the screen, which brings us

60 SETUP AN

D ADMINISTRATION

Be Edt Wew Go Bookmaks Took Window Hep

-'L . = “3 # e sew| F & . i
Eoriend J o I\& ver odlation cm_! .
’.‘Inum| & Hesssge el 4m.¢m¢mm.¢wlmuam.¢m
Server gjlocalhost =
B || @ | ® || Ecnarsets | | g3 Priioges | | §yProcesses || @ Bxport |
php.Li s You have added a new user.
P SOL.queny
A= ﬂ ﬂa GRANTUSAGE ON* " TO 'Phones @ tosathest IDENTIFIED BY """ WITH MAX_QUERIES_PER_HOUR O MAX_CONMECTIONS_PER_HOUR
0 MAX_UPDATES. PER_HOUR 0
Database:
[web_infa (1) =]
web_info -
B vdnu & User Phones'idocalhost’

* Edit Privileges
Global priviteges

Data Stucture
M osmmr [oo
I mox ([am
M sex [oo
M mm [=
I mie [T ChOAIT TOWORART TAILEY

Resource limits

A QUERITS POR BOUR 0
BAX WWEATES IR IR

BN CORSLITIOND FIR BOUR (1]

Mot R SGL priwlige aves s exprioed
Check Al Untheck All

Mabe: Sefling Mhese apbiors o oa_mtmmm

I Eevglish
Adniris tration
T

I wm

I wwoen
i

I o
™ anm samaacs -
I roex Tastey

r
Iz

™ rstacarion eLiner
T stataTion LA

G0 |
* Database-specific privileges
Datahase Privileges Grant Tabie-specific privileges Action
None.
Add privileges on the following database: [Use tedfield. =] | Go |

i D n& @) o8

| -Dons

=
I o=l

Figure 3-13

the pages we see in figure 3-15. We then click on the reload the privileges link (in
the note paragraph at the bottom of the right-hand frame). This causes the per-
mission tables to be reread. Our Phones user is now ready to go.

ADMINISTRATION TASKS

For relational database systems to work, they need to be installed and set up;
databases, tables, and indexes need to be created and maintained; security access

SETUP AND ADMINISTRATION 61

[EF localhost == locathost | phptyAdmin 2.6.1-pl3 - Mazills .In} i[
He Edt Vew Go Bockmuks ook Windw el |
2 .= .3 B g P w— 7]l Search| S5 - ‘
Forward | Reload: Stop M‘ A J‘!—_I m
Home | B Backmarks - nstant Message 4 WebMal - Rado - People 42 Yelow Pages - Dovnlond - Colendar (4 Channels o dibdere
Sewver. gglocathost k=
| [) i) (R I]:@{‘;Pinceém"} |
oo i 8 User Phones'@ocalhost' - Datahase webl_info
A EER QR * Edit Privleges
Database: Dot :
e fobe: MySGL pasilege nawes s exprested in Englih
[web_info (1) =l " CheckAl UncheckAll
: Data Stuctwe Administration
:!:ﬁl:.'? V] smzer [s I
[memr [amm T~ Loek mamrs
T woare [moex T oo
I mome [me
[~ CREATE THOPORARY TABLED
Go I
* Table-specific privileges
Table Privileges Grant Column.specific privileges Action
fone
Add privileges on the following table: [Use text field: =] | Go j@ |
=l
G D -2 @) & | bwe [e,
Figure 3-14

needs to be established with user names and passwords created; and other sys-
tems support tasks need to be completed. In the following section, we will take
a look at some of the database administration tasks you will need to take care of
and show you how to do so.

Creating Indexes

Getting the data into the database is just the first step in making it available to
users. Although the data is searchable once it is inside the database, such search-
ing can be terribly inefficient. Left to its own devices, an RDBMS will go
through your tables record by record, matching the query terms against the con-
tents in each of those records. Thus the more records you have, the more time
it will take to look through all of them.1!

62 SETUP AND ADMINISTRATION

[locathost == localhost | phpMyAdmin 2.6.1-pl3 - Mozilla

DB Bt Wew Go pookmads Todk Window Hep |

S ey —— S [HJI."J

Forviard Reload Stoo
7| A rome | Whecckmarks . instant Message . webttal #Rado £ pecple . Yelow Pages - Download . Calendar [ichannels # dibdev

Server. Zdlocalhost

| ihDatabases || @ Stats || &) Variables || [[charsets | | gaPrivileges | | fyProcesses || ghExport |

phpLuaianis
J & User overview
4EEQY ABCDEFGHIJKLMNOPQRSTUVWXY Z [Showall]
Database: User Host Password Global privileges Grant
[web_info (1) = I” Phones localhost Yes VIAEE No G
web infa ™ oot localhost Yes ALL PRIVILEGEY Yes §&2
B phones Note: MySQL prvilege names are expressed In English

Check All | Uncheck All

¢ Addanew User
o~ Remove selected users
& Just delete the users from the privilege tables:
¢ Fevoke all active privileges from the users and delete therm aflerwards.
¢ Delete the users and reload the privileges afterwards,
™ Drop the databases thal have the same names as the users.
o
Mote: phphyhdmin gels the users’ privileges directly from MySQL's privilege tables: The content of these tables may differ
from the privileges the server uses, if they have been changed manually. In this case, you should reload the privileges
before you continue

4| |+
5 & 2 @@ | [L

Figure 3-15

The answer to this problem is to use indexes. Just as books have indexes that
help you find individual topics within the book and library catalogs provide an
index to a library’s collection, a database uses its index to match the query param-
eters and go directly to the appropriate record or records.

As noted earlier, in chapter 2, MySQL supports four types of indexes:

Basic. The basic index covers the entire field, is used to allow ordering
by fields, and makes searching those fields faster and more efficient.

Unique. The UNIQUE index adds server enforcement of not allowing
more than one record to have the same value in that field.

Primary. The PRIMARY index is similar to the UNIQUE, but indexes the
field as the primary key, thus disallowing NULL and duplicate values;
note that a table can have only one primary key.

SETUP AND ADMINISTRATION 63

Fulltext. The FULLTEXT index capability was added as of version 4 and
allows for the indexing of individual words within fields (we will
explore it in chapter 5).

You can create indexes when you create the table by clicking the appropri-
ate icon in figure 3.6. You can also use the SQL box and enter the appropriate
command there. For example, to add a UNIQUE index on the email field, you
would enter one of the two following commands:

CREATE UNIQUE INDEX email ON phones(email) ;

ALTER TABLE phones ADD UNIQUE (email) ;

Backups

One of the most critical tasks in any computer-based system is to back up the
data. Given that computers often get cranky and do things we don’t want (or
expect) them to do, we need to be able to recover from glitches that occur. To
make sure you can do this, you need to have a good backup strategy in place before
you begin working with a database management system. When constructing such
a plan, you need to keep two types of backups in mind: server and transaction.

Server Backups

The first of these is the server backups. Although most of you are probably famil-
iar with backing up computers and servers, the situation is slightly different with
databases. The problem is that, unlike the average computer application in which,
when a file gets backed up, it remains internally consistent with itself, the same
thing is not necessarily true of databases. If a database is backed up in the middle
of a multitable transaction, the backup may get pretransaction data in some tables
and posttransaction data in others. The result can be a data integrity nightmare.

Fortunately, there are ways that this problem can be avoided. The easiest for
our purposes is to take the database system offline (or at least locking all tables
to prevent them from being updated) and then doing a complete backup.
Although the major backup system vendors—such as Veritas—do include the
capability of doing what are called hot backups, such programs tend to be writ-
ten for major players such as Oracle, not open source databases. In addition,
given that there are probably long periods when librarians—even techie librari-
ans—are likely to be asleep and not updating the database, you can probably
without too much difficulty find a convenient time in which to schedule a job to
run automatically to do this task.

64 SETUP AND ADMINISTRATION

In the case of MySQL, its command line client—mysgldump—comes with
a multitude of switches (command line parameters) that can be entered in a shell
script or batch file to do the trick. For example, the following works quite well:

mysgldump --quick —--add-drop-table --lock-tables >dump.sql12

Entering this command into a batch file or shell script, and then running it on a
regular basis, will cause all database structures and data to be backed up and
ready for easy restoration. The command runs the mysqldump program, telling
it to write directly to the disk (making it faster); include DROP TABLE/ADD TABLE
for each table backed up, making it easier to use in case of having to do a restore;
or lock all tables in a database before doing the dump; and write to a file named

dump.sgl.13

Interaction Logging

Server backups are a good beginning for a backup strategy. You need, however,
to do more. For example, say you do your backups on a nightly basis and the
server crashes at 4:30 in the afternoon after a busy day of data entry by forty dif-
ferent librarians. Unless you want to keep a one-way ticket to the Bahamas and
anumbered Swiss bank account on hand so you can go into hiding from irate col-
leagues, you will need a second level of backups.

One easy way to do this is to include interaction logging in your applications
(something I will show you in chapters 7 and 9). The basic idea is that as each
data maintenance interaction (adding, editing, deleting) is entered into the data-
base, each component SQL query involved in that interaction is written to a log
file. Then, if disaster strikes, all you need to do is to restore from the nightly
backup and then enter the interactions from the log file and you will be up and
running again.!4

Security

The first thing we need to do is to make sure access to phpMyAdmin is limited
to only those persons designated as database administrators. Because phpMy-
Admin essentially gives you the “keys to the kingdom,” anyone who can access it
can do anything they wish to any database in the system (including deleting a
database!). Mechanisms within phpMyAdmin do allow you to provide different
persons administrative access to different databases, but you need to set up some
type of access-control mechanism to make sure that unwanted users don’t get in.
Setup.pdf, part of the companion materials download file, lists the alternative
approaches you can take, with some pros and cons on each.

SETUP AND ADMINISTRATION 65

Next, we encounter a topic we covered above: creating secure and limited-
access application accounts. It cannot be overemphasized that this should be
handled on a need-to-access basis and that you must be as careful as possible in
granting permissions to users. For example, if you place a dynamic page that only
searches and outputs data, you don’t want the account under which that action
is taken to have the permission to add, change, or delete data. Remember that
PHP requires that the password be written into any script that accesses the data-
base. That is, anyone with access to the directory in which such a script resides
can read the script and see the password. We discuss ways to keep these scripts
secure in chapter 8.

Finally, you will need to control which Web users have access to the data
maintenance applications you write. This involves user authentication (making
sure the person is who he or she claims to be) and authorization (seeing if that
individual is allowed to undertake the requested action). We discuss these con-
cepts—and show you how you can implement them in your application—in
chapter 8.

Now let us examine how we can go about getting the data back out in the
form of Web pages.

Notes

1. The list of fields we are going to include here is very small. I strongly recommend that
you read chapter 6 on data modeling before proceeding with a real project, especially
one presenting any possibility of added features, data elements, or interaction with
other applications.

2. In many cases, the system in which the data currently reside may already have some of
these—especially type and size—already defined.

3. There are a number of tools out there, particularly in the Perl world, that can help you
do this. It is not a trivial task, however, and we do not pursue the approach here.

4. Open DataBase Connectivity—a protocol, developed by Microsoft, to permit real time

communication between different types of databases running on different operating

systems and platforms. Widely used in the field, particularly in some of the conversion
applications listed in the bibliography.

See the online bibliography for a listing, including phpMyAdmin.

6. In this case, localhost is another name for the computer on which phpMyAdmin is run-
ning—any other host being given an IP address or DNS name. In other words, MySQL
and phpMyAdmin are running on the same server.

7. Although it is good to know what fields you want when you first create the database,
don’t worry if you might want to change things down the road, because phpMyAdmin
makes it very easy to modify table structures after the fact.

8. This is available in the data directory in the companion materials download file.

9. DBTools Software, http://www.dbtools.com.br/EN/dbmanager.php.

10. You may see more users on your screen than appear here. The reason is that MySQL

ships with permissions that constitute a possible security risk. I suggest removing all but

ot

66

11.

12.

13.

14.

SETUP AND ADMINISTRATION

root@localhost as we have done here and adding new users only as needed with mini-
mal permissions.

This of course is not necessarily a problem with the phone list example here, but think-
ing through such things is a good habit.

In real life, you will need to add two parameters: one for the user account and one for
the password. Rather than using the root account, you should create a separate backup
account that has GLOBAL SELECT and LOCK TABLES privileges. See Setup.pdf for more
information.

This locks tables only within a single database. If you have applications that update
tables in multiple databases, you will need to use another approach, such as shutting
down access to all databases while doing the backups.

Such logs are also extremely useful in tracking down and correcting system and data
entry problems.

INTRODUCTORY
PROGRAMMING

Chapter

Now that we have looked at how we can set up a database and

populate it with data, it is time to do something with the data.

Report writing is central to any database-backed Web page,
whether it’s a stand-alone page or a complex search screen within a large appli-
cation. Any time you create a query, send it to the database, and then format the
returned results, you are creating a report. There are three basic methods you
can employ to create a report.

First, you can use proprietary tools. A number of database applications, such
as FilemakerPro and ProCite (as well as third-party tools such as Crystal
Reports) provide built-in tools to query a database and output the results with-
out any need for programming on the user’s part. These tend to be commercial,
and while a few are open source, I will not deal with them in this book. However,
the bibliography offers a listing of some of the major tools and sites where you
can obtain more information.

A second approach is CGI programming. Here, stand-alone programs writ-
ten in a traditional programming language are used to create the entire report.
This program can be invoked either as an act ion parameter in a form or by call-
ing the program directly. The Web server, which has been configured to do so,
passes control off to this program. The program then creates and executes the
search, retrieves the data and creates the page, and then sends the page back to
the server, which then sends it to the user. Given that every step must be imple-
mented using the language’s particular syntax, this is a programming-intensive

approach.

67

68 INTRODUCTORY PROGRAMMING

In the Web server-based scripting approach, the Web server has been out-
fitted with special modules to handle database requests and other types of pro-
gramming tasks. Programming instructions are embedded directly into an
HTML-like page that is given a special extension (such as search.php rather than
search.html). When the user requests this special page, the Web server notes the
special extension and then sends the request to the appropriate module. The
module then processes the page, running the code inside the code areas as
needed and returning the results to the server where they are in turn passed on
to the user. The beauty of this approach is that the languages involved are easier
to use and (because you don’t have to program the HTML sections) easier to
develop, and that the module (being part of the Web server) performs its task
quickly. This is the technique I will be showing you.

As you can tell from these descriptions, the approach we will be using
involves programming. Therefore, it is a good idea to begin exploring how you
(yes, YOU) can become a programmer.

PROGRAMMING?! YIKES!!

I can see it happening as I write this. The mere mention of the P word brings on
the same physical symptoms as the phrase math test or hearing a police siren
coming up behind you while you are driving: your breathing gets shallow, your
eyes glaze over, and your fight-or-flight response is engaged as your brain goes
numb. This is one area where we feel that the term Idiot’s Guide is all too appro-
priate.

The truth is, programming is not a big deal. Anyone who has ever cooked a
dinner, given driving directions, or done training has programmed. Program-
ming is simply writing out step-by-step instructions to tell the dumbest entity on
the planet (a computer) how to do something. If you start out with the assump-
tion that you are smarter than a computer (which, if you're reading this book—
or any book—or if you’re breathing for that matter, you are), you have already
won half the battle!

Once you realize who the boss is, you just need to figure out how to let IT
in on the secret. This will involve deciding what you need the computer to do,
learning the language (words and grammar) that the computer can understand
(because it certainly can’t understand English, at least not yet), and patiently
(and that is the key concept) writing out a step-by-step recipe telling it what to
do at each step of the way.

INTRODUCTORY PROGRAMMING 69

We will now look at some of the techniques and concepts we use when
telling computers what to do. (That is why programmers do what they do: they
get to tell them what to do. Talk about a feeling of power!) To show that it is the
syntax, rather than the activity, of programming that is unfamiliar, I will demon-
strate each programming technique and concept below using a cooking analogy.
Appendix A pulls all of these together and shows how a recipe, written in pro-
gramming style, looks and compares it to a more traditionally formatted recipe.
My hope is that, by seeing the two juxtaposed, you will have a better feel for (and
less fear of) what programming actually is.

BASIC CONCEPTS

Values

We first need to define several basic concepts we will be using from here for-
ward. Knowing these terms will go a long way toward understanding how pro-
gramming actually works (and can be useful at cocktail parties as you wow your
colleagues with your computational savvy). We will begin by looking at the ways
that values are stored and transmitted within a program, focusing primarily on
variables and arrays.

Variables

Variables are the building blocks that contain the individual values the program
will use to do its job. They are, if you will, the containers into which you put your
raw ingredients with the expectation that they will be transformed into some-
thing edible. For example, when creating certain types of sauces, there are three
categories of things (variables) you need to have to make the sauce: a fat, a thick-
ening agent, and a liquid. Another way of looking at variables is to think of them
as containers into which you place a value: a fat container, a thickening agent
container, and a liquid container. Note that different kinds of sauces might start
with different values for each of these containers (hence the term variable).
What a cook (programmer) does is to take those variables and assign values to
them, depending on what the desired end result is. Thus, for a white sauce, the
three variables might be given the following values:

$fat = "4T butter";!l
Sthickener = "4T flour";

Sligquid = "8C milk";

70 INTRODUCTORY PROGRAMMING

On the other hand, if a brown sauce were needed, the variables might be these:

Sfat = "2T oil";
Sthickener = "2T flour";

Sliquid = "3C beef broth";

Note that I have created the variables ($fat, sthickener, $1iquid) by plac-
ing a dollar sign in front of the variable name. This illustrates two principles. The
first is the use of the $ in front. This tells the computer (and the programmer too,
for that matter) that the thing $fat is a variable, not the word fat. Although not
all programming languages use a dollar sign to denote a variable, PHP does (as
does Perl). I have therefore used that formulation here so that it may become
more familiar to you.

The second principle is that the word I used for a variable actually describes
that which the variable is to represent. Although you could call it $x,
$big_foot, or even $mother_of_all_variables, such a name won't help
you as you use the variable in writing the program. Nor are you likely to remem-
ber what it represents when you return to the program down the road. By using
a variable name that clearly describes the information that it contains (such as
$fat), you are writing what is known as self-documenting code. This is a con-
cept we use throughout this book.

You may have noticed that, in assigning values to a variable, I place the vari-
able on the left side of the = and the value that will be assigned to that variable
(poured into that container, if you will) on the right. This is about the closest you
will ever come to a universal truth about all programming languages: content to
the right of the = is assigned to the variable to the left of it.

Arrays

An array is a set of variables that contain related items of information. Arrays dif-
fer from variables in that, though variables track individual entities, arrays organ-
ize sets of values that go together in some way and that need to be handled
together. When we program database searches, we will use arrays to store the
individual records before processing them.

To return to our cooking metaphor, when creating a dish, you might keep all
of the spices together in small bowls on your counter, using them as needed. For
example, an Italian dish might have oregano, basil, thyme, marjoram, and garlic.
If you were to create an array to keep the names of all of the spices needed for
a dish, you could assign each element individually:

INTRODUCTORY PROGRAMMING 71

Sspices[0] = "2T oregano";
Sspices[1l] = "4T basil";
Sspices[2] = "4T thyme";
Sspices[3] = "1T marjoram";
Sspices[4] = "3 cloves garlic";

Another option is to assign the elements in a single statement:

Sspices = array ("2T oregano","4T basil","4T thyme","1T

marjoram","3 cloves garlic");

Either way, in using an array, when you need to add the spices, you can refer
to them as $spices[0], $spices[1], $spices[2], and so forth instead of
using 2T oregano, 4T basil, 4T thyme, and so on. Note that we are using a num-
ber as the index (array address, if you will) of the individual elements (or values)
of the array. This technique is useful if you will be stepping through the array one
at a time and don’t need to look for any particular value.

An alternate approach to indexing arrays—associative arrays—is supported
by a number of languages, including PHP. An associative array is one in which
we associate a name with the value being stored in the individual element, rather
than a number. For example, if we were creating an array of the values needed
to make a sauce, we could create it like this:

Ssauce["fat"] = "4T butter";
Ssauce["thickener"] = "4T flour";
Ssauce["liguid"] = "8C milk";

Thus, referring to $saucel["fat"] would get us the value 4T butter,
$sauce ["thickener"] would be 4T flour, and $sauce["liquid"] would be
8C milk. This technique makes it much easier to access and output items in an
array—such as the results of a database search—by using a name that we know
(the field name) rather than having to know where in the array a particular value
is to be found. The formulation $result_array[<field_name>] gives us
access to each field of the results. Thus, in handling output from a database
search, we can use $record["title"] to obtain the title field, $record
["author"] to get the author, and so on. In this case, by referencing $sauce
["fat"], we would obtain the value 4T butter. This is a remarkably powerful
and useful technique and one that I use throughout the book. You will have many
opportunities to see it in action.2

72 INTRODUCTORY PROGRAMMING

Coding

Let me now demonstrate how to do something with variables and arrays.
Building on our sauce example above, let’s “program” a white sauce we can use
to make macaroni and cheese. As noted, creating the program involves writing
out each action that needs to be performed to get the desired results. To start, I
will use pseudo-code to demonstrate the concept. Pseudo-code is a technique in
which you describe what needs to be done in a programming-like way without
getting into the intricacies of a particular programming language. I will show you
a more programming-like way of doing this later in the chapter.

Span = "4 quart sauce pan";
Show_hot = "medium high";
Sheat_source = "stove";
Ssauce["fat"] = "4T butter";
Ssauce["thickener"] = "4T flour";

Ssauce["liquid"] = "8C milk";

Place $pan on S$heat_source;

Turn on Sheat_source under S$pan to Show_hot;

O W 0 T o Uk W N

=

Sroux = S$sauce["thickener"] + $saucel["fat"];

=
=

Place S$roux into S$pan;

=
[\

Heat the S$roux;

=
w

Heat S$sauce(["liquid"];

14. Swhite_sauce = Sroux + S$sauce["liquid"];

Lines 1-6 set the variables for the program. These include the type of pan
($pan), the temperature at which to make the sauce ($how_hot), what you're
cooking on ($heat_source), and the array of items with which to start the sauce
($sauce). Lines 8-14 then describe the steps to be taken with the variables.
When this “program” is run, the program substitutes the contents of each vari-
able for the variable name. Thus, line 8 becomes “Place 4-quart sauce pan on stove”
and line 9 becomes “Turn on stove under 4-quart sauce pan to medium high.”

Decision Blocks

Anyone familiar with cooking is aware that the previous recipe does not provide
enough information as written. You could perform each step in succession, but
the results would be far from satisfactory. For this recipe to work, we need to tell
the cook (the computer) certain things, including

INTRODUCTORY PROGRAMMING 73

How long should the heating in line 12 continue?
Does one add $sauce["liquid"] all at once?
How does one know if the process is working correctly?
For each of these questions, instructions need to be included in the program so

that the cook (being a computer, not a very bright cook) can proceed properly.
The following code shows how we might flesh out the needed information:

1. Span = "4 quart sauce pan";

2. Show_hot = "medium high";

3. Sheat_source = "stove";

4. Ssauce["fat"] = "4T butter";

5. S$sauce["thickener"] = "4T flour";
6. S$saucel["liquid"] = "8C milk";

7. Shalf_cups = 16;

8.

9. Place S$pan on S$heat_source;
10. Turn on Sheat_source under S$pan to S$how_hot;
11. sroux = $saucel"thickener"] + Ssauce["fat"];

12. Place Sroux into Span;

13. Sroux_status = "raw";

14. while (Sroux_status == "raw") {
15. stir S$Sroux;

16. Stemp = temp($Sroux);

17. if (Stemp < 350) {

18. print "Not Yet";

19. } elseif (Stemp >= 350 && Stemp < 400) {
20. Sroux_status == "cooked";
21. } else {

22. Sroux_status = "burned";
23. throw_away (Sroux) ;

24. exit;

25. }

26. }

27. Heat $sauce["liquid"];

28. Sbechamel = S$roux;

74 INTRODUCTORY PROGRAMMING

29. for ($x=0; $x < Shalf_cups; S$x++) {3

30. Sbechamel = Sbechamel + 1/2 cup (Ssauce["ligquid"]);
31. stir Sbechamel for 30 seconds;

32. print "You have added $x cups";

33. }

In this example, lines 1-7 set the values for each of the variables and lines 9-33
contain the expanded steps. These steps are implemented as decision blocks.
Note that this example has three decision blocks—places where the computer
decides what to do, whether to continue what it has been doing, or to do some-
thing new. These three types of blocks (while, if, and for) are those we will
use most often in this book. Before examining them more closely, let us take a
look at how a block is structured.
All decision blocks have the same structure:

1. conditional (condition) {
2. "Do something!";
3.}

There are four things to note here:

conditional—while, i f, or for

condition—the condition the computer should check to see if it should
execute this block

The entire block of code is contained in a block—between the { and }
characters—that is executed if the condition is met. If the condition
is for or while, then it continues to be executed for as long as the
condition in line #1 is true (if the condition is i £, then the block is
run only once). This means that the block starts at the first line and
continues executing until the last line before the } character and, if
appropriate, checks the condition again at the top of the block to see
if it is still true. If so, it goes through the block again. If not, it goes
to the first command after the block closes.4

Here the { and } characters are used to denote the beginning and end
of the block, the way it is done in C, C++, Java, PHP, Python, and
other C-like languages. Note that Pascal uses begin/end.

Before continuing, I would like to point out a formatting convention that,
though not required, does make programming code a lot easier to read: within
the first decision block (lines 15-26), the lines are indented three spaces and,
within the blocks within that block (lines 18, 20, and 22-24), the lines are

INTRODUCTORY PROGRAMMING 75

indented again. Although the programming language does not require this,
indenting makes it easier to see where decisions are being made, what is being
done at each possible point, and where blocks begin and end. I strongly suggest
that you follow this practice.

Now let us take a closer look at the conditional statements:

while (lines 14-26). This block says, “As long as the $roux_status is
raw, keep on cooking.” Because we initialized—gave an initial value
of—raw to $roux_status at line 13, the first time we get to line
14, it enters the loop. If you don’t do this—or you gave it any other
value—it would never enter the while loop at line 14. It then pro-
ceeds through to the end of the block (line 26). When it goes there,
it goes back to 14 and checks to see if the $roux_status is still
raw. If it is, the program goes through the block again and contin-
ues to do so until the condition is no longer true. For this status to
change, a test needs to be run each time through the block to see if
the status should be changed. This is done in line 16, where the tem-
perature of the mixture is taken. If you do not do this, the status will
never change and so the program will never end (you will have
entered what is called an infinite loop).

if (lines 17-25). An if block says “if a condition is true, then, do some-
thing once” (where there are multiple possibilities, you can use one
or more elseif statements to do subsequent checks of the value).
In line 16, you get the temperature of the roux and then proceed to
your if statements. In this case, the condition is checking the value
by taking the temperature of the roux. If the temperature is less
than 350, then the first condition if block is entered and the cook
is told “Not yet™ and the program skips the other two conditions
(lines 19 and 21), jumping down to line 25 (the closing of the
if/then/else block at which point it returns to line 14, where the
status is checked. Because it has not changed, it enters that block
again. Also note that this block actually has two more tests. If the
temperature is not less than 350, then check to see if the tempera-
ture is between 350 and 400. If so, it enters the second block, where
the $roux_status value is set to cooked (at which point, it goes to
line 26 and then back up to 14 to check the status again. Because the
status is now cooked, the program skips down to line 27 (the first
line after the while loop) and proceeds to the next task. However,
if it finds that $temp is more than 400, that means that the process

76 INTRODUCTORY PROGRAMMING

has somehow gotten away from you and has burned. You then
change the $roux_status to burned, throw the $roux away, and
exit the program (presumably to start over).

for (lines 29-33). In a for block, you know the number of times you
need to go through the block (in this case, the number assigned to a
sentinel variable $half_cups). In the opening statement, you ini-
tialize a counter variable, ($x=0); you tell it to run as long as the
counter variable is less than the sentinel variable ($x<$half_
cups). You then tell it to increment the counter variable by one
each time the block is run ($x++). Then, each time you go through
the block, you add 1/2 cup of liquid and stir for 30 seconds, at which
point you start the block over and see if your counter variable is now
equal to (not less than) your sentinel value, $half_cups. Once it is
equal, that means that all of the liquid has been added and the sauce
is made.

When going through a for block, it was noted that a counter variable is used
to keep track of how many times the block had been executed. This makes the
counter variable a valuable resource when used within the block with a numeri-
cally indexed array. This is because, as you go through the block, $x is increasing
in value by 1 each time through the block. You could then use $x to go through
an array one at a time, using the variable as the index to the array to access the
array values. For example, if you were making an Italian dish, you could access
the array as follows:

Snum = count (S$spices);

1
2. for ($x=0; S$x<$Snum; S$x++) {
3 add sspices|[$x];

4

}

The first time through the loop (when the value of $x was 0), line 3 would
read $spices[0] (whose value is 2T oregano) and it would be executed as:

add 2T oregano

The second time, the value of $x would be 1 and, because the value of
$spices[1] is 4T basil, it would be executed as:

add 4T basil

and so on. This is a technique we will be using often.

INTRODUCTORY PROGRAMMING 77

Operators

Because a computer is, by nature, a glorified calculator, one would expect that
any decisions it would need to make would look suspiciously like a math formula.
Sure enough, they do. Although the differences between languages can be quite
significant, the concepts remain the same. In the case of words, when you want
to see if the words or phrases match, you need to check and see if they are equal;
if they are different, they are unequal. With numbers and dates, you need to
know whether a number is equal to, greater than, or less than (or a date later or
earlier than) another. Different programming languages use different operators
to denote equal to, greater than, less than, and so on. For example, in PHP,
checking to see if $x and 1 are equal, you would use 1 £ ($x == 1), whereas,
in Visual Basic, you would use 1£(x = 1).Itis important that you learn how
the language you are using does comparisons.

You can also use PHP functions inside if statements. For example, one
function we use quite a bitis isset () to check to see whether a certain variable
has been defined: 1 f (isset ($username)).What this means is if the vari-
able $username has been set, then do something. Alternately, if $username
does not have a value associated with it (or if the value is 0), the code within the
block will not be executed.

Functions

The previous example required quite a few lines of code. If one were using them
in many different programs, it would take significant time, energy, patience, and
fortitude—to say nothing of serious carpal tunnel insurance to protect one’s
wrists—to do so much typing. Besides, each time you make a new copy, you take
the chance that something will not copy correctly, creating a potentially unpalat-
able bug in the resulting concoction. Furthermore, even if everything does copy
correctly, what happens when you want to make changes? You will have to find
and correct each copy manually, one at a time.

Luckily, there is an easy way around this that allows you to reuse that code
without having to key it in multiple times. The technique involves taking often-
used code and placing it in a separately named block, called a function. Once the
code is in a function, it can be called by invoking the function each time it is
needed. Breaking larger tasks into smaller tasks and then writing a function for
each smaller task is what is known as structured programming. Structured pro-
gramming makes writing and debugging a program much easier, increases the
flexibility and reuse of code, and reduces the number of times the same routine
code appears within a set of programs.

78 INTRODUCTORY PROGRAMMING

If you think about it, this is not all that different from the way we human
beings go about things. We don't think through each step it takes to complete a
task. For example, if we need to go to the store, we could create a mental list of
every step it takes to get there:

Get up out of your chair
Walk into front hall
Stop in front of dresser
Put hand out into bowl
Put hand on keys

Take keys into hand

Pull arm back to body

and so forth.

You get the picture. If we had to go through that type of mental list for every
task we undertook, we would never get anything done. Instead, we take all of the
steps needed to accomplish something, put them together as a single entity, and
define them as a task (the human equivalent of function) and even give it a name:
go to the store. Then, when we need something, we just (at the risk of sounding
like Commander Data) run the go_to_store () function in our mental sub-
processor unit and it gets done.

Note that we usually have a purpose in undertaking an action. For example,
go_to_store () is a rather generic function and doesn’t really get us very far (so
to speak) with so little knowledge of what we want to purchase. Therefore, when
we run a function, we usually run it with certain ideas in mind—in this case, to
go get something we actually want to buy. For this to happen, we need to run
go_to_store()Wdﬂlﬂmtobhcthlnﬁnd

In the programming world, these ideas are known as parameters—things we
pass to the function so that it can do what we want it to do. In this example, we
might include the parameters grocery store and food for dinner to the
go_to_store () function. This way, not only do we know the general task to be
done, we also have the actual “what to do” included. The way that we would
notate this in programming might be:

Sstore = "grocery store";

Sto_purchase = "food for dinner, chips for party, birthday

card for Jim";

go_to_store(S$store, S$to_purchase);

INTRODUCTORY PROGRAMMING 79

In this function call, two parameters are passed to the go_to_store ()
function. The first, $store, tells the function where we want to go and the sec-
ond, $to_purchase, tells us what to buy when we get there. With these two
pieces of information, the function can do its job.

When writing a function, parameters are always placed within parentheses
as they are here. Even when there are no parameters to be passed—as in the ear-
lier go_to_store() example—we must add empty parentheses as a way of
indicating to the computer that there are no values to pass. Although these may
seem counterintuitive, they are necessary to keep the computer happy.

As you will see, being able to call a function instead of having to write explicit
code every time you wanted to go to the store makes life considerably easier. For
this reason, a common practice in application development is to put functions
you use often in a separate file that can be accessed by any program. This allows
the code to be reused by, rather than rewritten for, many different programs. In
addition, if a change needs to be made (say you decide that you should actually
stir for 20 seconds instead of 30 for all roux in all recipes), only one line needs to
be modified for the change to be effective in all programs that call the function.6

I have created, for this book, a programming library in the companion mate-
rials download file—ala_functions.php—that includes a large number of func-
tions useful in developing database applications. In chapters 7, 8, and 9, I will
show you how to use some of them.

Putting It Together—Making a Sauce

The following code snippet demonstrates this concept by taking the basic sauce-
creation logic and placing it into a function called make_sauce () that takes the
basic steps and abstracts them into a stand-alone entity. You will have different
ingredients, depending on the type of sauce you want to make. This is where
variables prove so handy. What you do is to create a set of variables that will con-
tain the basic information you want the program to use when making the desired
roux. To change the type of sauce you are making, you merely change the values
in the variables passed to the function:

function make_sauce($sauce) {
Sfat = Ssauce["fat"];

Sthickener = $saucel["thickener"];

1

2

3

4. $liquid = S$sauce["liquid"];
5 Span = S$sauce["pan"];

6

Show_hot = $sauce["how_hot"];

80 INTRODUCTORY PROGRAMMING

7. Sdone = S$sauce["done"];

8. Shalf_cups = S$sauce["half_cups"];

9. Sheat_sauce = S$sauce["heat_source"];

10. Place Span on S$heat_source;

11. Turn on Sheat_source under S$pan to Show_hot;
12. Sroux = Sthickener + S$fat;

13. Place Sroux into S$pan;

14. Sroux_status = "raw";

15. while (Sroux_status == "raw") {

16. stir Sroux;

17. Stemp = temp(Sroux);

18. if (Stemp < Sdone) {

19. print "Not Yet";

20. } elseif (sStemp >= $done && Stemp < $done + 20
21. Sroux_status == "cooked";

22. } else {

23. Sroux_status = "burned";

24. throw_away ($roux

25. exit;

26. }

27. }

28. Heat S$liquid;

29. Sproduct = Sroux;

30. for ($x=0; S$x < Shalf_cups; Sx++) {

31. Sproduct = Sroux + (S$liquid * 1/2 cup);
32. stir S$Sproduct for 30 seconds;

33. print "You have added $x cups";

34. }

35. return(Sproduct);

36. 1}

)

{

Note that line 1 of the previous example includes the name of the function
make_sauce () and that immediately following the name, it has the word
$sauce inside parentheses. Here, $sauce is the array of values that is passed to
the make_sauce () function. In the program that calls make_sauce (), an array
named $sauce is created and is filled with the various pieces of information that
the make_sauce () function will need to do its work. Note that the sauce array

contains eight values. When the calling program is invoked, it in turn sends the

$sauce array to fill the associated parameters:

INTRODUCTORY PROGRAMMING 81

1. Ssauce["pan"] = "4 guart sauce pan";
2. S$sauce["Show_hot"] = "medium high";
3. S$sauce["heat_source"] = "stove";

4. Ssauce["fat"] = "4T butter";

5. S$sauce["thickener"] = "4T flour";

6. S$sauce["liquid"] = "8C milk";

7. Ssauce["Shalf_cups"] = 16;

8. Ssauce["done"] = 375;

9. Sbechamel = make_sauce(Ssauce);

You may have noticed that line 35 of the function contains the line return
($product). Many functions return a result to the calling program. In the
case of making a gravy, it would not make sense to go to the trouble of sending
all of these values off to the make_sauce () function if one didn’t expect a sauce
as the result. This is what the return (value) does. It takes the results of the
function and returns them to the calling program.

On the other end, line 9 of the calling program contains the line bechamel
= make_sauce($sauce). This essentially says: call the make_sauce () func-
tion, pass it to the $sauce array, and place the result in the $bechamel variable.

Note, if we were making a beef gravy, we would just store different values to
the various parts of the $sauce array as follows:

1. S$sauce["pan"] = "iron pot";

2. S$sauce["Show_hot"] = "medium high";
3. S$sauce["heat_source"] = "stove";

4. Ssauce["fat"] = "8T beef fat";

5. S$sauce["thickener"] = "8T flour";

6. Ssauce["liquid"] = "12C beef broth";
7. Ssauce["Shalf_cups"] = 24;

8. Ssauce["done"] = 375;

9. Sgravy = make_sauce(S$sauce);

Function Libraries and Applications

As noted, you can take individual functions and place them into a separate file,
from which they can be included in any application file in which you need to use
them. These libraries (and I will not insult your intelligence by explaining why a
collection of functions might be called a library) are extremely valuable because
you do not have to reinvent the wheel.

Gathering your own functions into library files is only the beginning. A num-
ber of other developers have also created their own function libraries and have

82 INTRODUCTORY PROGRAMMING

made them available on the Internet. By finding and using these libraries, mod-
ifying them for your needs, you can save even more time and trouble. The bibli-
ography lists just some of the libraries available.

Beyond just libraries, a number of development platforms—particularly
Perl, PHP, and Python—are being used in the cooperative development of full-
blown applications. These can range from library-specific applications such as
MyLibrary to more general programs such as shopping baskets, help desk apps,
and the like. The bibliography also lists some of the Web sites where one can find
such applications.

Program Structure

Just as there is a structure to cooking (you can’t knead the bread until you have
made the dough), so there is a basic procedure for writing a program. When
designing any program, you need to take a step-by-step approach to the entire
process. Then, within each step will be additional steps that need to be under-
taken if the larger step is to be successful. In larger programs, these smaller steps
may in turn have steps within them, and so on. This type of structured approach is
essential to good program development and one that will be used throughout this
book.

We can see this structured approach in action more clearly by examining the
process of cooking a dish. In this case, I will show a structured approach to fix-
ing Shrimp Etouffée. Figure 4-1 breaks the process of making this dish into its
component parts. Each box, reading from left to right and up to down, repre-
sents one of the steps in preparing étouffée and each is keyed to a step in the tra-
ditionally laid out recipe in appendix A.7

By taking this approach, application development is much less scary. Instead
of having a monolithic program that needs to be created, you define each of the
smaller—and hence more manageable—steps and knock them out one at a time.
Then, before you know it, you have written a program!

Deciding Which Tool to Use

Before proceeding, we should take a look at the various open source tools avail-
able for use in development. All of these tools are also cross-platform—meaning
that you can run them on Windows, Unix/Linux, and Mac OS X computers.
Although PHP is the tool that I will be spending the most time on, it is by no
means the only one you can use. In fact, you can find strong proponents of any

INTRODUCTORY PROGRAMMING 83

Shrmp Fioufee

I I I I

| I | Rous | Initial "
s i Ingredients [iwl

I Finish] I Serve |

| Add shraimp || Simmer I
Meamore Chap Make Take off
Spices Vepetubles Sock i
[1
| Simmer | Adloiler
mgredicnts
1
Rice->Pan Shrimp I Cook]
Stock
Figure 4-1

of these tools, each person giving strong reasons why their favorite is the “mother
of all development tools.”™ Although each tool (including PHP) has certain
strengths and weaknesses, we won'’t go into those details here:

Space doesn’t permit such comparison.

Such a comparison could easily descend into technical details.

Comparisons made as this book is being written will probably not be

valid once it has been published (things happen quickly in the open

source world).

There are enough true believers for any particular programming lan-
guage (including myself) that you are in serious danger of starting a
flame war from somebody who doesn’t agree with your evaluation of

their favorite tool.

I therefore limit myself to providing several points to consider in deciding

which tool to use:

84 INTRODUCTORY PROGRAMMING

Ease of learning. How long does it take to get up to speed with a lan-
guage? Does it require specialized skills?

Maintainability. How easily can the applications written in the language be
supported and maintained by the developers or by others? How
expensive will it be to hire/support somebody to work in the language?

Readability. Does the syntax make it easy to understand what is going on
in the code? Does the language use idiosyncratic operators that are
hard to understand or that are inconsistent in their meaning?

Rapid development support. Does it make it easy to develop applications
quickly? Do you need to spend a lot of time writing and testing code?

Error handling. Does the tool have mechanisms that will allow you to
gracefully handle unexpected events and problems, providing useful
information to developers and, for public applications, appropriate
messages to users?

Cross-platform. Does it support more than one type of server? Can it
run on multiple operating systems?

Built-in functions. Does it have a wide variety of functions built into the
system that you can use or is it up to you to write them yourself (or
find someone who has already done so)?

Flexibility and extensibility. Will it handle all of the things you need to
have it do? Does the language allow for the creation of function
libraries or modules?

Performance. How well does it perform, particularly given multiple
users?

User base. How popular is it and how many people are using it? In and
of itself, this is not important. However, the more users there are,
the more likely it is to be developed further; the more people out
there who can get you through problems; and the more likely you
are to find people who are able to program in it.

Libraries, modules, and third-party applications. Are there libraries and
other code out there that you can obtain and add to your application
(thereby avoiding having to reinvent the wheel)?

There are essentially seven open source language tools you can use to
develop your project. The first two—gcc/g++ and Java—are industrial-strength,
professional programming languages. The other five—tcl, Perl, PHP, Python,

INTRODUCTORY PROGRAMMING 85

and Ruby—are essentially Web server—based scripting languages that allow Web
development without demanding the computational or intellectual overhead of
the first two. These can be used via the CGI interface and each—to varying
degrees—can be integrated into the Apache server (and some with other Web
servers) as an included module. In addition, with the exception of tcl, all five
include object-oriented programming (OOP) capabilities, thus making it more
likely for you to be able to find OOP libraries that will make your development
work easier.

gcc/g++

These two tools, respectively, are the gnu C and C++ compilers. You can use
these languages in developing your project, but I wouldn’t suggest it unless you
have a lot of money and/or a predictable source of really good C programmers.
The reason is straightforward. It is true that C and C++ are widely used in indus-
try and business and produce fast,!0 extremely powerful, and flexible applica-
tions, but they require long development time and have the steepest learning
curve of any of the tools listed. As a result, they can be a support nightmare if
you don’t have appropriate expertise available (such expertise being not inexpen-
sive). Additionally, given that they support only the CGI interface, they are not
particularly well adapted to Web programming. Essentially, they should be con-
sidered only if you have long-term in-house support for C and/or C++ develop-
ment and will be using them for building in major Web-based applications.!1

Java

Created by Sun Microsystems, Java is a cross-platform, object-oriented language
that is currently the hottest programming tool for professional (read “expensive
to hire”) developers.12 It comes in a wide variety of flavors and can be used as a
CGI application, embedded within HTML pages (using Java Server Pages), or
can even support complete Web-based applications, forgoing HTML altogether.
In addition, it arguably has the best XML support of any language at this point
(although Perl and PHP 5.0 are beginning to give it a run for its money).
However, as with C/C++, Java is a professional developer’s tool and is therefore
probably beyond the scope of what you might want to consider for your projects.

tcl

Long known as a Unix scripting language (often in conjunction with tk, a graph-
ical interface development language), tcl (pronounced tickle) has a small but
scrappy following. Also, because it has been around for some time, it has

86 INTRODUCTORY PROGRAMMING

undergone years of development and has built up quite an installed base. It also
gathered a number of adherents after the AOLServer added a tcl interpreter
within the server (a precursor of the mod_* Apache modules). Tel allows you to
follow different programming models and offers a great deal of flexibility in how
you create your applications. It is available both via the CGI interface and as a
server module.

Perl

The most mature of the Web-development languages, Perl has a very wide fol-
lowing and provides the greatest power and flexibility of any of the scripting tools
mentioned here. Thanks to the CPAN (Comprehensive Perl Archive Network),
a tremendous number of libraries and modules have been created that support
virtually anything you might ever want to do, from Unicode to XML. However,
this power and flexibility comes at a price. Its syntax, which shows its roots in
Unix tools such as sed and awk, can be terse to the point of incomprehensibility.
Although it has traditionally been used as a CGI tool, the development of
mod_perl, and the subsequent creation of Apache::ASP and Mason, have made
Perl-based server modules possible.13

PHP

PHP is another C-like scripting language that has become extremely popular in
recent years, as is clear in the steadily increasing number of bookstore and library
titles, many in conjunction with MySQL. Because it supports both CGI and
server-side approaches, PHP is extremely popular with Web developers.14 It is
also especially easy to learn and use. Another characteristic that has helped in its
popularity, especially with database developers, is that its support for database
access is integrated into the system, rather than available through installed third-
party modules. Although it initially had some problems in being taken seriously,
PHP’s respectability has been helped considerably by Yahoo and other large
organizations, such as Lufthansa and NASA, switching over to it. PHP still has
fewer libraries available at this time than Perl, but the launch of the PHP
Extension and Application Repository (PEAR), designed to follow the CPAN
model, should help close this gap.

Python
Python is an object-oriented programming language that has generated quite a
bit of interest in the Web development community. Third-party modules have

INTRODUCTORY PROGRAMMING 87

been created, including a number for database access, though the number and
scope do not currently equal those available for Perl or even PHP. Python is held
to be easy to learn. One does, however, need to understand the basics of object-
oriented programming. Python also is used by a number of companies, including
Google.

Ruby

Ruby is characterized on its Web site as a “complete, pure, object oriented lan-
guage—not in the sense of Python or Perl, but in the sense of Smalltalk.” As with
most of the other tools in this section, support for database access is provided via
third-party libraries that you download and include in your Web pages or pro-
gramming code. Even more so than with Python, you will need to learn how to
write object-oriented programs to use Ruby.

Although all of the products listed have significant strengths, I think that
PHP provides the best balance of performance, robustness of development
efforts, size of user community, ease of use, and reasonable learning curve of the
products listed. By embedding programming instructions within HTML pages,
PHP makes it much easier for those who are just getting started. Once you have
a feeling for how things are done in PHP, you may want to explore some of the
information and links in this book and try some of these other tools.

Notes

1. Tam taking extreme poetic license here. In real programming, the number of an item is
usually separate from the type of item that it is. For example, the proper way to state
4T butter would probably be 4t * $fat. I bend the rules a bit here to make things
easier to understand.

2. This syntax for accessing array elements is based on PHP. You will need to check appro-
priate documentation if you are using another language.

3. The way to read this line is “starting with $x equal to 0, and as long as the value of $x is

less than the value of $half_cups, and adding 1 to $x each time through this loop, do

the following.” The phrases are not in the usual order, of course, but remember that we
are dealing with a glorified calculator.

This is not exactly true of the for loop. The differences will be explained.

I do not know whether 350 is the temperature at which the roux would in fact be done.

This, though, is a programming manual, not a cookbook.

6. Start thinking of functions as your friend. As you go through the exercises in this
book—or take on new projects of your own—and as you design the flow of the pro-
gram, be sure to consult the list of functions available in the language you are using to
see if there are functions that you can plug into certain steps. The O’Reilly Pocket
Reference series is a good place to start. See also the list online at http://us2.php
net/manual/en/funcref.php.

S

88

10.

11.

12.

13.

14.

INTRODUCTORY PROGRAMMING

My apology to all Louisianans out there if this is not a proper Cajun recipe. It’s the best
this Yankee can come up with.

Thanks to its relatively low learning curve and flexibility, it is in my opinion the tool
best suited as an introduction to Web programming for beginning programmers.

In fact, one of the characteristics of the open source community is an almost missionary
zeal in support of the developer’s and user’s viewpoint. The development language of
choice is no different.

These are, though, not that much faster when compared to languages embedded within
the server, such as mod_php, mod_perl, and others listed here.

One further complication is that to run gee on a Win32 platform, you need to install the
cygwin utilities from RedHat and then download the appropriate files and libraries and
install them on your computer. Not a task for the faint of heart.

While not currently an open source language, Sun seems to be moving (as of March
2006) toward making Java open source. In addition, Java is used extensively in a large
number of open source applications.

Both are available for users of the Apache Web server equipped with mod_perl and
Apache::ASP libraries.

It can be run as a module on Apache, Netscape, and IIS servers.

CREATING
REPORTS

Chapter

Let’s take what we have learned and put it to use. In this chapter,
I show you a variety of reports that you can create using PHP. We
will begin by creating a simple page to demonstrate the basics of
writing a Web-based report. Next, we examine how to create pages using search
parameters hard-coded in the page, by passing values to the page via the URL,
and then by using input from a form. We will then build on that knowledge to
create searching applications. (The annotated source code for all these scripts
can be found in Reports_Source.pdf in the companion materials download file.)

CREATING A BASIC REPORT

Report Structure

In our first example, we will create a phone list from the database we created in
chapter 3. The structure of this program is fairly simple, and is broken down into
four parts:

Connecting to the database—establishing a connection by sending the
database in question a username and password (required by most
RDBMS products)

89

90 CREATING REPORTS

Creating and sending a query—writing a properly formed SQL query
and then submitting it to the RDBMS

Creating the Web page—taking the results you receive back from the
database and using them to create an HTML page

Outputting the results—the Web server sends the resulting page back to
the user

Figure 5-1 graphically represents this process (moving top to bottom and left
to right). I have broken down the sample examples into the three steps—con-
necting to the database, creating and running the query, and creating the Web
page (as noted, the Web server takes care of the fourth step)—to make what we
are doing more clear.

e 2. Query 3. Create Web Output page
the database the page
database
Create the Send the 3a. Begin 3b. Go through
query query creating resulls record
HTML by record
page |
Read data into Embed variables
variables within HTML
codes
Figure 5-1

Creating the Report Program

Let’s begin by using this structure to create a report to output data from the tele-
phone database we created in chapter 3. If you look at report.php in
Reports_Source.pdf, you will see all of the commands used to create the report,

CREATING REPORTS 91

broken down into the three steps. These files include annotations (“comment-
ing” the code—always a very good thing to do when writing programs) that
describe what each step does.

To place these comments in the file in such a way so as not to confuse the
PHP server application, we need to surround them with special characters that
tell the module to ignore anything between them. In this book, we use four
types:

Placing this character on the first position on a line causes the line
to be skipped. We use this character, along with full lines of # before
and after the comments to help them stand out. For example, the
major sections of code we discussed above will have such comments
at the beginning of each section.

/x oL % Placing /* on the line before a comment, */ on the line
after, and then placing an asterisk in the first position on each line
in between identifies the block to the PHP module as a comment.
(The asterisks at the beginning of intermediate lines are not
required but do help to distinguish them from lines of code to the
reader.) We use this style of comment to explain subunits within the
major sections of the pages.

// Double forward slashes anywhere in a line will cause the PHP mod-
ule to ignore everything after it on that line. For that reason, we will
be using it to explain individual lines of PHP code, also known as
inline comments. For example, when the PHP engine comes to

$x = $x+1; // add one to $x

it will compute $x = $x+1 and then skip to the next line.

<lo— —-> We use traditional HTML commenting style for com-
ments in HTML areas.

When we run the script, the code creates a page that looks like the one in figure
5-2.

Let’s examine this script to see how it works. First we set up a PHP area by
placing the opening PHP tag (<2php) on line 1 and the closing tag (2>) on line
21. Anything that we type in between these two tags will be interpreted as PHP
code. Within this area, we will undertake the tasks listed in the first two boxes
listed in figure 5-1: we make the connection to the database and send the query
to the server.

92 CREATING REPORTS

[Ef Phone Directory - an'rl.ia _,__i_njg_g]
fle Edt Vew Go Bockmaks Took Window Help |
2. > .3 8 7. = = O
Bperd Sl e Yo [& mpitocatonexanglesichapter Shepotote 7] 2. Search | = I
| AhHome | Whbookmarks 2 Instant Message - Webtal #ZRadia - People. 4 Yelow Pages 4 Downlosd 4 Calendar »
-
Phone Directory =
Allen, Barbara 63467 [Cataloging 030 Jones Memorial Library ballen@mylib edu
Alton, Judy 9-7456 ForeignLanguages 226 Jones Memonial Library 1alton@myhb edu
Antony, Mare 98788 |Reference 126 Jones Memonial Library \mantony@mylib.edu
Amold, Fred 64784 [Science [490C Seience Library [Famold@mylib edu
Attenborough, Richard 9-8442 Reference 'IMJmsMemmidLibruy (rattenb of@mylib edu
Austin, Steve #7464 [HumonResowrces 224 Jones Memonal Library ‘saustin@mylib.odu
[Baker, Juline 3w Music (130 Mahler Center | baker@mylib edu
EBaﬂaﬂL Tem 3-2017 |Physical Educstion ED244 Hayes Sports Center (ballard 22@mylib.edu
EBall.em, Sam |[7-9089 _INewspnper 224 Jones Memarial Library ishaltera{@mylib adu
[Basdell, William 51223 [English 222 Jones Memorial Library [wbardeli@mylib edu
EButun.Clam 54323 Nusing ';ISWoudmﬁ'Rospihi (chart ib.edu
E—B_ah:l_mlsnibwTSG;geT _:1-4727 _{C;lal;éing_ - _-03_0 I;ss_Me_m!_m:a_lhbruy _fsbatche@_ mylib edu
i-Baﬁr]e)r, George 7-7460 Business I?I_SEJH Memonial Library i gyl bredu
iBel.L.Tus!ma 7-9892 Music [150 Mahler Center [ib e_ﬁ_@z_ lib.edu =l
S B 2 B @ | -,
Figure 5-2

First we make the connection in lines 13-14, using the parameters we set in
chapter 3, as shown in example 5-1.

Example 5-1

§db = mysql connect("localhost', "Phones", "Fone Usc" }:
mysql select_db{ "web_info", §db):

Line 13 uses PHP’s mysqgl_connect () function to connect to the database
server using three parameters: the host (in this case, localhost), the username
to connect as (the one we created in chapter 3, Phones), and the username’s
password (Fone_Usr, also set up in chapter 3), assigning the resulting connec-
tion to $db (note that if you changed either the username or password in creat-
ing the database, you will need to replace what is here with what you used at that
time). Then, in line 14, we use PHP’s mysqgl_select_db () function to use that
connection to tell the MySQL database server that we want to use the web_info
database and assign that connection to the $db handle (a handle is essentially a
variable that you use to communicate with the database).

CREATING REPORTS 93

Next, we create our SQL query and send it to the MySQL database server.
This is done in lines 19 and 20 (see example 5-2).
Example 5-2

1 §query = "SELECT * FROM phones ORDER BY last_name, first_name'":
20| $resulc = mysql_cuery($query, $db) or die(mysql_error()):

Here we create a variable name $query and assign it an SQL query that asks
for all fields (SELECT*) from the phones table (FROM phones), sorted by
last_name and, within that, the first_name (ORDER BY last_name,
first_name). Then in line 20, we use PHP’s mysgl_guery () function to send
the $query to the database (via $db), storing the results to $result.

Once we have our data, we proceed to the next step and create the actual
report page. First, we define the HTML area into which we will embed our
search results in lines 28-34 (see example 5-3).

Example 5-3
'é& <html>
3 <heads
30| <title>Phone Directory</title>
31| </head>
32| <body>

33| <center><hl>Phone Directory</hl></center>
34| <table border="1" width="100%">

Next we read the results into variables and output the values embedded within
HTML codes. We do the first in lines 4347 (see example 5-4).

Example 5-4
41| «<3php
2| while | $row = myagl fetch array($resulc)) ¢
§name = jrow[*last_name®] . %, * . jrow["firsc_name']:

$phone = $cow("phone"] ;
fdepartment = jrow["departmenc']:
$locacion = §row["location™):
femail = frow["email®};

<Lr>
<td><?php echo "$neme" ?></td>
<td><?php echo "§phone™ 75</td>
<td><?php echo "{departmenc’ 7:<&/feds
<td><?php echo "§location” ?></td>
<td><a href="mailto:<?php echo "femail” ?>Bmylib.edu”><%php echo "femail” ?>8mylib.edu</as</cds
</ee>
<7php
]
>

As you may recall from chapter 4, one of the techniques to output arrays is
awhile block, permitting us to access the contents one item at a time. What this
block is saying is this: While there is still a record to process, use PHP’s
mysqgl_fetch_array () to extract one record—in the form of an array—and
store it to an associative array named $row.l Then, just as we did with the
$sauce array in chapter 3, we can take each element in the $row array and save
it to a variable for outputting.

94 CREATING REPORTS

Using mysgl_fetch_array () to give us associative arrays (as described in
chapter 4) allows us to use the field name to access the field’s value. Next, we go
through each field we want to output and save its value to a variable with the field’s
name. In line 43, we actually place two fields into the first variable ($name): the
last_name and first_name fields so that we can treat name as a single entity.
We do this by joining them (concatenating) by taking the $name variable and

e assigning the value of the 1ast_name element of $row to it

e concatenating (adding) a comma and space at the end of $name
e tacking on the first_name from $row to the end of $name?

The final task is to output the values in our Web page. Although there are a
number of ways to do this, here we temporarily break out of the PHP block (line
48) and output the variables using HTML tags (lines 49-55). Then, so that PHP
doesn’t become confused as to where things end, we close the while block we
began in line 41 in lines 56-58 (opening up a PHP block so that the brace will
be interpreted as a PHP curly brace).3

Note that lines 49-55 are not within a PHP area. We therefore use echo
with each variable within a PHP block (<?php echo $variable ?>)to print
out the actual value. While we could have remained in the PHP block, that
would have required more typing (using echo for the HTML tags). This tech-
nique of using <?php echo $variable 2> can be very useful and one that we
will be using quite a bit in accessing PHP variables inside HTML areas.

One additional thing I have done to make this list more useful is to turn the
e-mail address into an actual mailto link in line 54 in example 5-4. We do this
by simply wrapping the output for the $email variable in the appropriate
HTML code.

Obtaining Selective Output

Now that we have a basic report, let’s be a bit more selective about what we out-
put. After all, one of the advantages of using a database is that it allows you to
retrieve only those records that match what you want to retrieve. As you may
recall from chapter 2, we create those subsets by adding a WHERE condition to
the query in the form WHERE <fieldname> = '<condition>'. Then, when
the database is searched, the search engine filter retrieves only those records that
match that condition.

CREATING REPORTS 95

Hard Coding

There are three ways you can set the condition. One way is to hard code the
query. For example, say you want to create a staff page for the Music Library (as
we have done in mus_lib.php). You would simply go into the PHP script above
and change lines 20-22 to read as shown in example 5-5.

Example 5-5

fquery = "SELECT * FRONM phones
WHERE department='HNusic'
ORPER BY last_name,first_name’;
§result = mysal aguecry(| fauery, $db) or die{ mysdgl ercor()):

You would then get the screen shown in figure 5-3.

E Phr..m-_-‘ Directory - Mozilla _,_{D_L!l

Bl Edt Vew Go Bookmaks Took Window Help |

2. = .2 8 7w amheidtios prow— %= |
Back Fotward Reload Sieip 1'& Pitpsflocahosts er_Sfmus_b.php —I .é'—l Print m
“hHome | Whbockmarks 2 Instant Message - Webtial #ZRada #ZPeople 2 Yelow Pages 4 Downlasd 4 Calendar »
Phone Directory

;BachJuims 3-32’?8_‘1\.!;:1:_ 130 Mahler Center [ibaker@mytib edu

iBelI. Joshua :‘.‘-9393 Music 1150 Mahler Center (bel@mylib edu

[Brain, Dennis 38849 [Music 150 Mahler Centes |dbrain@mylib edu

[Brannigan, Owen 6440 [Musie 150 MahlerConter lobransigan@mylib edu

[Elliott, Willard 31933 [Music (150 Mahler Center [welliot@mylib edu

[Fox, Virgl 384 Music 150 Mahler Center [ib.edu

Horenstemn, Jascha 32m% Music 150 Mahler Center [horenstein@mutib. edu

Mack, John 3-2333 Music 150 Mahler Center (imackBimylib edu

Marcellus, Robert 39233 [Music 150 Mahler Center [mmarcell fib.edu

[Russell, Anna 77463 Music (150 Mahler Center |arusseli@nytib edu

Iﬁapp. Alan ?—1766 EMusiJ: |150 Mahler Center las ib.edu

:Ffaﬁg;rgeems _______ 59222 _i.hE.: _EHOMaﬁeE:aM o ' tam@_mﬂ'h_sd&_ S
ER-R A KA el i

Figure 5-3

Passing Parameters via URLs

Besides hard coding a condition into a script, we can also pass a parameter to the
page via the URL and the page can then use it as the basis for its query. An
extremely useful technique, this enables us to automatically generate a page

96 CREATING REPORTS

containing a defined subset of a database by simply passing the page a parame-
ter that defines that subset. By allowing us to encode this search into a URL, we
have much more flexibility in how we use our database.

For example, say we were responsible for the Music Library’s Web pages
and wanted to include a link to a Music Library staff directory on our depart-
ment home page. We could create such a link by embedding the following URL
in that page:

Directory

To process this request, we need to copy the report.php to url_report.php and
then make appropriate changes to url_report.php:

Because variables passed via URLs are passed using the GET method, we
first make sure that such a value has been passed (see line 20 of
example 5-6). If so, we save it to a variable named $department
(line 21). If not, we indicate to the user to provide a value and how
to do so (lines 24-25) and exit (line 26).

Example 5-6
'30 if [issec{ §_GET["departmenc”))) (
21 jdepartment = § GET[“department”];
22 $department = urldecode (§department):
23]) else (
z4 echo "You will nesd to provide the name of a department in the form ":
;5 echo "<ha><i>url_report.php?department=glt:departmant nameige:</i> as the URLY:
5 exic;

27 1

26| 4quecy = "SELECT * FROM phones

25 UHERE department='§department’

1 CGRDER BY last_nomwe, firat_name":

31| Sresule = mysql_quary{ $query, $db | or die{ mysql_srroe()):

Note that some of the departments in the department list have two
words in their name. However, we can't create a URL string con-
taining a space in the middle of it (for example, <a href="url_
report .php?Department=Special Collections">Special
Collections) because the browser won't process anything
after the first space it encounters. Therefore, a URL for this
resource must replace spaces with %20 (the hexadecimal code for
Space): <a href="url_report.php?Department=Special%20
Collections">Special Collections However, we need
to turn it back into a space before sending it to the database.
Therefore, in line 22, we use PHP’s urldecode () function to do
that transformation for us.

Finally, we need to modify the query so that it uses the parameter that
has been passed to it (line 29).

CREATING REPORTS 97

Before proceeding, I would like to briefly explain the concept of superglob-
als. Superglobals (reserved variables) are global associative arrays built into PHP
to make certain types of information available between PHP pages. In the case
above, $_GET is an array that contains all of the information being passed to the
action page via the GET method. There are a number of these superglobals we
will be dealing with throughout this book.

Although we won't spend a lot of time exploring variations of embedding
search parameters within a URL, it is an extremely powerful and useful tool in
Web database development. It allows you to pass parameters via the URL, per-
mitting you to create canned searches of your database and embedding them as
hyperlinks either in Web pages or, if appropriate, in the 856 fields of MARC bib-
liographic records in your online catalog.

Search Input Form

Although the previous examples do some valuable things, they are only a begin-
ning. After all, you won’t want to (let alone be able to) create a report for every
query that a user could possibly want. Better to set up a way by which a user can
enter his or her search parameters. After all, isn’t that what databases are sup-
posed to do?

To enable end-user searching of a database, we need to have two files: one a
form into which users can enter their search terms (input form) and one that will
take those search terms, query the database, and output the results (action page).
The first thing we do is create the query form (report_query.php). Although it is
fairly straightforward, there are a couple of aspects we should take note of. First,
in line 7 (example 5-7) we have defined the action (the name of our action page)
as report_ search.php. The other is that, in line 23 (example 5-8), we have cre-
ated a text <input> box with the name of department.

Example 5-7
'?'l <form method="POST" action="report search.php">
Example 5-8
33| <input type="rcext"” name="department"” size="30" maxlength="80">

This name here will be the name of the variable that will be passed to the
action page. We use the name of the field (with the same capitalization) that will
be searched. As you will see, doing this greatly facilitates your work with data-
bases and makes your code much more supportable.

Although this page has a .php extension, it does not contain any actual PHP
code. This is extremely important to note, particularly once we get to chapters 7,

98 CREATING REPORTS

8, and 9. Creating HTML pages with the .php extension opens the door to a
number of possibilities, including

* pages with global variables, headers and footers, and other features that
PHP can make available to you

e PIIP-based authentication and authorization mechanisms to restrict
access to the pages (something not possible with .html extension files)>

Action Page

Once we get the user input, we need to do something with it. This is where the
action page we have named report_search.php comes in. The following figure
demonstrates the basic structure of an action page in a searching application. As
you can see in figure 5-4, it is a slight variation on the report structure discussed
above, the only difference being getting the user input.

To create our action, we take url _report.php and copy it to report_
search.php. Then, because we have defined the method in report_ query.php as
POST, we need to modify line 20 (example 5-9) to use the $_POST array instead
of the $_GET array we were required to use when taking values from a URL
string.

Example 5-9
'1_2"'2_l| $department = § POST["departmwent”];

[| | |]

Connect to database Query Create Web | Output page
page

Get user the

input database

Create the Send the Begin | 1 Go through
] ¥ creating | | results line
query query .
HTML by line
page
Read data Embed variables
into variables within HTML

codes

Figure 5-4

CREATING REPORTS 99

Now, if we enter systems into the Department text box in the
$report_query search inputting form, we get the result shown in figure 5-5.

Before proceeding, let me point out a naming convention used here that will
be used throughout the book. All input forms meant to gather user terms (and
then pass them on to a searching action page) will have a base name of query.php
with an identifier (in this case, report_) as a prefix to indicate its role in the appli-
cation. The action pages that do the search and output results will use search.php
(with the same identifier prefix) as their base name. This practice allows you,
first, to group pages based on what part they play in the greater application and,
second, to have a predictable way of naming files so that you will be able to tell
by looking at the name what each one of them does.

0% phone Directory_Mozila <
[Be ER Vew Go fookvaks Tods Window Hep |
w .= .3 % } b ek Chapter sherdes ¥| 2 Search 'E‘-
bl b - S oot shorce: 7| 2 Searh| Pt .-
7| A tiome | Wssokmarks P instant Message £ wiebiial PRado #reople £ YelowPages £ Downoad 4 Colendsr fchannels » |
Phone Directory
:Cor. Wally 9.5422 ’Sysulns [135C Jones Memorial Library [Wc i edu
iDexﬁngSa!ly 0.3346 Systems 135 Jones Memonial Library |sdeding@mylib edu
IFosu;Suphcn 24070 E_Sysums 135A Jones Memonal Library Esfommhb.edu
\Jewell, Mary :6-5565 ::Systms 135E Jones Memonal Library |miewreli@mylib edu
[Lubich, Nicola 9.4310 Systems 135 Janes Memorial Library [nlubich@mylib.adu
[Pace, Otlando 76877 [Systems [135A Jones Memosiel Library |opace@myliv.edu
|Pears, Nick 6-6247 Systems |130 Jones Memorial Librasy |npearson@mylib.edu
|Reed, Owen 6-5365 Systems |I3SE Jones Memonal Library |oreedmylib edu
%’mﬂh Hieronymous 6:5_9_38 B Systems IT’;‘{SEJ'-Oms Memonal Library !h&mimr_nghb.edu
[Westiand, Joha 90192 Systems (130 Jones Memorial Library [swestman@mylin edu
ianhl. Orwalle i\;.sm Systams 1354 Jones Memonal Library ownght@myiib edu
!W:ighl. Willbvus ,*;Lmv Systems 135A Jones Memorial Library wwright@mylib sdu
Al e

Figure 5-5

CREATING SEARCHING APPLICATIONS

I have now given you the basic structures you need to create database-searching
applications. In the rest of the chapter, I show you some ways you can expand on

100 CREATING REPORTS

these ideas to implement more sophisticated searching techniques. We begin by
adding more fields to the search form.

In looking at these different approaches, we will limit ourselves to applica-
tions that use a single table. Searching multiple tables is more complex because
it involves joins to carry out the search. I have found that it is better to start
slowly and cover the basic elements of searching applications. We explore
searching multiple-table databases in chapters 7 and 9.

Note that the examples that I provide in this book involve using SQL to
search relational databases. This approach can be both RDBMS-specific (if one
uses proprietary features—as I do—in their programming) and demanding on
the programmer, who must be able to write sophisticated queries to retrieve the
desired information.

One possible alternative is to write report programs that extract information
from the database and store it in individual files. You would then use a Web
search tool, such as Swish-e, to index and search those files (rather than the data-
base directly). Although this approach does require recreating the files when
information in the database changes, it does offer some advantages. Not only does
it give you access to some pretty sophisticated searching techniques (including the
ability to index and search HTML, XML, and PDF documents), it relieves the
programmer of having to write the search engine. Although describing how this
can be done is beyond the scope of this book, I have included more information
in the bibliography and some setup and configuration instructions in Setup.pdf,
part of the companion materials download file.

Inputting Multiple Values Using AND

So far, all of the searching we have done has involved a single search term or
phrase posed to a single field. Although this can be useful, it is simplistic and
doesn’t allow for much refinement of the searching process. To search multiple
terms, we need to provide a mechanism by which multiple terms can be entered.
Then we need to take the search parameters and construct appropriate SQL
queries. In this section, I will provide some examples for doing just that.

Multiple Text Boxes

In the next example, I will construct a search form (multi_query.php) that will
allow the user to search four fields: first name, last name, department, and loca-
tion. Although the form is fairly straightforward, when writing the action page
(multi_search.php), we need to take into account that the user may fill in any, all,

CREATING REPORTS 101

or even none of the fields on the page. We then need to take appropriate action
based on their input. Example 5-10 demonstrates the last of the three cases: the
user has input nothing. Because we need to have something to search, at least
one of the fields needs to have a value.

Example 5-10

18| $first name = trim{ §_POST["first_name®] j:
20| $last name = trim{ § POST["la=st_nmwe®] };
21| sdeparement = vrim(§ POST[“departwent")):
‘22| $location = trim| §_POST[“location™] |:

2
| e e e P T
%25| * Next, we construct the §where string to check each one of the form's

.:\?_‘S * fields. If it finda a value, it adds an appropriate WHERE condition
29| * to the ‘fuhere ary

28| TrrrrszrrrsssrsreEreszEess rrrwsrTeEzIrTTszTITIzTIeTEETTIEaEETRITEE /
29| if [$ficsr_name == "M g5 §last_name == ov &6 §deparcment == " £g §locarion == YV) |
30 acho "Please snter & gquery™;

31 exity

)

What the block between lines 29 and 32 is essentially saying is that if first_
name is blank and 1ast_name is blank and department is blank and 1ocation
is blank (&& being MySQLs Boolean AND operator), then tell the user “Please
enter a query” and exit the program. We can assume that the program will skip
this block, if any of the fields is not blank, and go on to line 55 (see example 5-11).
To make this work, we need to make sure that there are no extraneous spaces in
the queries, such as the user accidentally hitting the space bar at the end of their
input. We do this by using PHP’s trim () function to eliminate any spaces before
or after the terms in lines 19-22 when we read in the query parameters.

Example 5-11
a4 sv = o0:
JrrrrreEae rr R L e e et
* Then, we mse if the sscond ssarch has a field and value. If so, we attach
v it to the end of the §vhere scring.
TETRERRRRRRARTRRRR RN ruw rrsreney TeRTREREEY rrrrrren)

it (§ficsc_name !="%) (
jwhers_ary[iw] = "firat_neme = '§first_name’":
Sukts

frrerssrEEnesenany T EEEATETIETTEEERITTIERRTEIITETEERRITTEERIAIEITITERRS

* Then, we do the same vith the Last Neme

if | §laat_name !="")
jvhere_ncy[§e] = "last_name = '§last_name'";
futts

1

RN AN TR AR AT NTRE AN AT IR R R NATITRRRANATARENT
* Then, we do the same with the Department.
R ey
if | fdepartment (=" §

jvhere_ary[fw] = "department = '{deparctmenc'":

Swess
Al

qo T T e e L
61| ™ Then, we do the same wich the Location.

62| TrreTrrEEEEEssEEEEETsrEREEEEEESRTEEORSETREEEARETSRERRAETRTRRREARTRRRER TR RN
SS if { flocacion i=Mv) |

_6! jvhere_ary{fv] = "iocation='f§location'™:

65 Suss;
o]

102 CREATING REPORTS

The next section of code (lines 34-66), shown in example 5-11, checks each
variable coming from the form to see if the user has input something for that field.
For each one it finds, it adds a WHERE condition to an array ($where_ary) of
WHERE conditions. In the first one, it checks to see if $first_name is blank. If
not, it saves first_name = 'S$first_name' tothe Swhere_ary [$w] element
($w being equal to 0 at that point, having been set to that value in line 34) and
then adds 1 to $w (making it equal to 1). The program then goes through the rest
of the list of fields, adding an element to the $where_ary array and adding 1 to
$w for each field for which a value has been entered by the user.

When we’re through, we have an array of WHERE conditions to add to the end
of our SQL query. At line 71 (see example 5-12), we begin a for block that will
go through the $where_ary array one element at a time and add its content to
the swhere statement. In line 72, the program checks to see if this is the first
element to be processed. The reason for this is that we need to have an AND
between all elements (but not before the first one). By processing the first con-
dition or element separately, we can place the condition field = 'value' at
the beginning of the WHERE statement. Then, for every statement that comes
afterwards, we just tack AND field = 'value' on to the end of the statement
(as we do in lines 74-76)—thereby allowing us to not add more ANDs than we need.
Example 5-12

"é R EEEEETN I ETIETENIATTEITTIEANTETTEIETRTIEETITERTRNTEIEETRTNRTNTTEETEEENT
'69 * Now we go through the $where ary, constructing our $where statement.

-'To 'tlll"titlltlll‘!l‘l'lttttt‘ltItttttl‘l!‘tltttttl't'tttttlll"titllttllt!“llttl;
11 for (§x = 0; §x < §uwr $x++4) {

72 if ($x ==0) {

73 §vhere = §vhere ary(0]:

74) else {

s §vhere .= " AND §where ary[$x] ":
76 ¥

il

8

qs f‘ltitt‘t"tttt‘lt‘).“tttttt‘lt"Itltttt‘t%tltttt‘tlCttltttttitt““tttt‘t‘t“'tt
90 * Now we put all of these chings togecher, creace our guery and send ic

€1 * to the database

B2 TR RN N NN NN AN AN NTEENAANANTATTENN
‘83| $query = "SELECT * FROM phones

84 WHERE $§vhere

B85 ORDER BY last_name,first_neme":

86| sSresult = mysgl_guery($query, $db] or die(mysgl error()):

87| $nwm rows = mysql_num rows(§resulc):

Once we have built a $where statement, we use it in constructing our query
(lines 83-85) and send it to the database (line 86). Then, in line 87, we use PHP’s
mysgl_num_rows () function to store the number of records retrieved by our
query to $num_rows. If the number is 0, we inform the user in lines 109-112
(example 5-13) that their search has been unsuccessful and that they should try
again (and exit the program). If it is not, then we proceed to create the screen as
in earlier examples.

CREATING REPORTS 103

Example 5-13
103| if { $nuw rows == 0) (
!_,1_{: echo "Your search retrieved no resaults. Please go back and try again®™;
A1 exic;

13z])

Adding Features

The previous examples have given us the basic concept, we now explore more
real-world techniques that can help your users find information. In the next
example application—multi_keyword—we will explore two such techniques:

drop-down lists and keyword searching.

DROP-DOWN LISTS There may be times when your users don’t know the
alternatives or the values in the database. In such cases, it can be helpful to give
them a list from which they can select, rather than making them guess what may
be in there. HTML forms provide a wonderful technique for doing that: the
select list. Example 5-14 modifies the previous form to make a list of what is in
the database and to create an alphabetized drop-down list from which the user
can select.

Example 5-14
22| Department: <brr
23| <select name="department”>
24 <option></option>
25| <?php
'2,:'5 $db = mysgl connect("localhost", "Phones", "Fone Usr"):
27 mysgl_select_cb("web_info”, $db):
;2:5 §query = "SELECT DISTINCT department FRON phones ORDER BY department”;
39 $result = mysql _guery($guery, $db) or die(mysql_error() }:
30 while (§row = mysql_fetch array(§result)) {
31 $department = $row["department”]:
32 echo "<option name=\"§department\">{department</option>\n";
33 ¥
34| >
35| </select>

In lines 22-35 of multi_keyword_query.php, we can see how this can be
achieved. In this example, we treat the department field in this way by creating
a select list, filling it with data from the database. Lines 2224 and 35 provide
the HTML structure for the list. In lines 25-34, we create a PHP block where
we do a mini-report containing all three sections of a full report: making a con-
nection to the database (26-27), creating the query (28), running the query (29),
and then embedding the results in HTML, this time as a set of <option> tags
(30-33).

Although the outer parts of it are like any other select list, there are a few
things to note within the PHP block:

104 CREATING REPORTS

We create our query using the DISTINCT SQL operator. This tells the
database to give us a list of all unique values within the department
field, eliminating all duplicates. In addition, we sort the output by
the department field.

We go through the results record by record—while ($row = mysgl_
fetch_array($result))— saving the current record as an
associative array to $row and then reading the department field
value into the $department variable.

The values for each record are plugged into an <option> line and out-
put to the screen.

The new line parameter \n is added to the end of each <option> line to
make debugging easier. Although making no difference to the
HTML output, it does make it easier to read the page source from
within your browser’s View Source window by creating a new line
after each option. Otherwise, the entire block will be on one long
line.

KEYWORD SEARCHING Another feature we will want in a searching applica-
tion is to be able to search by keyword rather than requiring the user to search
by the entire contents of the field. There are three ways to implement keyword
searching in MySQL:

1. Use the LIKE operator. As we saw in chapter 2, this is clearly an unsatis-
factory technique to use because it often returns counterintuitive
results. It also takes truncation out of the hands of the end-user.

2. Use MySQLs FULLTEXT indexing capabilities. Although a proprietary
technique within MySQL, many other products do offer similar capabil-
ities. This is the approach I demonstrate in this chapter. For it to work,
you need to go into phpMyAdmin and add a FULLTEXT index to the field
you wish to search in this manner (which you should already have done
as part of the database creation step in chapter 3).

3. Use regular expressions. Regular expressions are a very powerful—if not
easily learned—technique built into many systems, including MySQL.
Because of their complexity, we won't be able to deal with them here. I
have, however, created several functions for chapters 7 and 9 that use them.

The syntax for FULLTEXT index searching in MySQL on a field where mul-
tiple conditions are included is:

CREATING REPORTS 105

MATCH (<field_name>) AGAINST ('+<value_from_form>' in BOOLEAN
MODE)

In multi_keyword_search.php, I have modified the multi_search.php file to sup-
port a keyword search of the location field. Once we have created the
FULLTEXT index on the location field in phpMyAdmin (which we did when we
created the database in chapter 3), all we need to do is to modify the step (in
lines 65-68) in multi_keyword_search.php where the WHERE condition for
location is created to enable keyword searching (see example 5-15).

Example 5-15
65| i (ficcavion t=mm y ¢
56 §where ary[§w] = ™ MATCH {location) AGAINST ('+flocation' in BOOLEAN MODE) ":
67 fusss

Now, by entering Jones into the Location box, we get a listing of all person-
nel in Jones Memorial Library, no matter their room number. In fact, we could
even enter Jone*, using the asterisk as our truncation symbol.

When using FULLTEXT indexes, you need to keep several things in mind—
things that may have an impact on the desirability and usefulness of the feature
(note that none of these apply to the third option that we discussed earlier in this
chapter: using regular expressions):

It will ignore any word of three letters or fewer (unless it has a trunca-
tion operator). However, this can be changed by changing ft min_
word_len (the minimum word length parameter) in my.cnf.6

It will fail if your search contains any word that appears in more than 50
percent of the records in the table you are searching.

It does not permit features such as transactions and foreign key con-
straints. We will discuss this limitation further in chapter 7.

Using AND and OR

All the searches we have done until now have placed a Boolean AND between the
terms we have been searching. Although using AND can help refine your search,
there may be times you want to expand your results set by OR’ing terms together.
Before proceeding, you need to go through what is known in programming (and
other) circles as operator precedence. Simply put: do you want to group the
terms that have been ORr’ed before or after you group the ones that have been
AND’ed?

106 CREATING REPORTS

For example, let’s say we have a sentence: Sarah and Jim or Bill got married.
This could either mean “Sarah and Jim got married OR Bill got married (to
somebody else)” or it could mean “Sarah married either Jim or Bill.” Because, as
we have already noted, computers aren’t the brightest bulbs in the shop, we need
to be explicit about who goes with what, or the computer will do it its own way
(which may not make the three people in question very happy). In the following
example, we make the decision that we will OrR our terms before we AND them
(leading to the second interpretation of our nuptial dilemma).

In terms of what the inputting form looks like, I have made a couple of
changes that give the user more control. First, the user may want to look for two
different last names and not care about departments. In using this form, the user
is allowed to choose the fields to be searched, including being able to select the
same field more than once. I do this in two steps. First, rather than hard coding
the field names, I create a drop-down select list from which the user selects a
field, that field name being stored to Fieldx (see example 5-16). Then, when the
form is processed by the action page, the field name represented by $Fieldx—
rather than a hard-coded field name—will be entered into the query.”

Example 5-16
12| <select name="Fieldl">
13 <option></option>
14 <option values"firsc name">First Name</options>
15 <option value="last_name">Last Name</option>
16 <option value=s"departmenc”>Departmenc</option>
17 <option value=s"location">Location</option>

18| </select>

Then, to pass on what the user wants as the operator, we create a drop-down
list using the variable names Operatorl, Operator2, and so forth (example 5-17).

Example 5-17
24 <select name="Operatorl”>
25 <optionr</option>
26 <option value="AND">iND</option>
27 <option value="OR">OR</option>

28| </select>

Users also often have different needs for how they want to sort their output.
One way to enable this is to provide a drop-down where they select the order
they want. Then, when the form is submitted, their information is passed to the
action page and the appropriate sort can be undertaken. I have provided an
example of this in example 5-18, where a drop-down list for an order variable
has been created.®

CREATING REPORTS 107

Example 5-18
go| order by:
<select name="Order">
<option value="last_name,first_name">Name</option>
<option value="department">Department</option>
<option value="location">Location</option>
</select>

Once we have made these changes and filled in the form with a sample
query, we get the screen shown in figure 5-6.

When we get to the action page (and_or_search.php), we encounter another
variation on our query construction step. Here, we need to construct an interme-
diate string that we can then break up into constituent elements to construct our
final query. Figure 5-7 provides a basic road map to the process.?

Here, we first check for each of the four potential fields coming in for new
user input. In the first field, we make sure that the user has both selected a field
name and input a value. If not, we ask the user to enter a search, after which we
exit the program.

[search le Phone Dat.}he - Mozilla —z'__i_gJ',_!l
a&k - F:?:ird - a;%;d ;‘i i.& hitp:/flocabostfexamples{Chapter_Sfand_or_quers ¥ | é__]kmh g he
7| ZhHoms | bBockmarks 2 Instant Message - webMal Rada £ People P Yelow Pages 4 Download 4 Calendar 5
Search the Phone Database
[Cocaton =] [Ghrany [0 =]
[Depatment =] [Amiisiation o =1
IlDeuaﬂmer& 3 !'I:.Systems !] 'I
I 5
i Order'by:lﬁame 'I
' Seach | | Clear Forn | |
5% &5 2 (D & | Doe o=l &

Figure 5-6

108 CREATING REPORTS

Create and executd
the query

I l I |

Define the Create Swhere Put $where together PZ;S'S S?";E.
constants value statement with other elements atnng
4 executed
to create full Squery

Build$temp_where
string, inserting
user-defined Boolean|
operators as desired

Break $temp_where

into $hoolean element

array, using explode()
to divide on AND

Construct the Swhere statement,
walking through $hoolean clement
array. Where an clement contains

OR. place() around it and add to
the end of theSwhere statement.
Otherwise, just add it

Figure 5-7

If there is a search, we use the value of $§Fieldl in creating the WHERE con-
dition, rather than defining one beforehand (because we don’t know what that’s
going to be before the user selects it).

Within each of the four if areas, we check to see if the field the user
selected was location. If so, we use FULLTEXT syntax for the WHERE condition;
if not, then we use the normal field="'value' format.

For each parameter, we add its search element (either field="'value' orthe
FULLTEXT-formatted element) to the end of the $temp_where_str variable.

In our search above, once the entire search entered into the above figure has
been processed, the $temp_where_str variable has the following contents:

MATCH (location) AGAINST ('+library' in BOOLEAN MODE)

AND department = 'Administration' OR department = 'Systems'

Next, we need to use the $temp_where_str string to create a where statement
implementing our desired operator precedence in lines 95-107 (example 5-19).

CREATING REPORTS 109

Example 5_—19

$boolean = explode(" AND ", §temp where str);
§num = count | $boolean):
for { $x=0;§x<§num;§x++) {

jor_pos = strpos(Fboolean[$x], " OR "):
if (§or_pos > 0) {
$boolean[$x] = "(" . $boolean[dx] . "} *:

]
if { $x == 0) {
§uhiere = " $bhoolean[§x] ":
1 elae {
$where .= " AND S$hoolean[$x] ":
H

Because we have decided we want values to be or’ed first, we need to break
up the $temp_where_str string on the lower precedence operator—in this
case, AND, using PHP’s explode () function to split on AND to create an array of
elements.

Sboolean = explode(" AND ", Stemp_where_str);

This takes the $temp_where_str variable we have created, splits it into sepa-
rate entities (dividing on AND), and then saves the results to the $boolean array.
The contents of that array would look like this:

Sboolean[0] = MATCH (location) AGAINST ('+library' in
BOOLEAN MODE)

Sboolean[l] = department = 'Administration' OR department =

'Systems'

Next we find out how many items there are in the $boolean array, using the
PHP count () function, and assign the number to $num (line 96). We then use
$numin a for loop to go through the array, looking for or’ed statements. To find
them, we use PHP’s strpos () function to find the position within the element
where Or might be found and store that number to $or_pos. If it is not found,
then the value saved to $or_pos will be 0 and control will drop down to the next
if statement. If it does find one (that is, when $or_pos is greater than 0), it
knows that there is an OR there and puts parentheses around the entire element
(so the database will put them together first) and saves the result to $where (put-
ting an AND in front of it if this is not the first time through the loop).

The first time the block executes, it will check for the presence of ORr and,
not finding it ($or_pos==0), it will skip to the next if statement. Because this
is the first time through the block, $x will equal 0, and $where will be set to the
value contained in $boolean[0]. Then, the second time through, the script will
see that $or_pos is greater than 0 (actually, that OR is in position 30), and will

110 CREATING REPORTS

place parentheses around sboolean[1]. Then, because $x is equal to 1 the sec-
ond time through the loop, it will append AND $boolean[1] to $where in line
105. The contents of swhere now read:

MATCH (location) AGAINST ('+library' in BOOLEAN MODE) AND
(Department = 'Administration' OR Department =

'Information Technology')

One further thing needs to be noted. This search page has a large number
of values coming in from the input form. Rather than localizing each one sepa-
rately, we employ a trick that we will be using throughout the rest of the book.10
We use PHP’s 1ist () function to take the superglobal—in this case $_posT—
and go through it one element at a time, turning each element in the array into
a local variable/value pair (example 5-20).

Example 5-20
24| while (limc{ $key, §value) = each(§ POST)) (
25 §{§keyi=§value;

28|)

When it comes in, both elements of the key/value pair are strings. However,
we want to turn the key string into a variable with the name of the key string (for
example, “key” —> $key). For example, if we have a name/value pair of author/
Dickens, we would like to be able to create an $author variable and give it the
value Dickens.

The technique that we use on line 25 to make this happen—and one that is
invaluable in writing PHP applications—is the technique of taking a string and
turning it into a variable of the same name. By taking the value of $key, wrap-
ping it with curly braces, and prefixing it with a $, this transformation is magi-
cally accomplished. For example, see the following code:

Stitle = "The Brothers Karamazov";

Sfield_name = "title";

echo $field_name; // would give you "title"

echo ${S$field_name} // would give you "The Brothers Karamazov"
This chapter has provided a brief overview of some of the techniques that you
can use to search a MySQL database, but we have only scratched the surface of
the possibilities. Although useful search interface is one of the more difficult and

complicated aspects of database programming, you should be able to get a good
start using some of the ideas here.

CREATING REPORTS 111

Notes

1.

10.

You may have noticed a pattern here—three variables named $query, $result, and
$row. In fact, using query, result, and row as the base for variable names. Then, when
multiple queries are being handled at the same time, we simply add a prefix to describe
which query is being referenced—a good example of self-documenting code.

This is done using the period, PHP’s string concatenation operator. If you want to join
things together, you put them in a row and place a © . ~ between them. For example,
if we say $x="10 million", and then $message="vou have won " . $x .
dollars", then smessage would be “You have won 10 million dollars.”

One of the beauties of PHP is that you can break into and out of PHP blocks any time
you need to. All you need to make sure of is that you close off all of your loops. If you
do not, the script won’t work.

Specifically, $_GET, $_POST, $_SESSION, and $_SERVER. For more information, see
the PHP manual at http://Awww.php.net/manual/en/reserved.variables.php or http://
www.linuxgazette.com/issueS6/lechnyr. html.

You can configure Apache to send all HTML files to the mod_php processor, but this
might have an unexpected and not altogether desirable impact on your Web server’s
performance.

“Fine-Tuning MySQL Full-Text Search,” MySQL Reference Manual. Available at
http://dev.mysql.com/doc/mysqgl/en/fulltext-fine-tuning. html. See Setup.pdf for more
details on my.cnf. In some post-4.1 versions, the configuration file is named my.ini.
The x in $Fieldx is a variable to indicate a number, such as $Fieldl, $Field2, and so
on.

I did not include a blank <option> line, making the first one the default value. We
therefore won’t have to check to see if the field is empty in the action page.

In the interests of saving space, I detail only the steps involved in creating the WHERE
statement.

Localizing is a way of saying “taking a superglobal variable and making it local.”

PROJECT
DESIGN

Chapter

Now that we have covered the basics of designing and imple-

menting databases and of writing reports and simple search

applications, it is time to work through an actual project. Here I
introduce you to the development process, discussing each step in planning such
a project and pointing out questions you need to ask and tasks you need to
undertake. We begin by considering an overview of the development process, its
goals and challenges, examining the importance of doing it correctly. We then
move through a sample project, looking at typical issues you may encounter.

To help you get started, I have developed several forms to help you in gath-
ering specifications and designing your database. These not only prompt you for
the types of information you need to gather, but are also integrated into the
application development process described in chapters 7 and 9. As we go
through this chapter, I will refer to completed PDF versions of these forms.
Blank versions, named Planning_Form.doc and Grids.xls, are available as part of
the companion materials download file.

OVERVIEW

The goal of the design process should be a set of specifications that detail the for-
mal requirements and technical specifications of the proposed application, pro-
vide a roadmap that programmers can use to code the application, and serve as

112

PROJECT DESIGN 113

the basis for documenting the system once it is in place. These specifications
should be the result of discussions with the user or users for whom the proposed
application is being built.

It is critical to undertake this planning process before attempting to imple-
ment a project. If you don’t, you may run into significant problems down the
road. A good analogy is building a house. If you were to decide to build a house,
it is doubtful that you would simply go to the lumberyard, buy a lot of wood and
nails, carry the stuff to your proposed site, and start hammering away. Rather,
you would first decide what you want included in the house (bathrooms, dining
room, large kitchen, deck), how much space you need, and the types of things
you would like to be able to do in the house. Then you would get together with
an architect to discuss your ideas. The architect would then take those needs and
develop a preliminary set of plans and layouts. You would then go back and forth
with the architect until the house fit your needs. Once agreement was reached,
a final set of plans and blueprints would be created that you would each sign off
on. Those documents would then be given to the contractors to begin building
the house.

The same sort of process should be used when building a database applica-
tion. You, as the architect (developer), need to work with the future homeown-
ers (users) to define what they want in the house (application), usually in stages:

1. Define the goal and purpose of the project—that is, what the users want
the application to do, why they want to do it, what will be necessary to
create it, and what, if any, systems already exist that could be used or
adapted for use in the project.

2. Determine, from users and others, what data to include in the applica-
tion.

3. Define how the application will work and how the data fit into the appli-
cation—that is, find out about current workflows and processes and
design a system that will either fit or enhance them.

4. Present these to the users for feedback, then incorporate their input
with your research to develop a model. At this point, users should be
able to provide you not only with possible corrections but also with addi-
tional ideas about what they need.

5. Based on this feedback, take what they have given you, further refine
your ideas, and make appropriate changes.

6. Repeat steps 4-5 until you reach agreement. Although it can be dis-
heartening (or even threatening) to be told that your ideas don’t work,

114 PROJECT DESIGN

this iterative process allows both users and developers to come up with
the best possible system.

7. Finalize design documents and have all parties sign off on them.
Depending on the organization, this agreement can be at any level of
formality (and legality). However, having things in writing helps to avoid
a number of problems, including differences in understanding as to
what was requested and mission creep (when features keep being added
as the project is underway). This agreement should include appropriate
time lines with target dates and, in the case of complex or large-scale
applications, scheduling for implementation of modules.

It's worthwhile to keep a few fundamentals of this process in mind as you
move forward. First, keep the project user driven. Not only do users know their
needs better, getting their full input up front minimizes the number of changes
that will need to be made once the application is in development. Involving them
also helps them feel and take ownership of the application, thereby creating buy-
in to its use. Second, make sure that the project you undertake is do-able. You
should balance exploration of all the possibilities with not raising unrealistic
hopes. Particularly when undertaking your first project, there are learning curves
to overcome, infrastructure to develop, and personnel to organize and train.
Starting small allows you to get your feet wet without engendering expectations
you might not be able to meet (with the resulting loss of interest in this and fur-
ther projects). Third, break complex projects down into subprojects and priori-
tize user requirements. Features often can be developed separately and some-
times even postponed to later versions.

Although it is important to design the application as completely as possible
before beginning programming, it would be naive for us to assume that there will
not be changes to the specifications as development goes forward. As users see
the application taking shape, new possibilities that can make a critical difference
in how the eventual application will function can occur to them. Although this can
create problems, the impact of those problems can be minimized in various ways:

Following the data modeling and design principles described in chapter
2 permits new fields and even tables to be easily added.

Working through the initial application design process using screen
mock-ups allows the user to see things in a manner that is more
familiar to them.

Letting users know the cost and time requirements for making changes
after development is underway helps them determine whether the
proposed change is worth it.

PROJECT DESIGN 115

Requiring that all proposed changes be written up and signed off on by
both parties makes sure that all sides know what changes are to be
made, eliminating having to redo poorly understood requests.

Batching changes and new features so that they can be done at the same
time permits efficient testing and sign-off, an organized approach
that is critical for the users’ and the developer’s sanity.

Developing a long-term mechanism for dealing with modification
requests not only enables you to establish priorities but also reas-
sures users that their needs are being listened to and will eventually

be addressed.

One other important point is defining who your users are—particularly
when working in a library setting where a substantial percentage of the people
using the application will be members of the general public. This is one of the
first (and most important) decisions you need to make. If it is a purely internal
application for administrative purposes, then the target group is clear. However,
if you are building a system with a public access component, then your audience
will be larger. Although it is advisable to work with staff members who work with
the public at the beginning of a project, you should build in ways in which your
patrons will also be able to provide input during both the development and the
implementation phases. This can be done either through usability tests and focus
groups or by inviting input from them on an informal basis.

Following these guidelines and procedures should greatly facilitate the
process, and help avoid unneeded and costly delays due to having to add features
after the design phase is finished.

DEFINING THE PROJECT

When starting out, the first thing to do is to gather information about the pro-
posed project. This involves the developer getting together with the user or users
for whom the database application is being developed and asking questions
about the current environment, needs, and the types of tasks for which the pro-
posed program will be used. Questions can include: Is there a preexisting data-
base (either paper or computer-based) that could be used as a model? to obtain
data? What sorts of outputs are desired? Web pages? reports? EAD documents?
Are there administrative functions that it will need to perform? If so, what sorts
of safeguards are needed for the data? Is a database even the appropriate tool
for the job? It is important to ask such questions at the beginning. Although a

116 PROJECT DESIGN

project may sound simple when proposed, the devil, as they say, is always in the
details. Not only is having this information useful when developing the applica-
tion, it helps in planning and prioritizing the project.

In carrying out these interviews,! it is helpful to write out a list of questions
beforehand to guide the session and make sure that all the critical questions are
asked. Planning Form.doc in the companion materials download file contains
one possible form. This, if used in the initial discussions on any database project
you might undertake, prompts for the types of information needed to begin a
project. Not only does the form help focus initial questions, it can also serve as a
central point of focus throughout the life of the project.

Not all of the questions need to be asked during the first meeting. In some
cases, when one has multiple potential projects, you may wish to fill in only those
sections that allow developers and administrators to compare the relative impor-
tance, costs, and timeframes of different projects, thereby enabling them to pri-
oritize.

The form has six sections:2

1. Basic information. What staff and others are involved in the develop-
ment process? What is the desired launch date?

2. Rationale. Why is the project being undertaken? Information can range
from general observations to full mission statements. The goal is to have
enough detail to evaluate the project’s importance and to help guide the
process.

3. Details. What information should it include? What types of uses and
outputs will there be? What are the size and complexity of the database
and security needs? Note that you may also want to take the Initial Fields
List grid from Grids.xls (available in the companion materials download
file) with you to jot down the information as your users mention it.

4. Present situation. What is the current situation? Are there systems
already in place that relate to this need or that could be adapted to that
purpose? that could be a model for a new system?

5. Implementation requirements. What special needs does this application
have? Are there systems with which this new one will need to interact?

6. Planning. Who can or should be involved? What timeline is realistic?
What resources are needed?

Planning_Filled.pdf in the companion materials download file includes a
copy of this form, filled out with information that we will be using in our sample
application throughout this and the next chapter. Because I have included a com-

PROJECT DESIGN 117

plete description of each element in the file, we won’t go through the form here.
However, because I will be referring to it throughout the process, you might want
to print it (as well as the other forms listed in this chapter) for easy reference.

Using Graphic Images

In addition to the textual description of the planning process provided in the
form, there are two points where it can be useful to create a graphic representa-
tion of the information. The first of these has to do with the description of cur-
rent workflow. The graphic in figure 6-1 represents the way in which new
resource links are currently being added to the Web site.

In looking at this diagram, we can see that there are two major areas where
the process could be made more efficient. First is that funneling all Web sites
through the Webmaster creates a serious bottleneck. It requires at least double
data entry: the person doing the suggesting writing out the e-mail and the
Webmaster having to type (or at least cut-and-paste) the information into at least
one Web page. Second is that having to manually edit HTML pages, though not
rocket science, can be tedious, time-consuming, and prone to error.

A second area where a graphic can be useful is in mapping out the project
planning timeline. Such a representation allows people to have a clearer picture
of how things go together, see who is responsible for what, and understand how
each of their tasks fits into the overall plan. Although there are a number of ways
we could do this (flowcharts, GANTT diagrams, and so on), I find that the easi-
est way to create this type of “picture” is to use a PERT chart.3 For example, tak-

Load Web
poge(s)

Web Server

Edit
Web page(s)

Figure 6-1

118 PROJECT DESIGN

ing the information from our sample planning document, we could create the
graphic representation of the process shown in figure 6-2.

In this diagram, each step of the process is represented by an oval defining
steps in the process with arrows leading from one step to the next. Each oval pro-
vides the following information: what the step is; who is involved in undertaking
the step; and the target completion date for the step. In several cases, three dates
are given: the most optimistic date (BT), worst-case scenario date (WT), and
best-guess date (AT). It also represents sub-processes, such as the data modeling
that needs to be completed before proceeding to the next step.4

Once you have completed the basic information sections of the form, it can
be submitted to whatever review process the library has in place. Because this
project may potentially require resources allocated from several areas of the
library, it is important to gain approval for the project from the administration
and affected areas up front. Otherwise, the developers may find that support
goes away (or is never there) with the result of much lost time and effort as well
as a great deal of frustration.

Inltasl Mmlmrynah Fallow.up
Intereinw intervies
\ Sllv.Ehl J
w1 By ANE000
2005 | 2008

John, Saty. Lis
Usets, Rufuivnce
Lit#nriarn.
VoLt

Fraskatirs
A7

wilar]

ed| 200 | 20
7| 2007 | 2007
e

Figure 6-2

DEFINING THE DATA MODEL

Once you have the go-ahead to start the project, you need to begin designing the
application. The first thing that the developer should do is to take the ideas gath-
ered in the initial interviews and to begin building a data model. Although a
fancy-sounding concept, a data model is essentially only a list of all pieces of
information the user needs to include in the database, organized in ways that will

PROJECT DESIGN 119

make it easy to store and retrieve that information. The developer creates this
model using concepts and techniques we learned about in chapter 2 and apply-
ing them to the information gathered from the users.

Gathering All the Pieces

The first step in building a data model is to create a list of all of the elements to
be included in that model. Although the list acquired during the planning discus-
sion is a good start, it is probably not going to be complete. We therefore need
to find other ways to gather the information. The elements include

e lists gathered during interviews
* keywords in the mission statement and project objectives sections
e parameters and output defined in existing reports

* types of desired functionalities (multimedia apps will require pointers to
digital objects, for example)

e capacity for interoperability with other systems or metadata standards
(such as EAD, Dublin Core, OAI, or VRA Core)

e fields implied by certain types of information (such as Web site informa-
tion, which would logically require a name and a URL)

e developer’s intuition and experience from other similar projects

As an example of the second point, looking at the planning document for our
Web sites project, we find the following phrases in the Project Objectives state-
ment: “Allow for creation of dynamic Web pages with links to Web sites; Allow
me to search for sites based on subject, type of site, or descriptions of the sites.”
In these statements are several terms that provide an initial list of elements we
know will be included in our application: links, Web sites, description, type of
site, and subject.

We now take those terms to begin looking for entities or discrete concepts
around which we can group our terms. In looking at our list, we see that it con-
tains three possible entities: Web sites, type of content, and subject. The central
concept is Web sites. In coming up with concepts, it is important to recall our
discussion of entities and foreign keys in chapter 2. Although it is true that type
of content and subject can be characteristics of an individual Web site, it is also
true that more than one Web site could have the same subject or type of content.
We therefore establish them as separate entities.

120 PROJECT DESIGN

Note that the same cannot be said of the other two items in the list, links
(URLs) and description. These are pieces of information that are essentially
characteristic of an individual Web site. We therefore define them as elaborating
the Web sites entity. Breaking these into entities and putting these in a graphic
form, we see the beginnings of our data model (see figure 6-3).

Web_Sites Content Types Subjects
Web site (name) content type subject
links (URLs)
description
Figure 6-3

With this preliminary list, we return to the users and obtain further informa-
tion on each of these entities. We ask them to elaborate on the three entities we
have extracted, again noting any additional items in our list, asking what other
information might be needed. After some discussion, we might come up with a
list that would include the following:

help page—to help user utilize the resource

LCSH (Library of Congress Subject Heading)—allowing interoperabil-
ity with the library’s online catalog

subject scope note—describing particular subject heading

content type scope note—describing content type

requires proxyP—whether resource requires a proxy server for off-cam-
pus access

restrictions on use—whether restrictions, other than IP-based limita-
tions, will apply to access

support name—name of person who will assist users in using the site
support e-mail—that person’s e-mail address
support phone number—his or her telephone number
In looking at this, we see that the help page, requires proxy, and restrictions
all are essential characteristics of a Web site. The LCSH and subject scope note,

on the other hand, are characteristics of subjects. Content type scope note is
characteristic of types. With support name, e-mail, and phone number, we

PROJECT DESIGN 121

encounter something that is clearly a separate concept. We therefore create a
fourth entity for it. Now our model looks like figure 6-4.

Web sites Content types Subjects Support
/ 1 2 content type H
“]eit;:t“{;:;"‘” content ty ::;c'o-ph not subject support name
@ SCOpe note :
p b &) 2 P i LCSH support email
escriphion subyect scope note support phone
help page

requires proxy?
restrictions on use

Figure 6-4

There may also be more administrative data that the user will want to
include. These can include such things as the date the record was added, which
we add to the appropriate group.

Another item to be included is whether a particular piece of information
needs to be searchable. Searching can be done in one of two ways: by including
a characteristic, such as subject heading, or by excluding based on a missing
characteristic, such as not outputting subscription sites to off-campus users
where accessing those sites is not allowed. Although the first is useful, it is all too
easy to focus only on it and neglect the second.

To find out what types of data might be useful in filtering, it is helpful to
determine under which conditions we would not want an item to be displayed.
Users might also want to use other characteristics on which to group resources
(excluding those not a member of the group). We thus add three more fields to
the list:

Status enables assigning various statuses to a site (for example, active for
a site that was available, down for a site with a problem, and trial for
a resource the library is evaluating).

Subscription enables creating a list of just those resources to which the
library subscribes and for which off-campus access is not allowed.

Alphabetical_list enables creating a list of most-used titles in alphabeti-
cal order.

It might also be that, as you delve deeper into the possibilities of a project,
you need to change the list you have created. For example, in our project, one
thing that our users have said to us is that they would like to be able to put other
things into the database, such as links to books in the online catalog. Doing this
will require two steps:

122 PROJECT DESIGN

1. We change the name of the group from Web Sites to just plain Sites and
the name Web site within the first group to name (to avoid confusion).

2. We add the element format to identify type of site (book or Web site)
and, because it is a separate concept, put it in a separate concept
named Formats.

The process of obtaining all data elements continues until both users and
developers are satisfied that all useful pieces of data have been included. After
adding the information we have gathered so far on this sample project, our pre-
liminary data model looks something like figure 6-5.

Sites Content Types Subjects Support
~ name content type SUEJ"’C[support name
links (URLs) content type scope note LCSH support email
description subject scope note
support phone

help page
requires proxy?
restrictions on use
date added

subseription?

Statuses Formats

status format

alphabetical list?

Figure 6-5

In creating these groupings, it can be helpful to use something like a spread-
sheet that allows you to enter data, and then sort by individual columns. To help
you with this, I have included the Initial Fields List grid in Grids.xls in the com-
panion materials download file. This allows you to play around with the Concept
column, trying out alternative groupings.

First fill in the appropriate columns with the data you collect. You can then
assign the concept for each data element in the Concept column and then sort to
see if things fit correctly. If not, change the grouping and then re-sort until you
are satisfied with the groupings.

Once the basic fields have been defined (or even as they are being defined), it
is important to define certain characteristics about each data element. We can use
the Initial Fields List grid to enter this information. In addition, there may be certain
constraints (commonly referred to as business rules) to which data should conform:

Is the data element mandatory or optional?

PROJECT DESIGN 123

[Table [Type | Fold | Length Type Ui | Auth| Soarch Risq (MUl Defaull | Limit Ky |Index | “Constrants
|stes name 125 v ¥
I I [l sVl | |
I | |desorgion N N . N 20 I 1
| | | holp,_page | 18 v
[| |requires_praxy | le
| |resiriclions._on_use T
| |mdded_date | | o
| subscription R
| aiphabetcial st el
jsbpots | subject JI T T
[[lesh 00| v [ER
| subject_scopa_note I'T ¥
L | |subject_scopo_note [T [V]
I
|
[contert fypes | lconlertpe | 00|V Y[¥ | ¥ |
[|contert_typa_scope nale | T
|
|supports | | support_nams &V | [¥[¥ [
support_emal 100) V
I |sumport_phons Lol v |
|statisses | status. S VY[¥]Y
[formts 1 format) 2

Figure 6-6

Are there certain types of values to which the data element should con-
form?

Is input limited to a specific range of values? Does it need to be under
authority control? If the answer is yes, it might be desirable to cre-
ate an authority table and allow users to select only from entries in
that list. In our sample application, we will create a separate table
for statuses and use it to populate the appropriate field in sites.

Should access to this data element be restricted? Because this database
is going to be on the Web, it is important that any proprietary or
confidential information not be included in public data output from
the proposed application.

After putting in as much of the information as we can and doing a final
grouping, the resulting grid looks like figure 6-6.5

Building the Model

Now that we have our basic data groupings, we need to transform them into a
data model, structuring them to build an application—taking these different
entities and relating them. Part of this process involves naming our fields and
concepts, which we do by taking the terms we have been using and applying the
naming conventions listed in our programming standards document (for exam-
ple, making everything lowercase and replacing all spaces with underscores; see

124 PROJECT DESIGN

appendix B for more information). We first need to make sure that each entity
(table) has a field (or possibly fields) that uniquely identifies it (that is, has a value
that no other record in the table would have) to serve as the primary key. If such
a field does not exist, we need to create one. If we need to create one, we will use
arbitrary numeric keys (as noted in chapter 2). We do so for several reasons:

They will not need to be changed should content within the record
change because they are not based on content.

They can be easily generated by the system.
They are guaranteed to be unique.

Numeric keys are faster to process than nonnumeric keys.

The first point is the most important. It is generally a bad idea to allow users
to change the primary key for a table for much the same reason as why one isn't
permitted to change their Social Security Number. Doing so can create a multi-
tude of data integrity issues and many developers and many database adminis-
trators have hard rules against being able to change a primary key.

However, there are advantages to using meaningful keys, particularly in
searching and outputting information from databases. We will therefore take a
mixed approach. To show how one can use arbitrary keys in one-to-many rela-
tionships, I have set up the formats and statuses tables to use nonarbitrary
keys. Then, in chapter 7, I will show you two ways that demonstrate how, if you
do decide to use meaningful keys, you can maintain data integrity.

In the other tables, we create an arbitrary key field for each of the tables by
adding an integer field, provide each field with significant names made up of the
singular form of the table name (support, subject, and so on) with no (to des-
ignate number) as a suffix (for example, supportno, subjectno, and
content_typeno), define each as its table’s primary key, and choose
auto_increment under the Constraints column in the field generation form.

In the case of subjects and content_types, we have decided to support
items having more than one of any of these values assigned to it. Conversely,
those values will usually be assigned to more than one item. As we saw in chap-
ter 2, this many-to-many relationship dictates that we create a linking table into
which we can place a foreign key field for each data table’s primary key. Laying
this out so that the links between the various primary and foreign keys are shown,
we come up with the representation shown in figure 6-7.

In creating linking tables, I find it useful to create table names that contain
the names of the tables it links with the authority table’s name second (for

PROJECT DESIGN 125

sites_subjects slfes
subjects ss_sitena - e
e
L s5_subjectno fiine
subyject
url
lesh SoE e
deseription
subject scope note el
P_PAge supports
requires proxy >
= SUPPOTING

westictions on_use

support_name

content_types st_siteno added_date
comtent_ typenn -

support_emml

sl_content_typeno subsenption

comlent_type support_phone
W]

alphabetical st

conilent_type_scope_note

ites Aupportng Tormats
stotuses sttes: format

- format

status siles alulus

Figure 6-7

example, sites_subjects). Not only does this let the viewer know that it is a
linking table, it also specifies which tables it links. This can be very valuable in
the programming and debugging process.

Next we make places for the foreign keys. We do so by determining what the
nature of the relationship between the two tables is going to be (that is, where
the foreign key will be placed) and creating the foreign key field accordingly. If
it is part of a one-to-one or a one-to-many relationship, then we add an appro-
priate foreign key field in the foreign key table, making it the same type and size
as the primary key value that will be placed there; otherwise we create a linking
table, also with fields of the same type and size as the primary key fields.

When creating the foreign key field names, I take the name of the primary
key field and prepend the foreign table’s name along with an underscore (for
example, sites_supportno) to ensure that each field in the database has a
unique name. When this would result in a field name that is too long, I use the
initials of the table followed by an underscore (for example, st_content_
typeno instead of sites_types_content_typeno).

In addition to the graphic representation, you need to build a complete table
and field list before moving on. As with other steps in the process, I have
provided a form in which to enter this information in Grids.xls (see
Table_Definitions.pdf in the companion materials download file for a completed

example). The following outlines the process by which the Table Definitions grid
is defined:

126 PROJECT DESIGN

1. Sort the Initial Fields grid by Concept, modifying each Data Element
name to all lowercase and replacing spaces with underscores.

2. Cut and paste data from the Initial Fields grid into the Table Definitions
grid (in this case, columns B—] in the Initial Fields grid are pasted into
C—K in the Table Definitions grid). This works because the two sets of
columns have the same structure.

3. Enter the lowercased name of each field group’s concept into the Table
column in the first row of each group of fields in the Table Definitions
grid.

4. Add whatever primary or secondary key fields we need to establish rela-
tions between the tables, denoting in the Key column whether it is a pri-
mary or foreign key. If it is a foreign key, place the table and field name
of the associated primary key (in Table.FieldName format) in the
Constraints column.

5. Define the type of index (Primary, Unique, Keyword, Standard)—if
any—for that field in the Index column.6

6. List what if any constraints (business rules) there are on that column in
the Constraints column. For example, if a field is to be either yes or no,
we add a constraint Y /N.

7. Fill in any other column that has not been updated.

8. Indicate the type of table (Data, Authority, Linking) for each concept
group in the second (Ttype) column. Note that you may need to place
more than one code here if a table has more than one role (e.g., a check-
out record).

9. Create entries for the linking tables, making sure that we make the data
type in the foreign key field the same type and size as the primary key
field with which it will be linked.

Figure 6-8 shows what the Table Definitions grid looks like after entering our
parameters. We will use this table in defining our database at the beginning of
chapter 7.

DESIGNING THE APPLICATION

Once the initial data model has been agreed upon, the next step is to design the
application that will maintain and publish the data. To do this, you need to first

PROJECT DESIGN 127

I Table | Thypo | Fio [Caangihs Typef Unicy | A il Soaech [Roq Fl? Dol |Limk| Kay |Index Conslruints
5885 D istem N 2. e | | A L] | P | P muto merement
i, L g |_125 V| | | N S
L |12 v | | | |
;descri'liml | T =] | | K
jhal pages | ey N N I _
|roqut Hel YN
Il
Rl YN
e [[m
T3 M A N O IO O | [1] & et
50 V| | Rl R | F | 5 formats Jormat
50 V| ol | F | 5 stalusesslalus
sl A I S O A A P | P duto mecrenos +
W VY IY T YN |
w0 v | | | | &
i o T S I ! | |
contont types. | A %cmiloll_wpeno W | ¥ Y ¥ 19 N Pi P auto_incroment
jconisnt lyps A H | P
[contont_lypo, scope.nol | {RFS iF | !
supports A |supportnn M 3 [P outo ererent
[suppart_narmw WV [Y[¥ [YN [
100V | YN I
eV | !
o — i 517
Tormmats T G
s subjocks L ss shom L .| | | F| 5 stmsionn
|s2_subjectno L N Y OO 771 O T | | | F| § subjectssubjecino
shon lypos | L lstsieno A [| | | F| 8 stussiona
|£1_content_typeno I 1 | ¥ F | 8 comom_types.content_typeno
Figure 6-8

determine the application flow. Begin by defining what if any workflow exists. If
one does not exist, the developer works with the user to define one. Once you
have a workflow, you proceed to map out each process that will be involved in
maintaining and using the application, defining each step needed to carry out
that process. You then need to define the pieces of data from your data model
that need to be included within each step. You then create a user interface using
mock-ups or sample screens to implement the forms that will be used to imple-
ment the queries involved in each step.

We will now take a look at each of these steps in turn. One thing to remem-
ber is that, although a book provides information in a linear way, reality is not
always that clear cut. These three steps can be done in any order, or even simul-
taneously. The important thing is that each one is given its proper weight.

Please note that part of the process of creating the application is defining
appropriate navigation elements for your application’s pages. This is a topic unto
itself and not one we can cover here. Many good Web interface design books are
available to help you with this part of the project.

128 PROJECT DESIGN

Application Flow

Defining application flow means defining the processes involved in entering,
editing, and outputting data into and from the database and defining the data
involved in each step. In creating this representation, each step will use a unique
view—or set of fields—in carrying out its “mission.”” It is not necessary to define
what fields will be associated with each view at this point. That will be done in
the next step.

One point of clarification: view names have initial capital letters, whereas
table names are all lowercase. One reason is that we need to be able to distin-
guish between the two. The other is that there is not necessarily a one-to-one
relationship between views and tables. The Sites view, for example, includes data
from tables other than the sites table.

At the highest level, our application has two main areas: data maintenance
and the public interface. Figure 6-9 is a graphic representation of this top level,
providing an overview of our application. On the left-hand side, we see the two
subgroups of processes needed for creating and maintaining the two main
resource groups in the database: the Authority views and the Sites view. The first
group, labeled Authority Data Maintenance, is where we maintain the data used
in the option lists, checkboxes, and the like in our forms for adding and editing
Sites records. It provides the names of each of the five views to be used in main-
taining these tables. Although the view names in the authority maintenance apps
are the same as the table names (and will include only fields from that table), the
situation as we shall see is a bit more complex in the second group—Sites Data
Maintenance—where we will manage the information stored in multiple tables.

On the right side of figure 6-9, we see two outputs identified in the planning
document: Dynamic Pages (for outputting resources by subject) and Public
Searching (to create a public search application). In each case, a view name
describing the task that view undertakes has been provided. Note that the arrows
in the left half point in both directions, indicating that data can flow in both direc-
tions (retrieving records from the database and sending records/updates to the data-
base). Those on the right side, however, point away from the database, indicating
that we are selecting records to be output with no data going in the other direction.

Figure 6-10 details the form and action page pairs included in a basic data-
base maintenance application: adding (Add form and Insert action page), search-
ing (Query form and Search action page), editing (Editing form and Update action
page), and deleting (Delete form and Delete action page). Let’s take a more

detailed look.

PROJECT DESIGN 129

Authority Dynamic Pages
Data Maintenance Subject_Pages
Formats
Subjects
Support = Database
Statuses Public Searching
Types Search_Sites
Sites Data
Maintenance
Sites
Figure 6-9
ADDING ﬁdd(]f)on'n Insert al:ﬂtlull page
EDITING Cuery form Search action page [Editing form Update action page
3) “) (5 [G]
DELETING Delete form Delete action page
(DF) (DAY
Figure 6-10

Adding a Record

The first pair, used in adding records to the database, involves the following

steps:

1. When an Add form page is loaded (1), it sends a set of queries to the
database asking for authority lists that it can make into option lists,
checkboxes, and so on. The results of these queries are then embedded
into the Add form page.

130

2.

PROJECT DESIGN

The server does each of the requested searches and returns the results,
which are then used to create authority lists so that the user can use
them in inputting data.

The user fills out the various fields in the form and clicks on Submit,
causing the user input to be passed to the Insert action page by either
GET or POST (2).

The Insert action page then constructs the appropriate INSERT SQL
queries and sends them to the database to add the record.

The result of the query is passed back and a response page, based on the
success of the queries, is created and sent to the user.

Editing a Record

Although similar in some ways to adding a record, the process is somewhat more
elaborate in that the user needs to be provided with a way of selecting records:

1.

2.

9.
10.

A Query form is created to allow user input (3), obtaining authority table
information for authority lists as needed.

The user fills out the page and clicks Submit, which sends search param-
eters to a Search action page using either GET or POST (4).

. The Search action page takes the parameters passed to it from the Query

form, constructs a query (or queries), and sends the query or queries to
the database.

. The database executes the queries and returns the results, which are

then formatted. This formatting will include a hyperlink—using each
record’s primary key—to an Editing form, where the user will be able to
modify the record’s content.

The user clicks on this link, which loads the Editing form (5).

The Editing form retrieves the same authority lists as the Add form, but
also the requested record and associated (linked table) information and
displays the current state of the data on the update screen.

The user makes the appropriate changes in the record and submits the
changes.

The changes are passed to an Update action page (6) that creates the
appropriate queries and sends them to the database.

The database executes the queries and returns the result.

An output page with the result is presented to the user.

Note that these processes are usually carried out on the same set of data. It
therefore makes sense for us to treat them as a unit (view).

PROJECT DESIGN 131

Deleting a Record

On the other hand, users can also be given a link at the top of the editing page
(or on the Search action page, for that matter) that allows them to delete the
record. If they click on that link, they can be taken to a page where they can ver-
ify their decision. Here they are given two alternatives. Those choosing to delete
the record are sent to a Delete form (DF) to verify that the record should be
deleted. If the answer is Yes, the Delete action page is run (DA) where the record
is deleted and corresponding linked records are appropriately updated or
deleted, depending on the type of links involved. If not, a number of options are
available, such as returning to the search results or the home page.

Views—Bringing Data and Application Together

Now that we have decided on the views we want, we need to define the content.
This means looking at each view and deciding what fields need to be included in each
step of the view and how each field participates in that step. To make this easier, I
have included three more forms in Grids.xls that you can use to define your views:

Views defines the fields used in each view and the tables into which the
data will go. Their primary use is in creating data entry forms and
detailing how the data in those forms are to be handled. They also
allow you to specify what fields are used in each task and how those
fields participate,

Queries defines the queries to be used in each view, particularly those
that create authority record selection lists.

Links defines the names of tables and fields used in implementing
many-to-many links within the database, to be used in adding,
querying, and updating multitable views.8

Copies of these grids, filled out with data for this sample project, are included in
the companion materials download file.

Defining the Views

The first thing to do is to enter the names of the various views to be included in
this application in the leftmost column in the Views grid, maintaining a row for
each field to be added to the view and a blank row between the views. (If you
need to add a row, you just need to right click on a row number on the left edge
of the Excel screen and select Insert. Another row will be inserted.)

132

PROJECT DESIGN

Let’s begin with the Subjects view—the view that will be used in maintain-
ing the subjects authority list.

1.

We begin by placing the name of the view—Subjects—in the first col-
umn, first row of the section. This defines the beginning of the Subjects
view.

Next, we cut and paste the names of the appropriate fields from the
Table Definitions grid’s Field column that we wish to include in this view
and place them in the Name column.

We next do the same with contents from the Table Definition grid’s
Length column (that defines the number of characters in the field), past-
ing it into the Max column in the Views grid. Because the size of the col-
umn is the largest input we should allow in the form, this helps ensure
that, as we build our form, we won’t make any input box bigger than the

capacity of the field into which the data will be going.

. Next, we define the input types for each of the fields, using the codes in

Views.pdf in the companion materials download file. Because the first
field in the list—subjectno—is to be assigned by the system, we

leave the IType (input type) column blank (because we aren’t creat-
ing an input element for it)

place the field name inside parentheses (to indicate that we are not
creating an input box in the form)
give it a variable type (VType) of INT (for integer)

enter the name of the table into which the value will be placed into
the Table column

place (AUTO) in the (Value) column, to indicate the value will be
automatically generated

place auto_increment in the Notes column to indicate how it is
being generated

. Next, we go to the second line and enter the data for the next field

(subject), giving it an IType of T (text), and VType of STR (string).
Because we won't know the value for the Size column until we do the
screen design, we skip it for now. We finish by placing the name of the
table into which it will be inserted in the Table column.

We then fill in the rest of the data for this table into the Views grid. Because
scope_note is to be a field with textarea type, we use an IType of Ta (for

PROJECT DESIGN 133

textarea). Again, we skip the Rows and Cols until we do the interface design.
Once we have finished with Subjects, we proceed to do the same for the rest of
the authority tables. Figure 6-11 shows us what the Views grid should look like
at this point.”

Now we will look at the Sites view. This view is a bit more complex for a
number of reasons: it uses authority lists from other tables, includes a wider vari-
ety of variable and input types, and updates multiple tables.

We begin by entering all of the fields from sites that will be used in this
view, filling in the appropriate values for View, Name, VType, Max, and
Table columns. In three fields—requires_proxy, subscription, and
alphabetical_1ist—the information we obtained from our initial interviews
was that values should either be yes or no. We therefore define them as a v/n
VType and define Size or Max values of 1 for them. In creating the added_date
field, we will be using a different generated value—one using $today as a vari-
able inside the application, its value being set (as described in the Notes column)
with PHP’s date () function.

Next, we need to deal with those fields that use authority tables for
inputting. First, for each field that will use an authority list for inputting, we cre-
ate a four- to six-letter code and place it in the Auth column. This code provides
a pointer to the Queries grid, where the parameters for the search to create the
list will be defined. We begin with Subject, assigning it the code of gsubj, enter-
ing it into the Auth column. We then do the same for Content_Type (qctyp),
Support (gsupt), Status (gstat), and Format (gfmt).

We then need to define the type of HTML input tag (IType) to be used in
our forms in this view. In the case of the three fields where the foreign key is

VW[Ao [Tyed] A e TP Tvee] St | We [Frowe] ol [Eaq ey isalary | B0 | Lvi: TaER () Fckoy
Eaae— e i il ik R mas ekl e i e
W7 i SR | 50| 19| | I it
W |t iesh Sin | sl o] Subjects
] TA [SEibjoct_0 copo_notd STR | | grra
|
Contri_Type | M {corsent_typena NT | | | comeni_fypes [(ALTD] |Aum_ncrement
W |7] corilert_tvows
WA 3 Corert typas |
Suppert [| suppart (ALTO} |suli_ncrement
M| T ST | Euppart
T ST % = = ot
W7 SR support
|Jmos Gl 7o S| 0] 50| S
|
[Fermete W] Tormes ww | 58] S0 Tomets

Figure 6-11

134 PROJECT DESIGN

placed directly into a corresponding field in the sites table (sites_format,
sites_supportno, and sites_status), we need to choose an input type that
allows you to select only one value from the authority list. Because we can choose
either select list (s) or radio buttons (R), we decide to use select list for each.

In the case of subjects and content_types, we are setting many-to-
many relationships. We therefore need to take several steps. First, to allow the
user to select multiple values, we need to set IType either to ¢ (for checkboxes)
or M (for combo boxes). For our sample application, we will choose ¢ for check-
boxes. Second, because the input from the form could contain multiple values,
we need to make the variable type one that can handle more than one value.
Recalling from chapter 4 that we use arrays to handle such data, we make the
VType ARY. Next, so that PHP can handle the values as an array, we need to place
square brackets ([]) after the field name (for example, subjects[]) so that PHP
will handle it as an array and not a single-value variable. Finally, because this
information is stored in another table, we put the name of that table into the
Table column. Once we have completed our work, the Views grid should look
like figure 6-12.

We now need to define the appropriate query parameters in the Queries grid
for the authority lists for which we created codes in the Views grid. For each

V| AChn [Tyoe] A Taame Tvee] we}m e 5] Com o uery] Dslay | Bt | Lik Tae Tvaie) ToAEs
Subjects M 5wt Csutnecing | H { st (4UTO] |outa_norement
WO T e Lm- B
M| T =0 E% 500 100 zutyot
M | TA submel scupe_mbe | submoc s
Contart_Type | ™ e tyr (content_typend] (] [Cortend_types [(ALITG] | ais_ncrement
M| T contare_type &R | 50] 100 I contene_typos
M| TA Zortert_type_tcope_nole [STR [Eortont_typos
SLppt [EETZR NI support {AUTO) U0 ncrament
M T =uppord_krie STR | 50} 100 ot
W | T Fupport_emal [5TR | 50] 100, [Fupport
MY suppaet_phone L | Eupport
BT M| T [t st kﬁr E\&m
Formts M T Jarmi Jrormad STH Tormks
Sl M (ELEn] T HAUTO) aubo_rcremient
[T rama ECEEE
W [T ol ETH | &
M| 1A P =N
M| T Pl ST
™ T requEres_promy Tm 4 1
M 1A restrnins _on_use TR
M (dnd_daba) (e $today data{™¥-mT")
™ T T
M T i
W ""361_50
™ Gilt | 50| 50
2 T
M AT
e

Figure 6-12

PROJECT DESIGN 135

code you entered into the latter, you define a line in the Queries grid, filling in
the following columns:

View. The view in which this query will be used. Because authority
query results may be used in multiple views, we place them all in an
Authority view.

Act. The action for which this query is being used. In this case, we enter
0 (for query) for each of the queries.

Auth. The four- to six-letter code entered into the Views grid. For exam-
ple, we enter gsubj into the Auth column for the subject table query.

Source: Fields. The fields to be used in the search. Because it will be fill-
ing in the value=attribute element in our authority inputting
tag, the first element must be the primary key of the authority table.
This is because this is the value that will be placed in the appropri-
ate foreign key field of the linked table. If we used a descriptive pri-
mary key, we need to place only the one field name here. However,
if we used an arbitrary primary key (such as auto_number), we
should place the primary key first and then, after a comma, add the
name of a field in that table that will meaningfully describe each
particular record (which will identify the contents of the record to
the user). In this case, because we are using an arbitrary key for
subjects, we use two fields: subjectno and subject.

Source: Table. Here we enter the name of the table to be searched, in
this case, subjects.

Source: Where. In case we want a subset of all of the records in the table,
we could put the appropriate filtering WHERE clause here. However,
because we don't, leave it blank.

Source: Order. To help the user, we enter the name of the field to sort
on, in this case subject.

We then proceed to do the same for the other authority table queries. The
resulting entries in the Queries grid now look like figure 6-13.

R At | Auth Suurce: Fekls | Source Tuble Sowce; Where Sowrve. Crder ot
Audniy @ [umoly | subjevio,suliet |wubjets P]
Q [aclyp |corkent brpeno, conlerd_type | contenl s | contenl_type
Q |gsupt | supporng, suppard name | supports | suppor_name
Q |qetad shobus | statuses shatus
O |qind[foemal [Torrots | Tormed

Figure 6-13

136 PROJECT DESIGN

Defining Tasks

Now that we have established each of the main views, we need to define which
fields are used in which task. As noted, there are three main categories of task:
adding and inserting, querying and searching, and editing and updating (delet-
ing, though conceptually separate, is often integrated into the editing and updat-
ing). We now go through each of these three tasks to indicate how they should
be handled (see figure 6-12).

ADDING AND INSERTING RECORDS The first task we work on is adding
records to the database. We do so by defining how each field is handled in the
adding and inserting process. There are five possible values, not including leav-

ing the field blank:

X means that the value is added to the field name indicated in the Name
column in the table named in the Table column. If it is to be added
to a field with a different name, that name will be indicated in the
Notes cell.

G indicates that it is generated, the type being indicated in the (Value)
column. If auto_increment, we place (AUTO) there to indicate
that it is automatically created and specify it as auto_increment
in the Notes column.

H indicates a hidden value recorded in the (Value) column will be
entered in the table indicated in the Table column. A logged-in
user’s username is one example, which might be stored in a hidden
field and then entered into the appropriate field of the appropriate
table when the record is added to the database.

(H) indicates that the value is a hidden one that, because it is within
parentheses, is not to be added to the database. A good example of
this is seen during the editing function, when the primary key for
the record being edited is passed to the updating action page as a
hidden value so the system will know which record to update.

(D) indicates that the value is for display only and will not be recorded
permanently in the database.

Blank means that the value is not part of the adding and inserting
process.

In entering these values, you will also need to include values for Size for text
inputting and Cols and Rows for textarea boxes. In creating these definitions, you

PROJECT DESIGN 137

may find that creating mock-ups of inputting and outputting screens is a useful
exercise.

Finally, because we are dealing with two fields here in the Sites view—
subject and content_type—whose values reside in other tables, we need to
define how our application can get to those fields. We therefore define the rela-
tional paths in our database that establish the connections to obtain that infor-
mation in the Links grid. After placing an x in the Link column of the Views grid
(to let us know we need to look elsewhere for linking information), we go to the
Links grid and input the following information:

View—name of the view with which this query is to be associated

Linking Table—name of the table into which the link information will be
placed

Primary Table. Key—Table.field containing the primary key for the
primary data table

PFKey Field—(primary/foreign key) name of the field in Linking Table
into which the Primary Table.Key value will be placed

SFKey Field—(secondary/foreign key) name of the field in Linking Table
into which the Secondary Table.Key value will be placed

Secondary Table. Key—name of the secondary (authority) table field con-
taining the primary key of records containing desired value(s)

Secondary Table.Value—name of the field in the secondary table con-
taining the desired values

Secondary Array—name of the array coming from the form containing
array of SFKey Field values

Field(=Value)—column into which you can put other values that appear
in linking tables (such as due dates in checkout records)

The result is shown in figure 6-14.

Vi i Tabi ey Tl Kay Py i | Sy Feid | Sacendiy TRy TR TR T R Ty
s Sha ulcty ANANMAY MCaMn . ACEEaNS Gbicaatpcln aadbumger | Hadwelndg |
ilhi_wwl shes s = _steng |coniant_typene | conter types.conbent_bypeno comlent_types.content_ype Jooment_type_nafl

Figure 6-14

EDITING RECORDS Editing databases generally involves two tasks: selecting
a record to edit and updating and saving changes. In general, each task involves

138 PROJECT DESIGN

its own pair of form and action pages. I have included columns for each pair in
the Views grid: Query and Edit (see figure 6-15).

Querying and searching. For querying we have two columns in the grid. In
the first—Query—column, we define how a field is used, if it is used at all. There
are five possible values in this column:

X indicates that the field is present in the query page, using the same
input values (IType, Size, and so on) as in the view definition.
A uses an authority query to select an individual record.

M uses the field, but not as defined in the view (the character of the
input being defined in the Notes column).

K means use a keyword search.
Blank means not included in searching.
The other column (Display) indicates whether the field should be displayed in
the search output. There are four codes for this column:
S means to display in short (summary) record.
L means to display in long (full) record.
B means to display in both.
Blank means to not display in either.
Editing and updating. Once a record is retrieved, we need to define how it

participates in the editing process. As with the previous tasks, there are certain
codes that are used in this column:

X can be edited and the results are saved to the field listed in the Name
column in the table defined in the Table column.

H is included in the form as a hidden variable, along with a value attrib-
ute—given in the (Value)—to be added to the database in that field.

(H) is present as a hidden variable, but is not updated (usually the pri-
mary key to allow the action form to know which record to update).

(D) is displayed in the editing screen but not updated in the database.
Blank is neither displayed nor updated.

Our Views grid now looks like figure 6-15.

PROJECT DESIGN 139

VT R s T Tk [Paouery] aplay| Bt | ik TR) Toes

Subjoots M a5t {suosectno) Gl AT (M Tuyec s (AUT) | oubo_numeree
WO T e T A | X B
W | T iesh x] * sibjoct:
W[TA Scbweil oo L] sty

Contert_Type | ™ G typ (content_typena) G| A T cortend_types [ALTG] | sl raber
M T contant_type Al A A content_tyDos
W | A [contert_type_scopa_note I X [content_typos

B M asuedt Gl A | 1A suppon (ALITO) _ [8U60_numbec
M T =gt _skme Al A | i At
W T IWNI % T X Fupport
MY suppen_phone x { * Eupport

BT M| T [ot s x| A ki E\Wu

Formats M T Jafni |fermmal Al A E3 Tormts

St M (sReio) [L s] sters {HALTO) aubo_nurte
M T M x K x X
T e - T -
CEE |#=erptnn Wl x [ME| K | %
M| T Py B3 | *
™ Y requres_prody x 1 K
] TA restichons on_uts tﬁl X E3
M (nddna_data) 3 Adnl"Y-m-d)
W | T S CeRAR X i3
M| x A
M 14 L | &
M A% | % %
M X i
M X x| b3

L} 3 . - .
Figure 6-15

Interface Design—Creating the Screens

While working through the Views grid, you will need to begin defining what
fields will be used and what the interface will look like. Specifically, you need to
work through how you will lay out the various inputting boxes and lists on your
page. As noted, creating mock-ups is a useful exercise. There are a number of
ways in which these can be created, including pencil and paper drawings, proto-
typing software, and HTML forms. Of these, creating HTML forms is probably
easiest and the most useful. If you choose to go this route, you'll want to bear
several things in mind:

Using an editor that supports macros allows you to create the forms
much more easily.

Naming each input element with the name of the field into which the
data will eventually be placed simplifies the development process.

Creating the forms as part of the design process moves you that much
farther along the road to implementation.

Creating just one form as a kind of application prototype (say, the Add
form) and showing it to users for their comments allows you to make
the inevitable layout and content changes to just one page.

140 PROJECT DESIGN

In this stage you should attempt to create representative forms for each type
of view (authority, searching, outputting, creating dynamic pages, and so on).
Not only does this involve the users in the design of the interface they will be
using, it allows you to present the project in a manner that allows them to see
how the final application will work. It allows them to provide feedback on what
works and does not work and permits them to add features and fields. Because
the cost of making changes goes up dramatically at each stage of a project cycle,
this process can cut down significantly on expenditures, misspent time, and frus-
tration levels.

PUTTING IT TOGETHER—PUBLIC INTERFACES

Defining data maintenance routines is only part of the job. We need to define
the public-access components of the application as well. We begin by creating a
view name for each interface we are going to create. The planning document
itemizes requests for dynamic Web pages containing links of sites by subject,
organized by type of information they provide, and for searching based on sub-
ject, type of site, or descriptions of the site. We now define each of these views,
the data to be contained in those views, and the definition of the public interface
screens. When we finish, our project planning phase will be over and it will be
time to go on to the programming.

Pages by Subject

The first view we consider is for outputting subject resources by content type.
The idea behind this application is that it will be written in such a way that the
library Webmaster can place a link into the library’s Web site that will launch an
action page that takes the input search term and uses it to search and to output
all resources catalogued with that particular term. In this case, we will pass it a
subject (the subject field of the record in the subjects table containing the
subject we wish to search). The action page will then take that key, do the appro-
priate searches, and output a list, broken down by type of content. Given that we
are not going to be doing data maintenance—or even creating a form for user
input—this view will be much simpler than those we have done before.
However, we still need to think through how we are going to proceed.

The steps in creating this view are fairly straightforward (see the completed
grids in Views.pdf, part of the companion materials download file):

PROJECT DESIGN 141

We enter the name of the new view—Subject Pages—into the View col-
umn and place an s into the Action column to indicate that this is a
page that will SELECT records for display. Although there is no
direct user input, we will pass a subject to the page via a URL so that
it can create a page containing all entries in the database that have
been assigned that subject. We therefore define U as the IType for sub-
ject. We leave the rest of the IType column and the Auth column blank.

We copy the field name of every field we want to include from the Table
Definitions grid, both for searching and for displaying, entering the
name of the table from which the field can be found in the Table
column and placing an x in the Query column of those fields to
include in the query form and an X in the Display column for those
fields we want to display.

We place an X in the Link column indicating the linking table we will
need to use to search for the value in the Table column. Then, when
creating this page, we can refer to that grid for the linking path to
our desired information.

Public Searching Interface

The other view we look at will be to support an end-user searching application.
Given that this program is essentially the same task as the query function within
the Sites view, the definition of this view looks remarkably similar, as can be seen
from the Views grid. The only difference is that we won't be creating links to allow
editing (though we will be providing a similar link to allow display of a long record).

TESTING PROCEDURES

It is critical that a formalized testing procedure be agreed upon before beginning
a project. In designing the system, it is important to create a testing document,
based on the Views grid definitions for each task, that ensures that all data are
properly handled. Such a document ideally consists of a list of all views in the
application, and within each view, a list of each field that makes up that view pro-
vides a checklist for each way in which data are used in the application. For example

For Add, does it display? If so, can it take the required input? Are busi-
ness rules being enforced properly? Does it get added properly? Do
foreign keys get inserted properly?

142 PROJECT DESIGN

For Query, do all input fields display properly? For authority-table cre-
ated fields, do the correct values show up in the proper order? Do
all possible combinations of search parameters work properly?

For Search, is the search bringing up what it is supposed to? Are there
any records being retrieved that shouldn’t be retrieved? Are there
records that should be retrieved that are not?

For Display, does the output display properly? Are all fields being dis-
played? in the proper order?

For Edit, does the proper value from the record get displayed properly
in the editing screen? If you change a value in a field, does it get
updated properly? do business rules get enforced properly? If
changing or deleting an authority record where nonarbitrary keys
are used, do linking records get updated properly?

For Delete, are records removed successfully? Are any records deleted
that should not have been deleted? Are the appropriate updates
made to related tables/fields? Is relational integrity being main-
tained?

Is the application able to deal with anomalous input, such as badly for-
matted dates? Is the user given an understandable screen? Does it
cause the system to crash? If so, you will need to check the input
before it gets sent to the database and put up an appropriate mes-
sage to the user.

You also need for the end-users who will work with the system to test it and
make sure it works according to their expectations and will meet their needs.
Within this process, there are a number of questions to be asked:

Who will do the testing?

Will users lose any work they did on the test system once it goes into
production? If so, do they fully understand that?

How long will the testing period be and how do we clearly delineate the
switch over into production? It is important that the testing period
be clearly delineated and that it not be unduly extended. The greater
the ambiguity as to when the testing phase is over, the greater the
chance of the undermining of the system by users caused by their
thinking they are in production before the testing period is officially
concluded.

PROJECT DESIGN 143

Who will define the tasks that will be used to test the application? This
should probably be worked out by developers in conjunction with
users.

FORMALIZING THE PROCESS

Once the complete design and data specifications have been agreed upon, it is
important to put them into writing. There are a number of reasons why this is
useful:

It provides a contractual basis for the development process. In case of
any disagreements, the documentation provides the answer.

It greatly facilitates the development process. As you will see in the next
chapter, having it all down on paper makes the actual programming
very straightforward.

It serves as documentation for the application for support by others.

Certain documents will ideally be included in this collection and updated as
things change. Below is a list describing the most important of these:

planning documents—the initial documentation that lays out the scope,
rationale, goal, and timeframe of the project

table definitions—a complete list of all tables, the fields they contain,
and their function within the application

relational diagram—a graphic representation of the relationships
between the various tables, showing how the tables are linked
between primary and foreign keys

program flow—a layout of the various processes of the programs, show-
ing the views involved in each

views grid—definition of the tables, views, and queries involved in each
point in the program flow

queries grid—a list of all queries used within each view

links grid—a list of all many-to-many links maintained in each view

file definitions grid—a listing of all files used in the application, the view
or views they support, and their function within the application

testing documents—documents and checklists of things to test to ensure
that the program is working properly

144 PROJECT DESIGN

We are now ready to implement the system. Undertaking this structured
approach to planning makes the process of implementation easy and straightfor-
ward and helps you to avoid most (though probably not all) nasty surprises with
which you might otherwise have to deal.

Notes

1. For information on conducting such interviews, see Michael J. Hernandez, Database
Design for Mere Mortals (Reading, MA: Addison-Wesley, 1997), 72-79.

2. See Planning_Filled.pdf in the companion materials download file for a complete
description of each element.

3. Program Evaluation Review Technique was developed by the U.S. military in the 1950s

to handle complex projects. It is a type of report that is available in a number of plan-

ning software programs, including Microsoft Project.

For more information on PERT charts, see the bibliography.

See Grids.pdf in the companion materials download file for a complete listing of the

columns included and the values of the codes used in the grid.

See chapter 2 for a discussion of index types in MySQL.

The use of the word view here should not be confused with the RDBMS technique of

views. I use the term here to describe the organization of fields from multiple tables

into individual logical groups. RDBMS views provide an automated way of implement-

ing such groupings.

8. A complete explanation of the grids is included in Grids.pdf in the companion materials
download file.

9. The M in the Action column indicates the type of data maintenance view—in this case a
Maintenance view.

S

1o

PROGRAMMING
THE APPLICATION

Chapter

Now that the specifications have been developed and agreed

upon, comes the easy part. Although it may seem strange to call

programming easy, in many ways it really is. By taking the time to
get it right in the planning phase, programming becomes a matter of filling in the
blanks. Here we will use information from the grids that we created in chapter
6 to fill in those blanks. My hope is that in the process you will see how useful
they can be. The steps we will follow include

* using phpMyAdmin to implement our data model in MySQL

e creating a configuration file for the application

* building the application, including all data maintenance routines

In the chapters that follow, we will look at data and application security, cre-
ating public access applications, and good program development procedures.
(Throughout I will use functions included in the companion materials download

file. To understand how this code works, you can refer to ala_functions.pdf, a
fully annotated source code file, and Functions_Guide.pdf.)

SETTING UP THE APPLICATION

Before we can begin programming, we need to implement the data model in the
database and to create a configuration file that will contain information and
parameters to be used throughout the application. We take each of these in turn.

145

146 PROGRAMMING THE APPLICATION

Implementing the Data Model

First we implement the data model we developed during the design phase using
phpMyAdmin. We do this much the same way we did in chapter 3, by taking the
Table Definitions grid we just created in chapter 6 and using it to define the data-
base, tables, and fields, and then setting up a user account. For the latter, we
define an administrative user named web_sites and give it a password of
ws_admin. As before, we give this user account only those rights in the database
that it needs on web_sites (SELECT, INSERT, UPDATE, DELETE, and LOCK
TABLES).!
As part of this process, there are two questions we need to ask:

Do we want to include transaction support in this application? As we dis-
cussed in chapter 2, doing so greatly increases data security and
integrity in multitable apps.

How do we want to maintain referential integrity (making sure all rela-
tions are properly set and maintained) between tables? Will we want
to have the database maintain referential integrity for us via foreign
key constraints? Will we need to program it in ourselves?

The difficulty is that how you answer these questions has an effect on how
you configure MySQL to store your data and thereby what you will be able to do
with that data. By default, MySQL uses the MyISAM file format—one that pro-
vides neither transaction nor foreign key constraint support. To get those fea-
tures, you need to set up those tables for which you wish to use these features
(both the primary key and the foreign key tables) as InnoDB type files.

However, one drawback to that course is that InnoDB does not support the
FULLTEXT indexing we used in chapter 5 to implement keyword searching. For
that, we need MyISAM files. Therefore, if you want keyword searching you will
either need to forgo transactions and foreign key support or find another way of
implementing it. In fact, I will show you that alternative (using functions in
ala_functions.php) that will let you have your cake and eat it, too!

Setting Up Foreign Key Support
To implement foreign key constraint support within phpMyAdmin (version
2.6.2), proceed as follows after creating the database:

First make sure that both tables (the one with the primary key and the one
that will hold the related foreign keys) are the InnoDB type. To do so, you first

PROGRAMMING THE APPLICATION 147

create the tables (making sure that both the primary key and foreign key fields
are of the same data type and size and that the latter is defined as NULL).

Then, for each table to be included, click on its name in the left-hand frame.
After the table’s definition has loaded in the right-hand frame, click on the
Operations tab in the right-hand frame. Then go down the page to the Table
Type drop-down list and change the option to INNO DB.2

Last, if you have not already done so, go into phpMyAdmin and create a pri-
mary index on the field containing the primary key and a standard index on the
field that will contain the foreign key.

Creating Constraints Manually

Next we can create the foreign key constraints in one of two ways. The first is to
click on the SQL tab inside phpMyAdmin (with web_sites as the active data-
base) and enter an SQL query to create the constraint manually for each primary
key/foreign key pair we want. This query should use the following syntax (mak-
ing sure that the <constraint name> is not the same as the name of either
field involved in the constraint):

ALTER TABLE <foreign_tablename>

ADD CONSTRAINT <constraint_name>

FOREIGN KEY (<foreign_key_field>)

REFERENCES <table> (<primary_key_field>)

[ON DELETE (CASCADE | SET NULL | NO ACTION | RESTRICT)]

[ON UPDATE (CASCADE | SET NULL | NO ACTION | RESTRICT)]°3
Because we will be using the relationship between statuses and sites to

illustrate this technique, we enter the following to create the constraint for our
application:

ALTER TABLE sites ADD CONSTRAINT site_status_constraint
FOREIGN KEY (sites_status) REFERENCES statuses(status)
ON UPDATE CASCADE ON DELETE SET NULL;

Using phpMyAdmin

You can also create the constraints using phpMyAdmins GUI interface.
Although it involves a bit more work up front, it provides you with additional
tools with excellent and valuable features. This includes the ability to create data
dictionaries and graphical representations of your database in PDF format

148 PROGRAMMING THE APPLICATION

(including drawing lines between tables where relations exist between those
tables). To create the constraint in phpMyAdmin using the GUI, you need to fol-
low these five steps:

1. Set up relational support in phpMyAdmin as explained in the instruc-
tions in Setup.pdf in the companion materials download file.

2. Select the name of the table containing the foreign key (in this case,
sites) in the left-hand frame of that interface.

3. Select the Relation view link (currently just after Print view and just
below the table structure grid) in the right-hand frame.

4. Find the name of the foreign key field in the left column. Then, within
that row, use the drop-down list in the second column to select the
Table—>Field that contains the primary key for this relation:
statuses->status. (Note thatif you haven't created an index for the
field, no drop-down for that field will appear.)

5. Define how to handle two conditions. The first—ON DELETE—stipu-
lates what should be done if the record containing the primary key gets
deleted. This should be set to SET NULL. The second—ON UPDATE—
tells the database what it should do when the value of the primary key
changes. Here we set it to CASCADE so that it will make the same
changes in the foreign key field as were made to the primary key.

Creating the Configuration File

Database applications require a number of items—such as database connection
values—to be set in each page for the application to work. Although we were
able to write them into each script in chapter 5, we will create quite a few more
files in this application. Each file will also eventually require significantly more
configuration commands. Creating a configuration file and then using PHP’s
include () function to read them into our pages will save much time and
effort.4 At minimum, this file should include

the connection definition parameters (host, username, password, and
database name) for the user account you created
code to use those parameters to create a connection to the database

a line, if not included in the global auto-prepend file, that will
include () the PHP functions library®

the code for localizing the $_pOST superglobal

PROGRAMMING THE APPLICATION 149

placing the configuration commands within a PHP block so that the
PHP module will interpret the lines correctly

Example 7-1 provides a minimal configuration file that we can use in our appli-
cation.

Example 7-1
1| <7php
2| srsrrzzssrssvsass sEEsEEEENE TrzssEaw

* Establish database connection and select the dacabase

B L e]

juser="Web_Sices";

$passvord="ws_admin™;

fdbname="vel_sites";

8| $db = my=sql_connect ("localhost®, fuser, $passvord) :
9| mysgl select_cb(§dbneme, Sdb)

fttttltttttltt*tl!ttit"lt*l’t"tttllttt‘llt't“tttlt'ttttt!tltttttlttttt!t
* Use the php list() function to de-reference the §_ POST superglobal.
'!'I'I!II'I'I'I'!II'III'I'!I'I!II'!I'I'IlI'!!I'I'I'I'I!'I'I'!I'I'!lI'IlI"lI"'!l'IlI'!!'I"!'I'I'!II'!I'I'I!'I'Jl
if (dssex(§_FOST)) (
vhile (lisc($key, $value) = each (§_POST}) {
§iSkay)=§valus;

Please note that the previous list is just the beginning of what should be
placed in the configuration file. We will encounter others as we proceed through
the chapter. Please consult Functions_Guide.pdf in the companion materials
download file for a complete list of what should be in the file.

For this configuration information to work, we need to make sure each file
in the application contains it. There are three ways to do this:

1. Use PHP’s include () statement at the top of each page to read in the
script—one possible approach, but one that requires a lot of typing, is
prone to error, and needs to be changed in every file should the name of
the included file change.

2. Work with the system administrator of your server to see if you can
include an .htaccess file in your directory where you can type in the PHP
command to automatically load it (see Setup.pdf in the companion
materials download file for what this means and how it can be achieved).
Doing so makes it available in that directory and every directory under it.

3. Set it up so that it can be loaded via the systemwide configuration file
(in our case, prepend.php). If you follow the instructions provided in
Setup.pdf, you simply create a file—named local_prepend.php—in the
application directory and it will automatically be loaded each time any
PHP script is accessed in that directory. (The examples in the rest of this
chapter will assume that you have done one of these last two.) If you cre-

150 PROGRAMMING THE APPLICATION

ate subdirectories using this third option, you will need to create sepa-

rate local_prepend.php files for each directory.

Note that you can name your configuration file anything you want. In the
examples in this book, I have chosen to call it local_prepend.php and have set up
the global prepend.php to include it if it exists. As a result, that is the name that
I will be using for the configuration file. However, if you want to use a different
name, all you need to do is to change the appropriate line in prepend.php to use
the new file name.

If you are creating an application in a directory where end-users have the
ability to read and modify files, it is not a good idea to leave a file containing data-
base connection information lying around for easy reading by anyone who hap-
pens by. Again assuming that you have followed the setup instruction in Setup
.pdf, you can enhance your application security in two easy steps:

Move this configuration file into the include file directory in the
include_path directive in the php.ini file and give it a name such
as web_sites.php (make sure that the name is unique, and ideally
one based on the database or application name; see Setup.pdf for
more information).6

Create a local_prepend.php file in your application directory with the
following three lines to read in your configuration file:

<?php

include("web_sites.php");

?>
Then, when local_prepend.php gets called, it will include web_
sites.php (because the directory that contains it is in the include_
path variable in your php.ini—again, if you followed the instructions

in Setup.pdf).

PROGRAMMING THE APPLICATION

Authority Table Maintenance

We begin by programming the authority file maintenance segment of the appli-
cation (annotated source code for all scripts is available in the companion mate-
rials download file; see chapter 1). We do so for two reasons. First, we need pop-
ulated authority tables for our drop-downs and checkboxes before we can begin

PROGRAMMING THE APPLICATION 151

programming the Sites view. Second, creating authority table maintenance apps
is simpler and starting there will allow us to learn some basic techniques that we
can build on later.

Although we could manually add records to the authority tables using
phpMyAdmin, we might as well create the applications now. Besides, it is an
extremely bad idea to maintain data in relational database applications through
the database administration module rather than a programmed application. This
is because it is far more tedious to do it that way and without the control and
business rules built into a program, it can be quite easy to create data integrity
problems.

Subjects

We start by implementing the Subjects view, then proceed to the other views in
turn. In creating these applications, we will follow the pattern defined in chap-
ter 6, creating our adding/inserting, querying/searching, and editing/updating
action page pairs in turn, plugging in the appropriate fields from the Views grid
into each.

ADDING RECORDS The first scripts we will create will be to add subjects
records in the database. We start with the form to input new records and name
it subject_add.php.” If we created a prototype inputting page in the design
phase, we can use that as a model for our page. Otherwise, we take the fields and
lay them out on the screen, making sure all fields from the Views grid are repre-
sented. In the case of subjects, we see three fields identified: subject, 1csh,
and subject_scope_note (because subjectno is to be generated by the sys-
tem, we don’t provide an inputting element for it in the form).

In building this form (as well as the other forms in this application), we will
be using HTML tables to define and organize the inputting elements. As we
build the page, we go through the list of fields we have identified in the Add col-
umn of the Views grid with an x. We use the values we find there to decide which
fields to include in the form, defining the name (using the field name), size
(based on screen layout needs), and maxlength (based on the field size) respec-
tively. For example, for the subject field, we write the following inputting tag:

<input type="text" name="subject" size="50" maxlength="100">

We then go through the rest of the form in the same manner, using the
textarea type, rather than text, for subject_scope_note. Using the values

152 PROGRAMMING THE APPLICATION

from the Views grid allows us to be sure that the name of the variable will be the
same as the field into which the associated value will be placed. It also helps
guarantee that the maxlength of the inputting box will not be larger than the
field into which the value will be placed. Finally, to make the form look better,
we use a table within a table for the Add Record/Clear Form button area.

INSERTING RECORDS The next step is to build our action page, using the
name—subject_insert.php—that we defined in the action attribute of the
<form> tag in the inputting form. Aside from the basic HTML needed to create
the page and to provide response, the actual business is done in lines 46—49. As
we can see in example 7-2, we take the fields identified to be added using values
in the Add column and plug them into an SQL query and send the query to the
table indicated in the grid’s Table column.

Example 7-2
45| <2php
i| Sequery = "INSERT INTO subjects

{ subject, lesh, snhjecr.__scopa_nn:a bl

VALUES('§subject', '§lesh', '§subject_scope note')":
§fresult = mysgl cuery(§query, §db) or die(mysql_error()):
echo "Your record has been added<p>";
>

After delineating the PHP block in the first line (45), we create the SQL
query. The syntax for the query is

INSERT INTO <table> (<field_list>) VALUES (<individual_field_

values>)

Although <field_list> before the vALUES keyword can be optional, it is optional
only if you are inputting values for all of a table’s fields in exactly the same order
as they appear in the database. As you may recall from chapter 2, if you want to
insert only some fields, you must use the preliminary field list (making sure that
the values are in exactly the same order as the corresponding field name in the
field list).

In the next line (49) we use the PHP mysgl_query () function to send the
query to the database. Note that I have added or die(mysqgl_error()) to
the end of the line. This provides some error handling and essentially says “exe-
cute the mysql_query() successfully or die (stop all execution) and print out the
error message MySQL sent when it died.” Then, if the query does fail, the devel-
oper is given a message from MySQL that s/he can use to diagnose and hopefully

fix the problem.

PROGRAMMING THE APPLICATION 153

EDITING RECORDS Once data are in the database, we need to be able to
retrieve them to edit them. We accomplish this with the subject_get.php script.
As we did in the multi_keyword_query.php file in chapter 5, we create a drop-
down list of subject table records from which the user can select the one to
edit. Also, as we did previously, we select the primary key and display name fields
from the subjects table to create the drop-down list, sorting by the display
name field (subject). Then, in creating the select list in example 7-3, we use
the primary key as value and the display name to display.®

Example 7-3
50| <select name="subjectno"r
51| <php
52 echo "<option></oprion>":
53 §query = "SELECT subjectno,subject FRON subjects ORDER BY subject™;
54 fresulc = mysgl_query(fquery, $db) or die(mysgl error()):
55 while { §row = mysql fecch array{ §result)) {
56 favbjectno = §frov]"subjectno"):
57 $subject = §row[1];
58 eche "<option value=\"§zubjectno) ">favkiect</option>";
59)
60| 7>
E1| </select>

Editing screen. Because we used the table’s primary key—subjectno—as
the value for each item, when the user selects a given subject and submits the
form, that primary key is forwarded to the action page, subject_edit.php. There
it can be used to retrieve the desired record, where that record’s contents are
used to populate the values in the editing screen.

The editing page is essentially the same as subject_add.php, with three
important differences. The first is that the page includes a search to retrieve the
record, which it does in lines 4042 of example 7-4, executing a search and sav-
ing the retrieved record to an associative array named $row.

Example 7-4
38| <2pnp
3? “*"?’I'!lf‘?!lf“’I'?‘f!?"fl"!lf‘f!‘f*',lI!‘fl?!‘f!?,‘?’ﬁl!?’*i!‘ﬂlﬁ’*’
\33 * Use primary key passed from subject_get.php to retrieve record for editing
\39 tt‘tt‘l‘lt‘l‘ltttfi“St‘lttl‘ltit‘f‘CII‘III‘II‘I‘II‘IIlI‘tGII‘I‘I“II“IIttilittit“tttt‘llif
40| $query = "SELECT * FROM subjects WHERE subjectno=§subjectno”:
1| $result = mysql guery(§query, $db) or die(mysql_error()):
42| §rov = mysql fetch_array(§result);
43| »

Second, we use the record values in $row to fill in the editing screen’s value
attributes which we see in example 7-5. Because we are currently in an HTML
area and we need to use the PHP engine to output the PHP variables, we use
<?php echo $row["<fieldname>"] ?> to output the value into the value
parameter of the tag.

154 PROGRAMMING THE APPLICATION

Example 7-5

Subjecr:</td>
<nd»
<input type=rrext® name=¥subject” size="£0" mawlengthe="100" valus="<iphp echo frow|mubject®] T
<feds
</eEr
e
<eds
LCIH:
v
<ed>
<input type="text" nameelcsh® sizee"E0 maxlength="100* values®<lphp echo frow[®lesh™] 73"
</ed>
<fee>
tes
<td colspan="i"»
Scope:<hrr<caxtarea cola="60% rowva="3" name="subject scope note™ VEApUTvirtual®r<Iphp echo frow[“subject_scope _note"] 7>
</rexraceas =
<frdr
</tEr

The third thing we need to do—in fact we must do—is to embed the pri-
mary key name and value as a hidden variable (as noted in the Views grid) so we
can pass it to the action page (see example 7-6). If we don't, the update action
page won't know which record to update.

Example 7-6

5'?| <input type="hidden” name="subjectno” value=<?php echo $subjectno 72>

Updating action page. Once the user clicks on Update Record, the values are
passed to the action page (subject_update.php), where an update query is cre-
ated (lines 4549 of example 7-7) and sent to the database (line 50).9

Example 7-7
‘aq| <opnp
45| $query = "UPDATE subjects
46 SET subject=‘'{subject',
a7 lesh='§lcsh',
48 subject_scope note='§subject_scope note'
49 VHERE subjectno = §subjectno”;

50| Sresult = mysql guery(fouery, fdb) or die(mysgl_error()):

51| echo "Your record has been updated";

52| >
DELETING RECORDS Deleting records follows much the same pattern as
editing, with the exception that records are deleted rather than updated. Due to
the need for security for such tasks, we will postpone considering it until we have
dealt with user authentication and authorization.

Other Maintenance Apps

Next we proceed to create the other data maintenance applications for the other
views, one each for the Content_Types, Supports, Formats, and Statuses views.
Because the first two both use arbitrary keys in the same way as subjects, we
create them in exactly the same way. I therefore won't go into any detail here.
The full source code for them, however, is included in Authority_Source.pdf in
the companion materials download file.

PROGRAMMING THE APPLICATION 155

FORMATS On the other hand, formats and statuses use descriptive (as
opposed to generated) primary keys and those real values are stored in the for-
eign key field of sites records. The first point means that we need to modify
our format_query.php drop-down list. Because the display value is also the primary
key, we use the single value of the format field both for value and for display.

However, the fact that we can change the contents of the primary key pre-
sents us with a problem: if we change the primary key value as we are editing the
record, we are changing the identifier by which the action page knows which
record to update. If the primary key’s value is changed, the action page won't be
able to specify which record to update, either in the formats or in any table
where it is used as a foreign key.

As you can see in example 7-8, we get around this problem by creating a sec-
ond hidden variable in the editing form (format_edit.php) in which we store the
current value of the primary key (as it is in the table before editing) to Pkeyval,
where it can be forwarded to the action page.

Example 7-8
,.55' <input type="hidden" name="PKeyVal" wvalue="<?php echo $row["format"] 2>">

Action page. To make this change work, we need to slightly modify our
updating query, and name it format_update.php. Instead of the expected WHERE
format='S$format' we substitute the variable containing the value as it cur-
rently resides in the database (line 45 of example 7-9):

Example 7-9
4] <ophp
45| Squery = "UPDATE formats SET format='§format' WHERE format='$PHeyVal'":
46| $result = mysql_query($query, §db) or die(mysgl error()):
1? §link_guery = "UPDATE sites SET sites_format='§format' VHERE sites_format='§PKeyVal'":
43 §link resulc = mysgl query(§link query, §db) or die(mysagl error(}):

‘49| echo "Your record has been updated”;
0| >

Finally, to maintain referential integrity with sites (remember, we didn't
set up foreign key constraint support for this relation), we program the updating
of foreign keys in the sites table. The query that we use for this is shown in line

47, with $format containing the new value the user has placed there and
$PKeyVal containing the old value.

STATUSES Handling statuses is essentially the same as formats, with one
exception. Because we built a foreign key constraint in the relationship between
formats and sites, we don’t need to create an additional query to maintain
relational integrity. MySQL does it for you. Everything else is done the same
way.

156 PROGRAMMING THE APPLICATION

EXTENDING THE APPLICATION

Now that we have examined the basics of database maintenance apps, let’s look
at some ways to enhance our application. I will introduce you to a few additional
concepts and the ala_functions.php library to show you how those concepts can
be implemented.

Checking for Duplicates

Fields with Duplicate Entries

One thing you will want to do—especially when populating authority tables—is
to prevent users from creating duplicate entries for the same value. Not only is
this mandatory when creating primary keys, it also is highly advisable when
inputting the display values for authority records. Although you may not use the
subject field as the primary key, you still want to make sure that you don’t end
up with two records with the same subject (otherwise, which one will catalogers
use?). MySQLs UNIQUE index does enforce uniqueness. However, it does so by
throwing out a rather cryptic (at least for most users) error message if a user
attempts to enter a duplicate value. This is clearly not the most user-friendly of
approaches. It would be much better—more efficient—to check for duplicates
before attempting to update the database.

There is a function—Check_For_Dup_Fields ()—in the functions library
that can handle this check for you. When calling it, you provide it with three
parameters: the name of the field you wish to check, the name of the table con-
taining the field you wish to examine, and the superglobal ($_GET or $_POST) con-
taining the set of values passed from the form. For example, to check the subject
that the user entered, you would call the function as seen in line 56 of
subject_insert2.php, in example 7-10. The function searches the subjects
table to see if it contains a record that already contains a record with the
subject value the user has entered. If so, it lets the user know that the entry
would duplicate an item already in the database; the function exits before the
record can actually be added.

Example 7-10
5'5| Check_For_Dup Fields("subject","subjects”, §_POST):

Check_For_Dup_Fields () allows you to check multiple fields in a single
search. However, if you do pass it multiple fields, it will check for records where
the same set of fields has the same values—as a group. Thus, if even one of the
fields does not have a duplicate value, the function will not find a duplication. If

PROGRAMMING THE APPLICATION 157

you want to ensure that individual fields have unique values, you need to check
each one separately.

Duplicate Records

Another type of duplication you want to avoid is creating two records with the
exact same information (again we'll reference code from subject_insert2.php).
One feature of the Web is that clicking on Reload or Refresh in a browser causes
the server to generate the page a second time. If the page in question happens
to be an action page where a record has been added to the database, reloading
it will create a duplicate entry in the database for the record you just added. If
you click Reload five times, five identical records will be added.

You can avoid this by checking to see if there is already a record in the data-
base with the current values before adding the new one. If there is, you can then
warn the user and stop execution, thus preventing the duplicate entry from being
added. One of the functions in the library—Check_For_Dup_Records () —
does exactly that. All you do is call it with the table name (subjects) and the
superglobal containing the form input values ($_posT). It then searches for a
record with all of those values already there (see example 7-11 from
subject_insert2.php). If it finds one, the user is warned and the (duplicate)
record won't be added.

Example 7-11
5'7| Check_For Dup_ Records("subjects”, SWPOST {5

Both this and the previous function provide built-in responses. Although this
can be useful, there may be times when you want to create your own message to
the user. In both cases, there is an optional additional parameter—custom—
which, if set to v, will return the number of rows retrieved by the search. You can
then check to see if the number retrieved was greater than zero. If so, you can
take appropriate action, such as outputting a message and exiting. On the other
hand, if no record is found, you can take a different action, such as proceeding
to add the record. I have provided examples of how you can do this in example
7-12.

Example 7-12
88| §is_there = Check For bup Fields("subject”,”subjects®, § POST, "¥);

if (§is_there > 0) |

echo "Sorry = this® record has alresdy been entered”;

exit:
¥
is_there = Check For Dup Becords("subjects”™, § POST, "Y"):
if | §is_there > 0) |

echo "Sorry - thiz record has already been entered";

exicy
i

2as23s8e

158 PROGRAMMING THE APPLICATION

Query Logging
The next technique implements something we discussed in chapter 3. There we
noted that it is important to maintain a transaction log of each database-modity-
ing query that is sent to the database. Not only does it aid in debugging prob-
lems, it provides a means of backing up data between system backups. Creating
a log involves opening a file for input, writing the query and current date to that
file, and closing the file.

This can require some involved programming. I have therefore provided a
function in the subject_insert2.php script that can add this capability to our
action pages. To use it in your application involves only two steps:

Create a subdirectory (folder) under the directory containing the insert/
update application script, naming the directory dblog. If you are
working in a non-Windows environment, you will also need to make
sure that the dblog subdirectory is owned and writeable by the same
user—usually the user nobody—as the Web server.

Invoke the Write_Log () function, passing it the query name and the
file name to which to add the query (see example 7-13).
Example__7-13

'-_9_ﬂ| ¥rite Log($gquery, "good.log" }:

Invoking this function causes the contents of $query to be written to the file
good.log, located in the dblog subdirectory. By consistently using the
Write_Log () function from the very beginning of your development, you can
save yourself much time and many headaches.1?

If you want to use your transaction log for database recovery, it is important
that you use the same file for all log writing. This means that all scripts in an
application that modify the database must write to the same log file. That way,
the interactions can be restored in the same order in which they were initially
entered. Having them in separate files will not allow for this, thereby causing
potential database integrity problems (particularly when we start working with
multiple tables).

Although using a single subdirectory works for simple applications, things
can get complicated once you begin developing more complex programs—par-
ticularly if you implement transactions. For that reason, the logging functions in
the library provide much more flexibility than is indicated here. We will discuss
some of those options later. For complete information on Write_Log (), please
consult Functions_Guide.pdf in the companion materials download file.

PROGRAMMING THE APPLICATION 159

Input Validation

Another issue concerns whether certain fields in a record are to be filled in. In
some cases, such as the display fields in your authority records, you want to make
sure the user inputs a value (it is not very helpful if your display name is an empty
string). There are two ways to accomplish this:

Use client-side scripting (using tools such as Javascript) to check a des-
ignated field or fields and then, if there is no input, display a warn-
ing dialog box and not permit the user to move to the action page
until the field or fields have been filled in.

Check at the beginning of the action page before processing, but after
the information has been sent, to see if there is a value in the desig-
nated fields and, if not, notify the user that a value needs to be
entered in that field. We explored this approach in chapter 5 in ver-
ifying that users had entered search parameters.

There are pros and cons to each approach. The first uses less network band-
width and allows the input to be checked before the browser goes to another
page. At the same time, it poses several possible problems:

Browser support for Javascript code is unpredictable, particularly if pop-
up blocking software is installed. On the other hand, if you are deal-
ing with a known set of browsers within an organization over which
you presumably have some control (or at least knowledge), this is
less of a factor.

The developer must know or learn yet another programming language.

PHP and Javascript are not compatible in regard to arrays. PHP uses
square brackets at the end of its array variables—something
Javascript cannot currently handle. Because of this, we cannot use
Javascript to check checkboxes and combo lists.

On the other hand, checking the variables after they are sent is much easier
to code and maintain; does not require learning a (potentially) new language;
avoids interbrowser compatibilities that can make Javascript programming a
nightmare; and does not depend on whether Javascript is enabled in a browser.
At the same time, this method presents its own stumbling points:

* Once you click on the Submit button, you leave one page and load another.
If, for some reason, your browser does not cache the first page, clicking on
the Back button may return you to an empty input form.

160 PROGRAMMING THE APPLICATION

e Network traffic increases thanks to sent transactions that “don’t take.”

In the interests of balance, I provide information on using both
approaches.!1 Looking at the client-side approach, I have included code inside
the function library, named (not surprisingly) validate (), that creates
Javascript validation code to add to the <head> section of your page. The syntax
for this function is

Validate (<textfields>,<multi-option_fields>);

This function takes two parameters: one comma-parsed list of all text,
textarea, and select fields, and a second that checks Y /N and radio button fields,
both lists being enclosed in double quotes. Placing the following in the <head>
of your form creates Javascript code to check the format field (line 35 from

format_add2.php, in example 7-14).

Example 7-14
3] <heads
<titlexidd a Formac</titlex
3 <?php Validate("format™,"") 7>
6] </bead>
37| <mody>
: <center><hl>idd a Format</hl></centec>
39| <hc>
<form nmne-"ad.ﬂ__!o:m:" merhod="posc” onSubmic="recturn vni!da:e[aﬂﬂ_!nrmr_p L n:r_lon-"!ur.m:_xmerc.pnp'b

For this approach to work, you also need to create your form tag in such a
way that it will invoke the Javascript when the form is submitted.!2 You do this
by using the format shown in example 7-15 for the opening form tag.

Example 7-15

<form neme

method= hod> it="return validate (<focmname>) " action=<action_page>>

The two essential elements here are the <formname>, a unique and rela-
tively arbitrary name that you give the form, and the attribute onSubmit
="return validate (<formname>)", which causes the Javascript to be run
when the form is submitted. By including these two things (replacing <form-
name> and <action_page> with the names of the form and action page respec-
tively), if any field listed in the validate () parameters is not filled in, an alert
box will pop up to indicate the name of the field, and the user will not be able to
proceed until the required information is provided (see line 40 of example 7-14).

Providing Useful Response

After taking care of business, we need to provide the user with useful feedback,
perhaps indicating where to go next. There are several approaches. The first is

PROGRAMMING THE APPLICATION 161

to create a simple HTML page with a link to add another record or to check the
record that was just input before submitting it to the database.

Output Entry

Another approach is to let the user see what was sent to the action page. This
involves going through the PHP superglobal and outputting its contents as an
HTML table. Although we could do this manually, I have included another func-
tion—Show_Global_vals () —that automates the process. In doing so, it out-
puts the values that were submitted to be added to the main data table. Example
7-16, taken from subject_insert2.php, demonstrates this.

Example 7-16
73| Show_Global_Vals(§_POST);:

A more useful approach is to let the user see everything that was entered
and, if needed, to correct any problems. You can do this by creating a link to an
editing screen. I will show you how you can do this below.

Jump to a Previous Page

The user may wish to return to the record selection screen or search page to
choose another entry to edit. You can do this by inserting a Javascript link at the
bottom of the page that takes the browser back a defined number of pages. By
clicking on the link below, the user would be taken back two pages (that is, over
the editing screen back to the search screen):

Return to Search

Screen

If you have trouble remembering exactly what the syntax for this is (as I usu-
ally do), there is a function that will create the above Javascript link automati-
cally. By calling Go_Link () and including the number of pages you wish to go
back, for example, Go_Link (-2), the link will be created in your output page.

Functions for Database Maintenance

You may have noticed that HTML form parameters and database queries and
searches are written so that, though the individual parameters may change, the
basic structure does not. We can turn this observation to our advantage by writ-
ing functions that create the structure that allows us to fill in the blanks using
appropriate parameters. Not only can this make it easier and quicker to program
your applications, it results in less typing and fewer typos (aka “bugs”).

162 PROGRAMMING THE APPLICATION

To this end, I have included functions in the ala_functions.php library that
support a wide variety of tasks by simply calling a function and passing it values
from the grids into the appropriate parameters. Then, when the script is run, the
PHP engine runs the program code and creates the HTML for you.

Inputting Functions

For example, lets take the following HTML inputting element and replace it
with a function call. In this code shown in example 7-17, we see five elements: the
input type (1), the name (2), the size (3), the maxlength (4), and the value (5).

Example 7-17 i 2 3 4 5

<input type="text” name="subject size="50" maxlength="100"" value="<7php echo §row("subject”] 7>">

We can take those elements and plug them into a TextBox () function that
will create the HTML code when the page is run by the PHP engine, as seen in
example 7-18.

Example 7-18
1 2 3 4 5
<?php TextBox("subject”,"80","100" $row| "subject™]) 7>

Even though it is a bit shorter, this example is not all that impressive.
However, when we look at other input types, we can see a much more dramatic
difference. For example, in example 7-19, we see the code for the creation of
select lists we have been using (I won't even try to show the difference in
checkboxes or radio buttons).13

Example 7-19
<td>Subject:

<ftd>
<td>1 2
<select name="subjectno">
<pption></option>
<7php 3 4 5
$query = "SELECT subjectno,subject FROM subjects ORDER BY subject’;
$result = mysql_query($query) or die{ mysgl_error());
while ($row = mysql_fetch_array($result)) {
$subjectno = Srow("subjectno”];
$subject = $row] subject’];
echo "<option value=\"$subjectno\">§subject</option>";
b
</select>
<ftd>

Example 7-20 shows how you can replace all of that code with a simple function call.

Example 7-20
<td>
Subject: <hr>
</td>
<td> 1 2 3 4 5
<7php SelectList("subjectno”, "subjectno,subject”, "subjects”, "subject™) 7>
<itd>

PROGRAMMING THE APPLICATION 163

Although the function might look like so much gibberish, I have numbered
each parameter and shown in the previous example where that parameter is
used. Specifically, we use

1. selectList—function call that will create a select list

2. subjectno—the primary key used in the name= attribute

3. subjectno, subject—the two fields containing the primary key and
display name values to be used in the option list items

4. subjects—the table containing those fields

5. subject—the field on which to sort

All the other functions work in similar ways. We will take a look at them later.

Database Maintenance Functions

Besides items to support inputting into forms, ala_functions.php also includes
functions to maintain the database. As with inputting, manually creating these,
though not rocket science, opens the door to typos and other problems. In addi-
tion, there are a number of features—such as duplicate checking and logging—
that you don’t want to have to type in each time you create a page. (Note that
using these functions will work only if you give the value name in your form the
same name—including case—as the field into which the data will be entered.)
Using functions allows us to simply pass the appropriate information to the func-
tions to let them do all of the work. Tnsert_Record () is such a function. Let’s
see how it works.

In example 7-21, I take the code that we saw used in example 7-2 to insert a
record into the subjects table and modify it to use one of the ala_functions that
I will show you.

Example 7-21
50| $fields = “suhject, lcsh, subject_scope note”:
51| dcable = “subjectz";
52| S$subjectno = Insert_Record(§fields, ftable, §_POST, "¥", “"good.log"):

53| echo "Your record has been added:<p>":

Although the latter has significantly fewer characters to be typed, the real
advantages of using the function are more substantial:

1. Several other tasks are supported by the Insert_Record() function,
such as query logging, duplicate record checking, error checking, and, as
we will see a bit later, support for transactions.

2. The sfield list is a simple comma-parsed list where each field name is
typed in only once and is very easily read (which is important if you are

164 PROGRAMMING THE APPLICATION

dealing with large tables). If you need to make a change, you do it there,
rather than having to do it both in the field list and in the VALUES ele-
ments (making sure that you entered both of them correctly and in the
same order).

3. MySQLs mysqgl_id() captures the auto_increment value of the
newly created record and returns it to the calling script, where (in this
case) it is saved to $subjectno. This value can then be used in adding
linking records as needed.

4. The fourth parameter can be very useful, especially if you like to see
your SQL queries before running them or need to debug cranky ones.
It essentially tells the function whether to run the query. If it is N, the
query won't run, but the function will print the query that would be run.
If the parameter is v, then the query will run. If it is D, then it will also
run, but the function will not check for duplicates.

There is also an Update_Record () function that uses the similar parame-
ters and which is available for updating data records in the database. The only
difference between the two in the way that they are called is that Update_
Record () has an additional parameter that passes the primary key to the func-
tion so it can know which record to update.

LINKS FOR EDITING A RECORD As noted, one thing that users can find use-

ful is to be able to check—and if necessary correct—information they have

input. Given that you have the primary key available to you at the end of the

insert screen, you can create this link by creating a URL similar to that shown on

line 51 of example 7-22.

Example 7-22
&9 echo "Your record has been added<p>";

| >
‘51| Add another record

UPDATING AUTHORITY RECORD CHANGES One other situation needs to be
addressed—how we update authority records where the primary key has
changed. We need a way to handle potentially changed primary keys similar to
that shown in example 7-9. Two functions address this situation. The first,
Update_auth_Record (), is run on line 52 of format_update.php in example 7-
23, using the following parameters:

$ fields—the list of fields to be updated
$table—the name of the authority table

PROGRAMMING THE APPLICATION 165

$_poST—the superglobal array containing the values from the form
format—the name of the primary key

$pPKeyVal—the old value for the primary key, used to identify the
record to be updated

v —whether to run this function for real
good. log—the name of the log file to which the query should be written
Example 7-23

82| updacte Auch Record($fields, Seable, § POST, "format®, §PHeyVal, "Y', "good.log"):
5?. UDQ‘E!_Au‘h_Lihmf "8(‘:&8_!0:!“!‘.’.', "sites”, jformat, jPEeyVal, "Y", "good.log"™ }:

Next, we need to propagate the changes to foreign key fields that link to this
record. For this, we run Update_Auth_Links (), which we can see in line 53 of
example 7-23. Here, the function is passed the name of the field containing the
foreign key, the name of the table containing the foreign key field, the new value,
the old value, whether the query should actually be run, and the log file name.

I have given a cursory introduction to these functions. Please consult Functions_
Guide.pdf in the companion materials download file for a complete description
of each, explanations on how they are used, and the parameters they include.
(For a complete set of fully annotated scripts for authority file maintenance that
use these functions, see Authority_Functions_Source.pdf in the companion
materials download file.)

Testing the Application

Before proceeding, I would like to discuss an important part of the development
process. In programming, it is critical that you make sure that your program is
working correctly, that the data at any point are what they are supposed to be,
and are going to where they need to go. In testing, you should use the materials
you developed as part of the design process (see the end of chapter 6). You can
use these documents to create checklists that you can use to work your way
through the application, testing to make sure the program is doing what it should
from beginning to end.

CREATING THE MAIN APPLICATION
Adding Records

You have now seen the basic structure of a data maintenance application using
PHP and MySQL. Next, we will program the maintenance applications for the

166 PROGRAMMING THE APPLICATION

Sites view (see Sites_Source.pdf in the companion materials download file for
the annotated source code of these scripts). We begin with adding records.

Adding Form

Looking at the Views grid for the Sites view, we note that the ITypes for that view
includes select lists, text, textareas, checkboxes, date, and yes/mo. We have
already seen the first three. Let’s now take a look at the last three in some detail.

CHECKBOXES Unless you place everything in one column, creating checkbox
(or radio button) input lists can be very code-intensive. Each checkbox has its
own complete inputting tag requiring a lot of typing if there are a large number
of alternatives; even if you do use one column, it still involves a lot of typing.
However, the process of automating it can be quite tricky. To produce the list in
the easiest way possible—left to right, top to bottom—requires you to know how
many columns you want for each row and, as you go through your results, to
know when to end one row and begin the next. It becomes even more difficult
if you want to produce the list the way that many people prefer them: top to bot-
tom within a column and then left to right with as even a number of rows in each
column as possible.

The CheckBoxes () function seeks to make this process much easier, even
allowing you to select whether you want horizontal or vertical display of your
options. The snippet of code shown in example 7-24 from the site_add.php form
shows you how it is called. This code creates the table shown in figure 7-1.
Example 7-24

B <.

e e ettt i, i, a R, SRR, %, Y
=

<td colspan="i®r
ype of Content

oy
<o
ey
<ed eolspansi®y
<iphp Checkboxes| "contest_typeac()”, "sontent _typens,content type”, “content_types®, “content type®, T4, 1%, %%, “horicomtal® | ¥
gl e
|18 e

Although the first four parameters of the CheckBoxes () function are the
same as SelectList (), the last two are not. The fifth (6) indicates the number
of columns to include within the checkboxes table and the sixth (1) indicates
the border= value for the table. You can add an eighth parameter (adding an
empty string for the intervening $default_vals parameter) of horizontal if

PROGRAMMING THE APPLICATION 167

Subjects

[T - Agneunwe | - Commusscatons | -Eth logy 0-1 - Multdisciplinary | - Social Wark
[T - Autteopology| I - Computer Programming| I - Geography =R L33 [- Setlolagy-
[- Arcitecture [- Computer Science [T - Geclogy T - Leisure Studies |7 - Musicalogy [T - Statistics
|l' - Arnt | - Dance f_l' - History (Amenican) |7 - Library Science 7 - Phdosophy T - Tachnelogy
|0 - Astronomy | T - Econoics |\ - Hstory (Buropean) | - Literature (nen-Westem)| I - Physics ™ - Theater
T -Biokgy | - Bdvcation | - Bistory Gnon-Western) |~ - Lterauce (Wester) |7 - Poial Science |~ - Usban Plnsing
I - Black &udi!g'r- - Engineerng] " - Human Ecology | I - Mathematics |7 - Psychology ™ - Veterinary Medicine
I - Business | I~ - Ethnic Studies | - Intemnational Smdies |17 - Medical |7 - Religion T - Women's Studies
” - Chenisty

Figure 7-1

you want the output to read left-to-right, top-to-bottom (something I have done
in line 116 of example 7-24 for the Type of Content options; see figure 7-2 for
what the output looks like). However, if it is not there, the function will assume
that you want the default value of vertical.14

Type of Contens
{I_F - Background Information | - Current events I - Full text [T - Indexes and Abstracts
| - Instructional LR) A B~ Ot |0 - Orgaitations
| - People | - Quick Refersnce " - Research [T - Stanstice
| ~Web Pormals
Figure 7-2

One thing slightly different about the CheckBoxes () function, and its sib-
ling RadioButtons (), is that it creates a table within a table. That is, for them
to function properly, they must be placed within a table, even if you are not using
tables for your input form (using a border=0 attribute conceals the fact that a
table structure is in place).

If you are working within an established table, you can specify the number
of columns within which the checkboxes (or radio buttons) are to be displayed.
To do this, we use the colspan attribute inside the opening <td> tag (line 105 of
example 7-24) that precedes the function call.

DATES Dates can be entered in a database in any number of ways. There are
not many formats, however, that permit searching, comparing, or sorting. If you

168 PROGRAMMING THE APPLICATION

don’t wish to have the date be searchable, you can use any type of character-
based entry format. If you do, you can opt for one of the following:

If you are working with years only, you can use a four-character or -inte-
ger field and, as long as you are consistent in putting four characters
or numbers into each field, you will be able to search and sort. If you
make the field character-based, the function also allows you to use
fuzzy dates. For example, in keyword searching on the field, you can
truncate (192*) so that the function brings up anything in the 1920s.
Also, if you consistently use four characters, you will be able to
search on ranges of years, such as 1925-1931.

You can expand on the fuzzy-date approach by making the field up to
eight characters in the following format: YYYY-MM-DD. You can
then truncate at any level of specificity. This is not, however, the
most intuitive format to read and it is difficult to program searching
against it. It is more advisable to create a data authority table con-
taining the ranges of years that you can then use to create a drop-
down box to use in data maintenance and searching.

For the full range of possibilities in using dates, you can use MySQLSs
DATE field type. This allows you to sort, search, and fully compare
(for example, before June 27, 1978). The only drawback is that you
must provide an exact date—month, day of the month, and year.

This last option can be a particularly involved operation to program. First,
the native MySQL format in which dates are stored is not the most intuitive for-
mat out there. Although you can obtain the data using a more user-friendly inter-
face in a variety of ways, these can be code-intensive and are prone to typos and
invalid date entry (February 29, 2003, for example, or September 31, 2005).
What is needed is a method that allows users to enter dates in a familiar format
that will also check that any date input is valid.

The Display_bDate () function (example 7-25, whose output is shown in
figure 7-3) has been designed to do just that. It creates select lists for month,
date, and year from which the user can choose. When it is submitted, there is a
corresponding function—Build_Date ()—shown in example 7-27, that we will
use to validate the input and create a properly formatted date field for entry into
the database.

Example 7-25

9_6I <?php Display Date("added”, "1M,6 "¥, Sroday" | 7>

PROGRAMMING THE APPLICATION 169

IAd.dedeth: | May = !#ﬁdsd Day:[05 =] . .[Added\’eaﬂ 2005 =] H

Figure 7-3

The values that are passed to the Display_bate () function include (see
Functions_Guide.pdf in the companion materials download file for a complete
description of this function):

added—the prompt to be displayed in the form and the prefix to be
added to _month, _day, and _year to create the variables that will be
sent to the action page (to distinguish them from other possible
dates in the form)

1—value for the border attribute of the table tag in which the drop-
downs will be displayed

" "—Dblank string, the function will use the default value for range of the
current year into 10 years in the future

today—current date from the server used as default

YES/NO PROMPT There are several ways to prompt for v/N answers. Radio
buttons are especially user friendly.!> Although easily created, they can be some-
what code intensive, particularly in editing screens where you need to create
code to test the value in the field so that it will know where to place the CHECKED
in the editing screen. To make this easier, I have included a Y_or_n() function
in ala_functions.php (available in the companion materials download file) that
makes it easy to create Y/N input elements (example 7-26).

Example 7-26
33' <?php ¥ _or N("Include in Alphsbetiecal List?", "alphaberical_ lisc" , "N®) 2>

As you can see from example 7-26, there are three pieces of information you
pass to this function (the output is shown in figure 7-4).
Include in Alphabetical ListP—the prompt to be displayed in the form

alphabetical_list—the name= variable to be passed to the action page
and the name of the field into which to save the value

N—default value for the field (if left blank, neither option will be
checked)

in Alphabetical List?:
& Yes ®He

Figure 7-4

170 PROGRAMMING THE APPLICATION

Inserting Action Page

In creating our action page, we need to do several things. First, is to assemble
the date variables created by our Display_Date () into a value that can be
inserted into the database. We do this on line 53 of example 7-27 from
site_insert.php. This function takes the name of the field into which we want to
place the value (added_date), the three variables created by Display_bate ()
($added_year, $added_month, and $added_day), and the $_POST Superglobal.
From this it builds a YYYY-MM-DD date. Then, before adding it to $_pOST, it
makes sure that the date is valid (that is, not something like February 31). Once
the function has been run, $added_date can be added to the sites table.

Example 7-27

§_POST = Build Datve("added date”, jadded year, $added month, §added day, §_POST):
§fields = "name, url, description, sites format, sites status, requires_proxy,
help page, alphabetical list, subscription, added date,

restriccions_on_use, sites supportno’;
jvable = "sives':
§sicenc = Inserct Record({ §fields, frable, § _POST, fprod="¥", "good.log"):
if (issec ($subjectno)) {
Inmert Links("sites subjects”, array("ss_site no"=>§siteno),
array("sa_subject_no"=>§subjectno), §prod="Y };
}
if { isset { fcontent typeno } } {
Insert_Links("=ites types”, array(".st_aite_lm"">$sitem L
array("st_content_type_no"=>jcontent_typeno),
§prod="yr) :
]

After defining the $fields into which we want to insert data (lines 54-56)
and defining the name of the $table containing those $fields (line 57), we
call the ITnsert_Record () function to add the record to the database. Because
we need to know what the primary key of the data record is so that we can use it
for foreign key fields to link other table records to this new record,
Insert_Record () is called here in such a way that the value of that records pri-
mary key returned by the function is saved to a variable named $siteno (line 58).

We can now use the value in the Insert_Links () function to create the
linking table records. After making sure that there are values for $subjectno
coming in from the form (line 59), we call the function as follows (lines 60-61).
The parameters include

sites_subjects—the name of the table into which the links are to be placed

ss_siteno—name of the foreign key field in sites_subjects into
which the primary key of sites will be stored

$siteno—name of the variable to which the primary key of the inserted
sites record was saved by Insert_Record()

ss_subjectno—name of the foreign key field in sites_subjects in
which the primary key of subjects will be stored

PROGRAMMING THE APPLICATION 171

$subjectno—name of the array, coming from site_add.php, containing
the primary keys of the subjects that the user has selected (values
then inserted as foreign key values in the linking records: note that
square brackets are used only in input forms)

Y—whether this is a production query (in this case, it is)

good.log—name of the log file to which the query should be logged

After doing the same for $contentno array, we close off the page by using
Display_Values () to output the data we have saved to the main data table.
We provide two links: one to edit the record we just added and one to allow us
to add another record.

Editing

To begin the editing process, we need to perform a search—similar to those in
chapter 5—to retrieve a list of records from which we choose one to edit.
Because the values by which we will want to search are not in a single table, we
will explore techniques to search multiple tables.

Searching

In site_queryl.php, we see an example of one possible search form. It uses the
same basic principles as we saw earlier. This time, however, it uses the ala_func-
tion.php library to create select lists for four of the fields (subject, content_
type, format, and status)and a simple text input box for name and descrip-
tion.

The major change comes in site_searchl.php—the action page that imple-
ments the search. We begin (lines 4049 of example 7-28) by defining some vari-
ables for the search:

$fields—list of fields to be retrieved (sites. *)

$tables—all tables involved with the search (either because they con-
tain data or are used in defining the relations), beginning with the
base table, sites, and adding others as required

$display_fields—array containing the names of the fields to be out-
put in the order of output

$num_fields—number of elements in the $display_fields array (used
in the for block that outputs results)

172 PROGRAMMING THE APPLICATION

$1ink_str—in case linking statements are needed to define relations
to be followed (start with it blank so that if there are no parameters
it won't disrupt the eventual WHERE statement)

Example 7-28

§fields = "sites ®v;
ftables = “"sites";
§link ser = "n;
$where atc = "":

Jressrsssnrrsssnnanss sae rrasene trasssrssesransaes
* Create the array of fields to diaplay
rrrrraees B e e LT

§display fields = array{ "siteno®, "name", "url®, "descripcion", "sices format", "sices scatus };
§num_fields = count(fdisplay_fields):

In example 7-29, we see the code where we go through each possible field—
as in chapter 5—checking to see if the user has entered a value and, if so, to add
an appropriately formatted element to the $where_ary array of WHERE condi-
tions. When our search involves tables other than the main sites table, we con-
catenate the new table names to $tables, separating them with commas. We
then add the required additional linking condition or conditions (which we
obtain from the Links grid) to the end of the $1ink_str. For example, in check-
ing for a subject condition in lines 65-70 if $subjectno is not blank, we add
the values in lines 66-67. Also, because we are using InnoDB tables, I have
resorted to the use of LIKE to search the name and description fields (line
95). I will show you an alternative shortly.

Example 7-29
BA| Sx=0:
65| if ($sunjectno 1= M)
66 §tables .= ", sites subjects™;
67 $link_str .= " AND sites.siteno=sites subjects.ss_siteno "
68 §vhere_ary[$x] = " as_subjectno = $aubjectno "
&9 Futtr
ol
0!
qe| if (Scontent_typeno i= "M)
73 jtables .= ¥, sites typea™;
74 §link sctr .= " AND sices.siteno=sices cypes.sc siceno
75 fvhere ary[§x] = " st_content_typenc = $content typemo i
76 Sadi
a7

1t (§sites_formac != M@) {
$vhere_ary[§x] = " sices format = '§sitea_format' ":
Sxe;

78

9

80

81

82

83

‘84| 1f (§sices stacus |= MM o)
85 §vhere ary[$x] = " sices scatus = '§sices scacus' "3
85

a7

BE

2]

20

& Snd
87|
9| 1f ($neme = Wm)
-1 $where _ary[§x] = " neme like '¥inames' *;
‘a1 $xve:
=
93
‘94| 1f (Sdescriptiom (= %M)
85 $vhere_acy[§x] = " description like 'sSdescriptiony' ":
ED Sues

PROGRAMMING THE APPLICATION 173

We begin this section (in line 64) by setting our counter variable ($x) to 0.
Each time we add a new WHERE element, we increment (add one) to $x. If we
get to the end and $x is still equal to 0, it probably means that no values were
input—something we check in lines 115-122 in example 7-30. If it does still
equal 0, we ask the user to go back and enter a value to be searched. On the
other hand, if $x is not equal to 0, it means that a value was entered and we begin
constructing our where string ($where_str) by stepping through the
$where_ary. We then take the $where_str variable and, along with other con-
stants and variables we have defined, use it to build our SQL statement.

In constructing this query, I have used one little SQL trick to make life eas-
ier. Because the first WHERE condition can neither have an AND in front of it
(WHERE AND <condition> will give you a syntax error), nor may the last con-
dition have a dangling AND at the end of it, and because we don’t know which ele-
ment will be the first condition, I have hard-coded the beginning of the condi-
tional part of the query with wHERE 1 (line 129 of example 7-30). In MySQL
this construct means TRUE (or “everything that could be retrieved by this
query”).16 Although it is a bit redundant, using it means that we can place AND
in front of every condition we create and do not need to figure out which one is
first beforehand because 1 will always be the first condition.

Example 7-30

11 if | fx == 0)
: echo "You need to enter a search";
emxit:

) elae {
for (§a=0: §mcix; $a++)
§vhere _str .= " AND §where ary[§a] ":

TR EEEEEEEEEEEEEEEEEATEANEEEREN mrarsswrraas

* Now let's create the $query variable, do the search (saving it to §result).
" Next, check to see if chere are sny rovs in the result sec. If not, let
* the user know that fact.
tEERtt RS TR EE RS RRRSARREEARENS RS RIROSSIREY tEtERES et titnn)
jquery = "SELECT DISTINCT jfields FROM §tables WHERE 1 §link acr §vhere scr”:
$records = Do_Search(fquery);
§num_rows = count(§records)
if (| $num_rows == 0) {

echo "<center>No Records Found</centers™:

axie;
} else (

echo "<center>§num_rows Records Found</center><hr>";

Once we have created the query (129), we pass it to a new function—
Do_Search () —to do the search and return an array of records for us to process
(130).

Once we have that array, we use it to create the output (lines 142-169 of
example 7-31):

174

Example 7-31

PROGRAMMING THE APPLICATION

Create an opening <table> tag to begin our outputting table.

Create a for loop that will walk through the $results array, storing a
new record each time to $row.

Use a for loop to walk through the $sdisplay_fields array for each
record from $results, reading a name from $display_fields
into $£1d and then using that value to output the displayed string
and appropriate value.17

See which field is being processed using an if statement and take
appropriate actions. (If $£1d is siteno, for example, use it to cre-
ate a hyperlink to site_edit.php, including the siteno=$siteno as
a parameter. Thus, when users click on this link, they are sent to the
site_edit.php form, which then uses the $siteno value to retrieve
the appropriate record or records to populate an editing form.!8
Because the $display_fields array is processed in order, placing
siteno as the first element guarantees that the link will come at the
top of the record.)

Add an extra <tr><td>
</td></tr>, after a $row is completed, to
separate this record’s display from the next record.

Provide the closing </table> tag, after the loop is completed, and close
off the HTML page.

echo "<table horder=\"D\">":
for (§a=0; fa<inum rows: $a++) {
§row = §records[§a):
Tor ($b=0: $b<inum_fields: $b++) (
§£ld = §display fields[$b]; // save name from §display fields array to §f£ld
§label = ucwords(§rld); // make first lecter of each word in $fld upper cese
if | $£ld == "siteno"™) { // if the $fld i= "asiteano”, create link to sdit
echo "<urr<td align=)"cight)"><k>{lebel</br></Th><Tl>§row[$rld] (Edit this record)</td></cr>":
} elseif (§$f£id == "url™) {
§URL = §fld;
fvalue = frow[§£ld]
if (trim{ $value) != "") {
echo "<tr><td align=\"right\"” wvalign=\"tap)">URL</td><tdrSrow[$£1d] </ ax<frd2 TES ")
1
) mlse {
jvalue = §row[$£ld]:
if (trim{ §value) t= #0y
echo "errretd align=\"righti”
valign=\"top) "><h>§label</br</ v <vdrfrow[$E1d] </ vd>a/TEn"s
¥
¥
¥
echo "<tr><td>
</td></tr>";
1
>
</table>

PROGRAMMING THE APPLICATION 175

To make this searching application truly useful, we need to allow for search-
ing multiple subjects or content types. I will also demonstrate a better alterna-
tive for keyword searching below.

Making Changes

After clicking on the link provided in the search output, the user is taken to the
editing page (in this case, site_edit.php). There, the primary key ($siteno) is
used first to retrieve the appropriate record from the sites table (using the
Get_Main_Record() function) and then to retrieve all linking table records
that have $siteno as the foreign key field for sites (using the
Get_Linked_Records () function, see example 7-32).

Example 7-32
52

52| §mites rowv = Get_HNain Record| """, "sites", "siteno”);
53| $subject_ary = Get_Linked Records("sites_subjects™, "ss_subjectno”, "ss_siteno”, §siteno };
54| f$ctype_ary = Get_Linked Records{ "sites_types”, "st_content_typeno”, Mst_siteno®, $sitenc):

In line 52 of example 7-32, the fields we want to retrieve (*), the main data
table (sites), and the primary key for the main data table (siteno) are passed
to Get_Main_Record () and the record is returned as an associative array back
to $sites_row, constructing the array name using <tablename> as a prefix to
“_row” (using prefix names for your result rows can be valuable if you ever need
to deal with data from multiple tables in the same form). Once this array is cre-
ated, it can be used to fill in the blanks in our editing screen.

In the next two rows (53-54), we call Get _Linked_Records (), using infor-
mation from the Links grid to pass it:

e the name of the linking table
e the name of the field containing the authority table’s foreign key
e the field name containing the main data record’s foreign key

e the value to search for in the main record’s foreign key field

Using this information, the function returns the results, which are then
stored to the appropriate array names: $subject_ary and $ctype_ary respec-
tively. These arrays will be used to display the current values for those multival-
ued authority fields in the record editing screens.

Next, we create our HTML form, using validate () to require fields and
creating our form appropriately (line 72 of example 7-33). Inside the form, we

176 PROGRAMMING THE APPLICATION

place a hidden variable containing the sites table’s primary key that will be
passed to the action page so it can tell MySQL which record to update (line 73).
Example 7-33

’!2 <form name="update form" method="POST" onSubmit="return validate (update form}" action="site update.php">
73| <input type="hidden” name="siteno” value=M<?php echo §=iteno 7>"x

Finally, we create the editing screen input fields using the same functions we
used in site_add.php. However, so that the program will know what value to
place into the inputting box, we add an additional parameter to the function
call—one that causes the current value for that field in the database to be placed
in the value parameter in the inputting form (example 7-34). In the case of sin-
gle-value fields where the value is coming from the main record, we use the
$sites_row associative array, entering the field name as the array index (for
example, $sites_row["name"] gives us the contents of the name field).
Example 7-34

<Lr>
<td colspan="2M
Name : <brr<?php TextBox("neme”, 607, "125", §sites row["name"])} 2>
</ftd>
</tr>

As you can see in example 7-35, in the case of the linking values, we simply
enter the name of the array we created at the top of the page as the seventh
parameter. For example, when creating the subjects list, we enter the name of
the array of values we retrieved (in $subject_ary).

Example 7-35

{lbl <?php Checkboxes(“subjectno[]”, "subjectno,subject”, "subjecta™, "subjecc”, "4", "1", §aubject_ary | 7>

UPDATING THE DATABASE Finally, we use the following function commands
shown in example 7-36, using the data we received from the input form, to
update the database.

Example 7-36

46| $fields = "name, ucl, description, sites format, sites status, requires proxy,

- help _page, alphsbetical list, subscription, restrictions_on_use,
sites_supportns":

feable = "mices":

Updace Record| §fields, jrable, §_POST, "sitemo”, "Y' |:

if (isset| $subjectmo)) (

Update_Linka(“sites_subjecta™, arcay("ss_siteno™=r§sitenc),
array(¥ss_subjectno”=>faubjectno), "aubjecta”, fprod="y" j;

} elee (
Delete Links({ “sites subjects”, array("ss_siteno"=>fsitens), fprod=y" }:
}
if (isaec| $content_typeno | J |
Update Links("sites types”, array("sc_siteno™=>jsiteno),
array("st_content typenc®s>fcontent typeno),
"content_typea™, §prod="yY")i
b eloe {
Pelete Links| "sites_types”, accay("st_siteno"=risiteno}, $prod="¥");
'

PROGRAMMING THE APPLICATION 177

As before, we check to make sure that there has been user input before run-
ning the Update_Links () function (example 7-36, lines 53 and 59). However,
if there is not, it might mean that the user did not add any or eliminated links
that had been there. To handle this situation, we assume that, in either case, the
user wants no subjects or content types associated with the record. Therefore, if
there was no input, we run the Delete_Links () function to delete any links
that may be associated with the record.

Note that in our call to Update_Links (), we have included an additional
parameter. This parameter—the name of the authority table—is included so
that, if the function finds an unmatched foreign key, the error message displayed
in the screen will contain the table in which the primary key should have been
found. This in turn helps with tracking down the problem.

Lost Foreign Key Values

One of the problems in using authority tables for editing is that, if there is a value
in a foreign key field that does not have a corresponding entry in the primary
table, a value will not be displayed in the editing screen. Although this cannot
occur if foreign key constraints have been established between the two tables, in
some cases you may not want to—or be able to—set those constraints, such as
needing to use MyISAM file type to support FULLTEXT indexing.

There are a number of ways in which we could end up with orphan foreign
keys. For example, an authority table record is deleted without taking appropri-
ate actions in the foreign key tables. Or if the foreign key field has had data
added to it outside the application process or outside authority control, then
there was no way to enforce the appropriate integrity. No matter how it hap-
pened, we need to have a way to deal with it. Otherwise, when the record is
updated, the anomalous field entry will be lost permanently.

Although it may seem rather drastic to discard data, it makes sense if you
think about it. After all, the idea behind a controlled vocabulary is to control the
vocabulary. Having a term in the database that is not in the authority list violates
that control (to say nothing of referential integrity) and we should keep unautho-
rized terms out. On the other hand, the unauthorized term may be important.
We want a way to deal with it rather than just throw it out sight unseen (and not
even know that it was there).

To address this problem, the authority list keeps track of all default values
that are passed to it and, if it finds that any of those values are orphans (don't
have an associated authority table entry), a flag is set (at least one of the values
to be sent to the database is set to have_f_key_problem), and an error mes-

178 PROGRAMMING THE APPLICATION

sage is displayed to the screen. In addition, it creates a hidden value named
have_f_key_problem. Then, if the user attempts to update the record, each of
the updating functions checks to see if any of the values coming in from the
inputting form has this value. If they find it, an error message containing the pri-
mary key of the database and a statement telling the operator to contact the data-
base administrator is displayed; and all processing stops. (If you want to allow
this behavior to be overridden, see the Functions_Guide.pdf in the companion
materials download file.)

Multiple Values within a Field

Before proceeding, let’s expand some of the searching techniques we are using.
There will be times when you or your users will want to search by multiple val-
ues within a field (see figure 7-5 for an example).

Although we have provided ways of doing that for text inputting boxes, we
have not done so for drop-down lists. To allow us to select multiple values, we

[% Search for Sites Records - Mozilla
« = .3 & ; = =+ .,
uﬁ: =l R& L | & tpuifiocstrstisxamples|Chapter_Tistesiste_query2.pho] . search | -
2 Alome | WhBooimarks instant Message Fwebiisl Frado #pacple £ ¥elowPages fownlosd #caisndar (channels £ dbday
(]| search for Stes Records. || Ziocotost 55 ixatost | phpttyadnin 2.1 | x
Search for Sites Records
Ibub'en.- [Content Type:
ez, 3 teagenoman 3
|Aericchae =l Fle x|
Fomar T
- [— |
Hame:
|
S S
l
i Seaich | o P
H Oz @ e - |

Figure 7-5

PROGRAMMING THE APPLICATION 179

need to change the inputting functions for subjects and content types from
SelectList () to ComboList () in site_query2.php, making sure to add square
brackets ([]) to the end of the variable name, so that it will pass input values as
an array to the action page, and defining the number of items to display—both
of which we do in lines 50 and 53 of example 7-37.

Example 7-37
in <t
50 Subject:
<7php Cosbaliat| 3 1§ &M mubjest, . "aublect®, 4") T
51 </ed>
52 <td>
53 Content Type:
<7php Combolist[“content typenol]”, “content _typeno,content_type®, “content types”, “content_type®, “47 | 7»
54 </ dx

Looking at line 50, we see that, after providing the label (subject), the
function is called with the following parameters (in order):

subjectno []—the HTML name variable

subjectno, subject—the fields from the Views grid used to create
the list

subjects—the table containing the values to be placed in the list

subject—the field to sort on

4—the number of lines to show in the combo list

Implementing Keyword Searching

Next we make a couple changes in the action page (site_search2.php). First, we
need to turn the array elements into a WHERE statement that can be used in an
SQL query. This involves

* breaking the array into individual elements
* building a WHERE element from the constituent Or parameters passed from

the user (parentheses need to embrace strings with more than one value)

In the interests of saving time and effort, I have constructed a Process_
Query_Array () that takes care of this for us. We can see an example in lines
6876 of example 7-38 (from site_search2.php).

Example 7-38
68| if (issec(§_POST{"subjectno™])) {
69 §tmp_str = Process_Query Array("ss_subjectno”,§subjectno);
70 if ($emp_str = "0)
71 §tables .= ", sites_subjects";
72 §link str = " AND sites.siteno=sites subjects.ss_siteno ";
73 $where_ary[$x] = §tmp_str;
74 §x++:

180 PROGRAMMING THE APPLICATION

We check to see if a subject was input (line 68). If so, we pass the appropri-
ate parameters (name of the field to search and name of the array containing val-
ues to be searched) to the function. The function in turn outputs a fully format-
ted WHERE condition, which we save to $tmp_str. If the string is not equal to
", something was input. We therefore enter the loop, where we add
site_subjects to the $tables list (line 71), the linking condition needed to
find sites records associated with these values added to $1ink_str (line 72),
and of course, the new condition to the $where_ary array (line 73), increment-
ing $x in the next line (74).19

As we have said, we are unable to use MySQLs FULLTEXT searching, due to
our use of InnoDB table format for the sites table. Fortunately, MySQL. incor-
porates a very powerful technique—regular expressions—that we can use to
address the problem. Although we have nowhere nearly enough time to delve
into a detailed examination of regular expressions (see the bibliography), this
technique provides you with some very sophisticated tools that can look for and
manipulate strings of characters within longer strings. In this case, we can use
them to search for a string as a word (between spaces, punctuation, or other non-
word characters) inside a field, thus avoiding the limitations we encounter with
LIKE.

To provide a painless way for you to use regular expressions in your search-
ing applications, I have created a function—Process_Query_String () —that
creates regular expression-based MySQL WHERE elements that replicate
MySQLs FULLTEXT searching capabilities. Example 7-39 (taken from
site_search2.php) is an example. In this code, if the condition ($description
= ") is true, the script calls Process_Query_String (), passing it the field
name (description) and the variable name ($description), and saves the
result to $tmp_str. Then, in line 115, it adds $tmp_str to the $where array.
This technique allows us full Boolean searching, including: by full words and
phrases, with right-hand truncation using asterisk, and both AND and ORr opera-
tors (OR’ing before AND'ing after) similar to the and_or_search.php we saw in
chapter 5.

AT {§dessription 1=) (
§rmp_atc = Proceas_Query_String(“description”, {description):
dwbers_aey(ix] = " fomp_atr *:

Ix+e;

At this point, we have a working Web-based application, even if it’s a bit sim-
pler than we eventually might want. One component is missing, however, and it’s

PROGRAMMING THE APPLICATION 181

a critical one. We need our data to be secure, beyond the reach of both external
and internal hackers. In the next chapter, we address security-related techniques
that we can apply to a database-backed Web-based application.

Notes

1.

@

10.

11.

12.

13.

14.
15.

See http://www.databasejournal.com/features/mysql/article.php/3311731 or http://
dev.mysql.com/doc/mysqgl/en/privileges-provided.html for information on each

of these rights.

Actually, in order to enable transactions (which I will be showing you later in this chap-
ter), you need to turn on InnoDB support for all tables. You must also have set up
InnoDB support in your my.cnf file. See Setup.pdf in the companion materials down-
load file for more details.

See the MySQL manual for more options.

The include () function reads the contents of the file name you give it directly into
the file. If the file is not there, an error message is sent out, but the application will
continue as best it can. If you want to have the program stop dead in its tracks if a file
is not there, use the require () function.

If you follow the setup procedures provided in Setup.pdf (in the companion materials
download file), this will be unnecessary.

When naming any include file, it is critical that you provide PHP-related files with a
php extension. Although some systems suggest that you can use .inc, this is a bad
idea—particularly for files that contain sensitive information (such as passwords).

If they have .php as their extension, the Web server will automatically execute them
rather than displaying them as a text document.

In using this name, we are following the recommended naming conventions described
in appendix B.

Note that subject_get.php is an exception to the form and action page pairing in this
application. The reason is that the script retrieves a list of records from which the user
selects one to edit. It is thus both an input form and an action page.

I have broken up the query over multiple lines to make it easier to read.

Although MySQL does provide logging support, those files are stored in binary format,
making them hard to read for debugging, and include queries from all databases in a
single file. Creating your own log makes the information easier to access and to keep
separate.

For another example of action-page-based validation, see lines 57-60 of site_insert2
php.

If you use this formulation of the <form> tag, you must use the validate () function
and enter at least one field into it. Otherwise, at least the current version of Internet
Explorer will complain about a missing object.

For an idea on CheckBoxes () or RadioButtons (), look at the two function calls in
sites_add.php and then look at the actual function in ala_functions.pdf in the compan-
ion materials download file.

If you don’t enter values, the defaults are 4 columns, border=1 and horizontal output.
Another technique is to use the function’s WHERE parameter to take values from a list,
thereby allowing you to use radio buttons in other types of situations. See Functions_
Guide.pdf in the companion materials download file for more information.

182 PROGRAMMING THE APPLICATION

16. Other database engines, such as PostgreSQL, use WHERE TRUE.

17. For example, the first element of $display_fields is siteno. The first time
through the for loop, $£1d will contain siteno and $row[$£1d] will be equal to
$fld["siteno"], which will be the contents of the siteno field.

18. Remember, not only is siteno the primary key of the sites table, it serves as the for-
eign key for all linked records. We can thus use it to retrieve associated subjects and
content_types information.

19. Note that Process_Query_array () automatically places a Boolean ORr between the
elements. Using AND, though a bit more complicated when dealing with many-to-many
searches, is certainly doable. I show you a function for doing them when we talk about
public searching applications.

SECURITY-RELATED
TECHNIQUES

Chapter

The preceding chapter outlined the basics of creating a Web-

based application. In the best of all possible worlds, this is all you

would need. However, Dr. Pangloss notwithstanding, this world
is not such a place (at least not when it comes to computers).! We therefore need
to build some functionality into our application to provide some security.

APPLICATION SECURITY

There are both a number of ways your application can be compromised and
techniques to deal with those threats. Here I detail a few of these to help you to
begin securing your applications. Unfortunately, it is not possible to discuss them
all. The “bad "uns,” as Dickens called them, are infinitely inventive and resource-
ful and new exploits are being created every day. You therefore need to have a
source where you can get up-to-date security information. A list of places where
you might look is included in the bibliography.

One major step you can take is to always give your configuration files a .php
extension. Although you can include files with any extension, those with .php are
automatically parsed by the mod_php engine. If you use another extension, such
as .inc, a crafty user could access that file and read it. Although there are tricks
that you can do in httpd.conf (Apache’s configuration file) to keep that from hap-
pening, using the .php extension is the easiest approach.

183

184 SECURITY-RELATED TECHNIQUES

Internal Threats

If you are the only person who has rights to log into your server, then these will,
for the most part, not be a problem. However, if your applications will be running
on a server with other Web publishers who might view your database or other
application data, you start by placing that information in a file in an area outside
the Web document area. You can then include () it where needed (see Setup
pdf in the companion materials download file for information on how to do so).

Another approach—and one that has the further advantage of increasing
external security—is to incorporate SSL into your Apache server and place data-
base maintenance applications (as opposed to public interfaces) in your https
directory.2 Then, as long as you don’t provide any users access to that area, no
one will be able to view or modify your files.

One drawback of using a programming language that allows you to include
files from anywhere on the server is that it potentially opens up your database
connections to anyone. All a nefarious user needs to do is to include () your file
to gain full rights to do whatever that include file allows. One way to get around
that is to place code in the include file to check to see where the file that is call-
ing it resides. If the call comes from somewhere the script has not explicitly
defined (approved), the script can simply exit with a warning (or more stringent
measures, if you wish).

What you do is use the $_SERVER["SCRIPT_FILENAME"] superglobal
value, which contains the name and full path—from the root directory of the
Web server—of the calling script, that is, the name of the file requesting to
include() your configuration file. Using PHP’s regular expression function
eregi (), you can check at the top of your configuration file to see “who’s call-
ing”—that is, compare that information to what you've defined. If they match,
the inclusion can proceed. If not, however, you can exit—perhaps logging the
incident and taking appropriate measures. Examples 8-1a and 8-1b provide
example code (for Windows and Unix/Linux respectively) that you can place at
the top of your include file (making sure that the full path to the application
directory is correct).

Example 8-1a
38 $script = § SERVER["SCRIPT FILENAME"]:
38| if { leregi("“c:/webdb/ he/ hed examples/ p _T/aites”, §script)) {
a0 echo "You are not allowed to use this script®™;
41 exit:
4z])
Example 8-1b
38 $=cript = §_SERVER["SCRIPT_FILENAME"]:
39| 1r | teregi ("*/usr/local/apache/htdocs/examples/chapter_7/sices”, §script)) {
40 echo "You are not allowed to use this script™:

_9;1 exit;
42|

SECURITY-RELATED TECHNIQUES 185

Including such a function will cause any program that does not reside inside
the designated path (teregi ("~c:..) to shut down with an appropriate message
before it can access any database connection or other parameters. The eregi ()
function checks to see if two strings match: the exclamation mark (the negation
symbol in almost all programming languages) in front of the function call essen-
tially tells the computer to determine a “not match” rather than a match.

One other internal (and to some degree external) threat is allowing end-
users to access password information. One way to make the users table more
secure is to encrypt user passwords. Encrypting passwords involves taking the
information input into a form and, using an encryption algorithm, transforming
it into something not readable by humans before storing it to the table. Then,
when the user attempts to log into the application, the input is encrypted using
the same method and compared to what is in the table to see if there is a match.
Encryption is a one-way street: passwords cannot be decrypted from the files
that store them, they can only be compared against what the user inputs, and
either verified or rejected. Casual users would thus not be able to do anything
with the information in the users table were they able to access it. Scripts that
allow you to set encrypted passwords are included in the companion materials

download file.

External Threats

Although hackers can compromise your system in any number of ways—and
there are a host of ways to deal with it if they do—you can undertake certain pre-
cautions to make things more secure from enemies from without in the first
place. Assuming (as the book does) that you are running PHP using mod_php
rather than the CGI version, some of these include

First, make sure that register_globals is off in php.ini (or set it to
that in your local .htaccess file).3 If this cannot be changed, call
input values (especially session values) by using their full super-
global array name (for example, $_SESSION["name"] instead of
$name).

Always define parameters (fields, tables, and so forth) used in modifying
the database and names of include files within the script, never with
values input from a form.

If possible, enable SSL (Secure Sockets Layer) support on your server
and place all database maintenance applications in that area. This

186 SECURITY-RELATED TECHNIQUES

ensures that all traffic between the user’s browser (including pass-
words) and the server is encrypted.

If SSL is enabled, do not rely on Apache’s basic_auth (use of .htaccess
files with user authentication handled by htpasswd-created user
files) for sensitive information. Those browser-server communica-
tions are not fully encrypted.

Set up phpMyAdmin to use cookie-based authentication on an SSL-
enabled site for database administration.4 This allows for distributed
database administration (so that people can administer their own
databases) and timeouts to ensure that live connections are not left
open (a danger if one is doing administration on a computer where
multiple people have access to the workstation).

Avoid passing user input to an external program or process such as send-
mail. If you must do so, make sure to check for potential problems
so that only appropriate values are passed on.

Although setting the php.ini settings for error_reporting to on and
display_errors to E_ALL (every error, including undefined vari-
ables, gets reported) is fine during the development process, these set-
tings can provide potential hackers with information they shouldn’t
have. It is therefore recommended that, when placing an applica-
tion in production, you set display_errors to off (to log errors to
the standard Apache error log file) and error_reporting to
E_ALL & ~E_NOTICE & ~E_STRICT (to keep from being inun-
dated with error messages). Note that you can also set the error_
log directive in php.ini to specify a different log file or to even e-
mail you error messages that occur.

Always place query parameters within single quotes (for example,
name="'$name'), even if they are numeric (neither MySQL nor
PostgreSQL minds) and make sure that all query elements have sin-
gle quotes escaped, either via setting gpc_magic_quotes to on in
php.ini or by using addslashes () on them. Not only will they
make your queries work better, it will mean that putting something
like music'; drop db web_sites at the end of a search param-
eter will cause the nefarious code to be treated as a search parame-
ter, and not executed as a separate SQL command.

Whenever you take user’s input and echo it to the screen, always use the
htmlspecialchars () function to convert any code—such as
Javascript functions—into HTML text.

SECURITY-RELATED TECHNIQUES 187

ACCESS CONTROL

Given that these applications allow for data in the database to be changed, you
want to restrict access to only those persons authorized to do so. There are two
levels of control:

Authentication uses a list of those allowed into the system, checks
against it when someone attempts to access the system, and ensures
that the person is who the person claims to be.

Authorization verifies that the user in question is allowed to do the task
he or she is attempting to perform.

I now explain what is involved in setting up each mechanism.

Authentication

As noted, authenticating means verifying that the person is who the person
claims to be. Although there are a number of different ways in which authenti-
cation can be handled, the easiest is to use username/password pairs. There are
two techniques we can use in our application: the Web server’s basic access con-
trol mechanisms and an application-based authentication process.

Web Server Authentication

Because it is easily implemented and does not get in the way of developers, we
can use the Web server’s access control process, at least during initial develop-
ment. This does keep the curious out and allows access until the user closes the
browser. Setting up server-based authentication involves two steps:

e creating a password file (or adding to an existing one) with username/pass-
word combinations for each user

e configuring the Web server to require the user to enter this information®

Application Authentication

We can also use our application to check users. To do so, we create a table in our
database—one that we will call users—that we can use to authenticate our
users. Although there are a number of useful elements we might include, we
will limit ourselves here to five:

userno (tinyint)—primary key (auto_increment) field for this table

full_name (varchar(50))—full name of the user

188 SECURITY-RELATED TECHNIQUES

username (varchar(25))—name the user will use to log in

password (varchar(12))

password to verify their identity

rights (varchar(100))—comma-parsed list of roles (rights) the person
will have in the system (we will discuss this a bit later when we
address authorization)?

Once we have created the table, we add a record for each user we want to
have access to the system, filling in their full_name, username, and password
fields (the case-sensitive username/password combination that comes with the
web_sites database loaded with data from the companion materials download
file is jsmith/abc123). We then create, first, a form in which the user is prompted
for a username and password and, second, an action page that, after the user
clicks the Submit button, checks to see if that username/password pair exists in
the database. If such a record is found, the user is authenticated (if not, the user
is not granted access).

If we decide that we want to encrypt our passwords—probably not a bad
idea—we will need to write a user table maintenance application that will
encrypt the password in the insert and update action pages before sending it to
the database. I have included a set of such scripts (user_*.php) in the sites direc-
tory of the download file that you can use to add and edit user records (using the
users table created as described). These scripts are similar to those we saw in the
database maintenance functions earlier with the following differences:

The action pages allow you to set two variables—$encrypt_fields
and $encrypt_method—to define which fields to encrypt and how
they should be encrypted (shal or md>5). If these variables are left
blank, nothing will be encrypted.

If encryption values are set, they use the sixth and seventh parameters
of Insert_Record() and the seventh and eighth parameters of
Update_Record () to pass those two additional values to the function.

Both input forms require the data entry person to put the password in
twice to verify that it was typed in correctly (and the action pages
won't continue processing if the two iterations are not the same).
This is particularly important with encrypted passwords because
they cannot be read or edited.

The user_edit.php script does allow you to enter password information
to update the password field. However, if you enter nothing, user_
update.php will not update the password field with a blank value.

SECURITY-RELATED TECHNIQUES 189

Example 8-2 provides an example of how you can do this. Note that if you
do use encryption in storing the records, you must set the third parameter of the
Check_User () call in your login script to use the same encryption method—
shal or md5—that was used in entering user’s information into the users table.
Otherwise, the user will never be able to get in.

Example 8-2
4E| 1f (§_POST["password®] i= § POST["passwerd verify"]) {
46 echo "The passvords <o not match.™;
a7 exit:
48|

48| fencrypr_fields="pasawordt;
50| fencrypt_method="shal”:
51| §cable="users";

52| if (§_POST["password”] = ") {

53 §fimlds=array("full name”, “username”, "passuord”, "rights®):
S4| 1 else {

55 §fields=array("Iull name", "usernmmwe”, "righta" j;

56|
57| Update Record{ $fields, $table, § POST, “userno®, "¥*, **, fencrypt_fields, Sencrypt_method):
58| echo “Your record has been updated<p>":

The next problem is letting each of the pages in your application know that
the user is authenticated. This is made difficult by the fact that the Web is state-
less: that each interaction between server and browser is a discrete event unre-
lated (as far as the server is concerned) to any other event. Once an interaction
with the user has been completed, the server has no natural (that is, without
developer programming) way of knowing anything about the user from page to
page or session to session.

One way to deal with this is to set a hidden field value that contains the login
ID and then pass it from page to page within the application. In addition to not
being very secure and being tedious to program and test, this also suffers from
the weakness that all it takes is one page where the ID doesn’t get set properly
and the authentication information is lost.

Another approach is to set a cookie so that the server can know who has
passed muster and who hasn’t. For this, you need to send the browser an authen-
tication cookie once the user has successfully logged in. Then, within each page
of your application, the system needs to check to see if a cookie has been set. If
it hasn’t, the application sends the user to the login screen where, once the user
is authenticated, the cookie is set. We will be looking at a variation of this below.

Authorization

Although authentication does keep unwanted people out, it does not allow us to
be selective in deciding who is able to do what in the system. To do this, we need
to add an authorization layer. An authorization system assigns users access levels

190 SECURITY-RELATED TECHNIQUES

within the system and permissions to perform certain tasks. Then, when a user
attempts to do something, rights are checked to see if the user is permitted to do so.

To set up authorization (in the context of the examples in this book), you
need to define a list of words defining the roles or tasks that you want your appli-
cation to support. Then, when you add a user to the users table, you enter a
comma-parsed list of the user’s rights into the table’s rights field. Thus when a
user attempts to perform a certain task, credentials can be checked against
appropriate permissions. Although we could create our own cookies-based
mechanism to do this, it would become very cumbersome in practice. This is
where sessions come in.

Using Sessions

As of version 4.0, PHP added what is called session support to its repertoire of
techniques. Sessions are a mechanism whereby PHP can remember individual
users. The way it works is that, when a user initiates a session, the PHP engine
tells the Web server to send the browser a special kind of cookie called a session
ID named PHPSESSID. Once the session is set, each time the browser returns to
request another page, the server checks the ID ($_SESSION["PHPSESSID"])
in the browser to see if it is set for the server to associate the proper information
with the user.

The valuable thing about sessions is that, when PHP sets up a session, it cre-
ates an associative array of values (in the form of a $_sESSTON superglobal array)
that it stores in a file (in the directory defined in the session.save_path
directive in php.ini), using the $_SESSION["PHPSESSID"] as the basis for the
file name. This then helps associate that file of values to the session ID stored as
a cookie in the browser. Developers can use this feature to define (register) vari-
ables within the session and then use them to set values that can be accessed
from any page in the application.

To use sessions, we must begin by calling PHPs session_start () func-
tion. This call either sets the PHPSESSID and sends it to the browser (if this is
the first time through the page) or renews it. Because of its role in setting the
session, this function call needs to be both loaded with each page and before any
other session calls are made. Otherwise, that session information will not be
stored by PHP. To that end, we add the following lines to local_prepend.php that
will allow us to authenticate users. We begin by starting the session and using
session_start () (shown in example 8-3). Then, as shown in example 8-4, we
define the code—again in local_prepend.php—that will require that users log in.

SECURITY-RELATED TECHNIQUES 191

Example 8-3
Bl s rrres
70| * Set up sessions
srrazrrer rrrenee TrsEmaEERTEIETEATeRRERAE 7
2| session _stacc():
Example 8-4
384| $page = Cer_Page Name():
125| $pos = strposiipage, "login.php”); /{ Check to =mee if page im login.php. If
426| 1t ($pos == 0) | // 8o, skip to avoid an infinite loop
127 if [§_SESSION["authenticated”] = "true") {
128 header ("Location: login.php?page=§paga"):

] ¥
a0]

Although much of the code here is explained in the comments at the end of
each line, one section—lines 124—125—warrants a bit of discussion. Here we call
the Get_page_Name () function to get the name of the file the user has
requested (literally, to see what is the name of the file into which the local
prepend.php is being included).® It does this so that, once the user is authenti-
cated, the system knows which page to return to.

In line 126, if the page is not login.php (literally, if the position of
"login.php" is not greater than 0 in the $page variable), then the user is redi-
rected to a login page named login.php (if we didn’t exclude login.php, we would
end up with an endless loop). In redirecting the user to the login page, we
append the name of the current $page to the URL as a GET value so that the
user, after being authenticated, can be returned to the originally requested page.

Once you place these lines into your configuration file, any user who tries to
access any PHP page in this directory before they have logged in will be forced
to the login.php page. Note that this will not protect any pages without the
php extension so that .html pages would not insist that the user log in. This is
because the PHP engine needs to process a page for this code to be run.

One critical security point: in looking at local_prepend.php, please note that
session_start () comes after the lines that localize the $_PosT or other
superglobal variables. This is extremely important in that you must, for security
reasons, localize those values before you start a session. The reason is that you
cannot create a session variable before a session is started. However, once it has
been started, you can. That means, if you start the session first and then localize
the $_pOST values, hackers can pass values from a form to your script in such a
way as to create and/or modify a session variable (something that could severely
compromise your security).

The login page (login.php) begins with some PHP code to see if the
$_pOST["form"] value has been set (see example 8-5). The first time

192 SECURITY-RELATED TECHNIQUES

through—because the page is being called from local_prepend.php—it will not
be, and the $page value (containing the name of the page that the user originally
requested that is passed from local_prepend.php) is retrieved from the $_GET
superglobal, because that is the way in which it was passed from the configura-
tion file. We then skip the rest of the PHP code to the inputting form.

Example 8-5
=
<?php
if (t!issec(§_POST("form"])) {
$page = § GET["page"]:
)} else {
if (§_POST["form"] == "login") {
§page=§_POST["page"”];
§test = Check User(fusername, $password):
if (§tesc["passed™] == "Y") {
$_SESSICN["aur.hent.icatgd"] = Nerus®;
§_SESSION["username"™] = §test["username"];
foreach (ftest as fkey=>$value)({
session_register ('§key');
§_SESSION([$key] = $value:
]
header ("Location: $page"”):
} else {
echo "No";
§page = § POST["page"]:
}
} else {
fpage = §_GET["page"]:

In example 8-6 we see a pretty straightforward HTML form. However, there
are three lines to note from this example (with code from the login form):

Line 69. We set the method to POST and the action page to login.php,
the name of the current page. Thus, on clicking Submit, the user will

be directed back to login.php.

Line 70. We define a hidden variable named form and assign it the value
login. Thus, when we do click on Submit (which causes login.php
to be run again), the PHP code at the top of the form will be exe-
cuted.

Line 71. We define a second hidden variable—page—that passes the
name of the originally requested page (as a $_posT value, because
in line 69 the method was set to POST) to the next process.

Example 8-6

69 <form method="POST" action="login.php">
70| <input type="hidden" name="form" value="login">
F1| <inpuc cype="hidden" name="page™ value="<7php echo fpage ?>">

SECURITY-RELATED TECHNIQUES 193

Once the user enters the information in the boxes and clicks on the Log in
button, login.php is called with the values just mentioned and the code shown in
example 8-5 is run. When it hits the i f statement in line 39, it will take the sec-
ond fork in the road (because at this point, $_POST [" form"] has been set). The
first thing it will do is to call the Check_User () function with two parameters:
$username and $password. If you are encrypting passwords, you will need to
add a third parameter designating which encryption method—shal or md5—
you used. If Check_User () finds a record in the authentication table that
matches the information that the user has input, it creates an array of values that
are returned to the calling form. Specifically, this array includes a passed ele-
ment that indicates if a user record was found and a username element to store
the user’s login name.

It also takes the comma-parsed list of rights contained in the rights field
and creates an associative array element for each right it finds, using the name
as the element index and storing v as the value for that element. Thus, if a user
had “admin, staff, student” in their rights field, then three array elements
would be created: $test["admin"], $test["staff"], and Stest["stu-
dent "], with the value of each being set to v.

When the array is passed back to the login page, the code checks to see if the
user has passed (line 45). If so, it sets a number of session variables:

$ SESSION["authenticated"] = "Y" indicates that the user has
passed muster. Then, each time through the local_prepend.php
when the code checks, the user will be allowed through (line 46).

$_SESSION["username"] makes the users username available for dis-
play and entry into the database, such as storing it in an added_by
field to let you know who entered a record (line 47).

$_SESSION[<right>] = "Y" means that for each rights element
created by Check_User (), a separate session variable will be cre-
ated in the form of $_SESSION[<right>] = "Y" (lines 48-51).

Finally, the user is redirected to the originally requested page. From then
on, as long as the session stays established (which it will until the user closes the
browser or logs out) and the $_SESSION["authenticated"] stays set to true,
the user will be authenticated for your application.? Now, any time you wish to
restrict access to a particular task, you simply use i £ to check to see whether the
$_SESSION[<rights_name>] variable has been set to v and then, allow only
those users with such a value to proceed.!? We will see some examples of how to
do this later when we deal with deleting records.

194 SECURITY-RELATED TECHNIQUES

Note that the way that we have set up the rights field breaks one of the
rules that we laid down in chapter 2: we are placing more than one value in a
field rather than creating a separate table and then relating it to the users table.
However, as we noted at the time, normalization rules should be followed unless
there is a strong case not to do so. In this case, there is. Placing them in a comma-
parsed list not only makes processing this information quicker, but also provides
an example of how this can be done. Also, many of the problems associated with
nonnormalized data, such as relational integrity and the inability to use drop-
down lists, do not apply in this case.

This code assumes that the user information is in a table named users with
fields named username, password, and rights. If you wish to change any of
these, see the documentation for the Check_User () function in Functions_
Guide.pdf in the companion materials download file for information on how to
do so.

APPLICATION CONTROL

Controlling access to the application is one consideration. Dealing with what
happens within the application once users are interacting with records in the
database is another.

Transactions

When dealing with single database interactions, as we were doing in the author-
ity maintenance apps, things were very simple: either the database was updated
or it wasn’t. However, in the Sites view, we are dealing with multiple queries, any
one of which might “go over to the dark side.” We therefore need to use trans-
actions (described in chapter 2) to keep things from really being added to the
database until we are sure all went well .11

I have included transaction support in the function libraries in the form of
three functions: Begin (), Commit (), and Rollback ().!2 In addition, I have
built error handling and log file maintenance into the function library. Before
you use transactions, you need to have taken care of several items:

Made sure that all tables involved in the transaction are the InnoDB
type

Enabled sessions (for a number of reasons, including logging, sessions
are required for the function library’s transaction support to work

properly)

SECURITY-RELATED TECHNIQUES 195

Called the Begin() function to start the transaction process before
entering any database maintenance command

Entered the database maintenance functions

Called the commit () function after the last query has run so that the
results will be stored to the database (because the functions have
built-in call to Rollback() if any database interaction fails, the
assumption is that—if you have gotten this far—everything went well)

The code in example 8-7, taken from site_insert2.php, demonstrates how a trans-
action is handled.

Example 8-7
‘89| Begin():
90| $siteno = Insert Record(jfields, $cable, § POST, jfprod="y" j:
51| Insert_Links{ "sites subjects”, arcay("ss_siteno"=>§siteno),

92 array("ss_subjectno"=>§subjectno }, $prod="Y):
93| Insert Links("sites typea”, array("st_siteno"=>§siteno),
94 array| "st_content_typeno'=>§ _typeno), $prod="Y):

95| Commit():

Logging

The approach to logging we discussed earlier works in a limited way. Once you
begin using transactions, or if your application resides in multiple subdirectories
(as it does here, using the different dblog directories for the authority table
maintenance and sites subdirectory for the Sites view), it will not work. As noted,
we need to have a single log file so that all interactions to the same database can
be restored in the proper order.

For this to happen properly, we need to set global logging configuration that
every script in the application can use. To set up this logging (as shown in exam-
ple 8-8), you need to

* make sure that sessions are enabled in every application configuration file

e set the following variable in each configuration file:

$_SESSION["logging"] = "v" (line 79 of example 8-8)

* set your logging parameters (lines 80-81)

Example -8
§_SESSION["global_logying™ = "Yr:

§_SESSION["global_log_path®] = "/export/www/lib/examples/Chaprer_7/sites/dblog™s
§_SESSION["global_log_file"] = "sql.log";

The two session variables that get set are: $global_log_path (), which is
the full path from the server’s root directory to the directory where the log will

196 SECURITY-RELATED TECHNIQUES

reside, and $global_log_file (), which is the name of the file to which log
entries should be written. Then, if you use the functions, and do not enter any-
thing in the $log_file parameter in your function calls (as we do not in the
examples in this directory), every log will be written to this global log file. The
only things you need to do are to make sure that all configuration files in your
application include this function call with the same parameters, and that the path
or log file names (or both) are unique for each application on the server.

If you want the complete transaction to be logged by your function calls, you
will need to define how you want logging to be done. As noted, logging transac-
tions is a major reason we need sessions. Because we have no way to rollback our
logging, we must wait to write to the log file until Commit () is called (meaning
that all queries executed correctly). We therefore need to store our queries to
see if everything goes well and, if it does, we can write the queries out to our log file;
if not, then we can discard them or write them to an error file for later analysis.

To allow us to do that, the Begin () function includes setting two session
variables. The first is $_SESSION["transaction"], to set a flag that a transac-
tion is in progress. The second is $_SESSION["transaction_log"], to serve
as a variable to which we can save successfully executed queries. Then, if all goes
well, the contents of the latter are saved to the log file as part of the Commit ()
function’s work. Otherwise, the accumulated queries are discarded as part of the
Rollback () function. See the discussion on Write_Log() in Functions_
Guide.pdf in the companion materials download file for more information.

Encryption

Protecting our applications using authentication and authorization is a good start,
but does not fully protect our database. The reason for this has to do with the
way that the Internet works. Left to their own devices, our Web applications will
send usernames and passwords in the same way they do any other text: as plain
text available for anybody with the proper software and connections to read.
This, of course, can expose the information to others online who can intercept
the information. In sum, they would then be able to access your database.

Just as encryption scrambles a password so that it cant be read by the
“wrong” people, so it can scramble all transactions between the server and the
user’s browser. To accomplish this, you need to implement Secure Sockets Layer
(SSL) on your Web server. Any communications between the user’s browser and
the server are then scrambled using strong encryption methods included in SSL
packages (hence their use in commercial financial transactions). Once SSL

SECURITY-RELATED TECHNIQUES 197

encryption is installed, you need only place your documents in the designated
secure server directory (folder) and all interactions with your application will be
encrypted. Please see the bibliography and Setup.pdf in the companion materi-
als download file for more information.

Deleting Records

Eliminating records from the database is a task that needs to be supported, but
one that also needs to be undertaken with great care. Not only do you need to
define who will be able to delete records, but you also need to determine where
information resides and what the effect of deletion will be on overall database
integrity. Keep the following guidelines in mind:

Limit the ability to delete records to highly trained and responsible indi-
viduals. One method is user authorization.

Provide the user with a list of records that would be affected by a dele-
tion before the record is deleted when the record the user wants to
delete contains a primary key to which one or more foreign tables

may be linked.

Delete the record and take appropriate actions with all linked records
once the user confirms the deletion. In some cases, the records from
the linking table will be deleted. In others, if the foreign key resides
within a data table, the value of the foreign key field should be set
to NULL.

Do not use phpMyAdmin or other administrative tools to delete records
within a multitable application unless you are using built-in foreign
key constraints.

Example 8-9

78] <2php

'?‘? echo "<center>":

78] if (Check Rights("admin”)) (

79 belete_Record Check("site_delete.php”, "siteno", $siteno):

]

GT. ;cho Mefoenter>";

8z

Verifying deletions can be handled in a number of ways. One is to provide a

link inside the editing page to a confirmation page where the user can verify the
deletion. This is what we do in example 8-9 from site_edit.php. First, the code
uses the Check_Rights () function to see if the admin right has been set to v.
If so, the next line calls Delete_Record_Check (), passing it the name of the

confirmation page (site_delete.php), the name of the primary key (siteno), and

198 SECURITY-RELATED TECHNIQUES

the primary key of the record to be deleted ($siteno). The function then cre-
ates a link on the page to a confirmation page (site_delete.php) with the param-
eter siteno=$siteno. Clicking on this link (assuming the user hasn’t turned off
Javascript or popups) creates another window in which the site_delete.php page
will be displayed. At that point, the user will be able to verify whether to actually
delete the record.

Looking at the site_delete.php page (example 8-10), we see the following:

1. This page, like login.php, uses the technique of placing hidden values in
the body of the form to pass when it calls itself. In this case, there are
three:

The first sets action equal to delete (line 68) and causes the page,
when reloaded, to execute the PHP code at the top of the page.

The second parameter—siteno—is used to pass the primary key
on to the deletion function (line 69).

The third defines do_it (line 74), which is the user’s decision on
whether the record should be deleted.

2. Within the PHP code at the top of the page (lines 45-46, example 8-11),
two things are checked to see whether the deletion code should be exe-
cuted. The first is whether $action is set to delete. The second is
whether the user has admin privileges.

3. If the user passes step #2, the script enters the i £ condition block. Then,
if sdo_it has been set to v, the record is deleted. In addition to calling
Delete_Record() to delete the main record (line 49), we use the
Delete_Links () function to delete linking records (lines 50-51). We
need to do this manually, because we didn’t define foreign key con-
straints between the primary and foreign keys.

4. Transactions are being used, as seen by the use of Begin () (line 48)
before and commit () (line 52) after the queries.

Example 8-10

68| <input type=vhidden” name="action” value=rdeleta"s

69| <input type="hidden” name="sitenc” value="<?php echo $sitenc ?>">
70| <cencer>

71| <veble border=riv>

72| <cr>

73 <td>

74 <?php Y_or_N{ "Are you sure?”, "do_it"®, "N")} 7>
75 </rd>

76 <feex

77 <?php Submit_Reset("Submit”, "Clear”, "1", "O0") 2

78| </rables
79| </center>

SECURITY-RELATED TECHNIQUES 199

Example 8-11
45| 1z { 1ssert §_posTr"action®]))
46 if (Saction == "delete” && §_SESSICH[“admin") == "¥~) {
47 if | $do_it == "¥Y") {
48 Begin() :
49| Delete Record("sites”, "siteno", $siteno, "Y", "admin.log”):
SD Delete Links{ "sites subjecta”, array("ss_siteno"=>§siteno), §prod="¥", Tadmwin.log”):
51 Delece_Links{ "sites_types”, array("sc_siteno"=>jsiteno), $§prod="¥", Madmin.log"):
52 Commit ()2
53 echo "Record deleted<ps>™:
54 3
55 echo "Please close this browser to proceed”;
56 axit:
sl
s8]l)

There are two other useful techniques you can use. The first one involves
using Display_Affected_Record() to show records that would be affected
by the deletion of an authority record. These involve adding a value for
$link_str that will set the appropriate relations (see subject_delete.php in
Authority_Functions_Source.pdf in the companion materials download file).

The other technique involves the situation where the deletion of an author-
ity record should only set the foreign key field in the foreign record to NULL. To
do this, we utilize a different function—Blank_Links ()—to undertake the
task. The file status_delete.php in Authority_Functions_Source.pdf shows you
how this can be done.

NEXT STEPS

We've gotten you started on ways to make your applications more secure. It’s
time to put a face on the programming. In the next chapter we run through the
process of developing effective public access interfaces, undertaking user test-
ing, and putting the application into production.

Notes

1. Dr. Pangloss is a character in Voltaire’s Candide who insists—in true Enlightenment

fashion—that this is the “best of all possible worlds.” Unfortunately, events keep

proving him wrong.

See the bibliography for more information.

See Setup.pdf in the companion materials download file for more information.

4. The setup of Apache with SSL support is beyond the scope of this book. See the bibli-
ography in the companion materials download file for more information.

5. For information on how to do this with Apache, see Setup.pdf in the companion mate-

rials download file.

See data/users.sql in the companion materials download file.

Although the table and field name information is what is used in the book, the Check_

User () function has been written to allow you to use whatever names you wish.

@ o

1o

200 SECURITY-RELATED TECHNIQUES

8.

10.

11.

12.

The $_SERVER superglobal contains values that are sent to the page by the server and
include such things as HTTP values (referrer, user agent, and so on). In this case the
function uses $_SERVER ["PHP_SELF"] to retrieve the name of the file that is including
local_prepend.php.

To close a session, you should create a logout.php page containing the
session_destroy () function. See the chapter_7/sites folder of the companion mate-
rials download file for an example. Also, if you are going to be running multiple applica-
tions on your server, you will need to use the Check_authenticated_rath () function
to lock authentication down to a single set of directories. See Functions_Guide.pdf for
more details.

You can use the ala_function Check_Rights () to verify a particular right. For a com-
plete set of fully annotated scripts for authority file maintenance that use these func-
tions, see Authority Functions_Source.pdf in the docs folder in the companion materi-
als download file for more information.

Transactions can in fact be useful in single-query applications—such as the vacation
allotment application noted in chapter 2.

Actually, if you use the function library’s adding and updating functions, you never use
Rollback () directly—its use is built into the functions.

CREATING PUBLIC
INTERFACES

Chapter

Until now, we have focused only on applications to enter and

maintain data, and how to help make that data secure. Now we

proceed to look at examples of outputting data for public use.
Because even a representative sampling of possible approaches to creating pub-
lic interfaces is beyond our scope here, we will examine instead a few useful
ideas and techniques. In doing so, we will implement the two applications
defined in chapter 6: dynamically generated subject pages and a search interface.
Please note that this book was written using earlier versions of MySQL that did
not support views. The inclusion of views in MySQL 5 (released late 2005)
greatly facilitates the handling of multiple tables. See Using Views.pdf in the
companion materials download file for how this change affects the examples dis-
cussed here.

DYNAMIC SUBJECT PAGES

In the first application, we will output pages similar to the report.php page we
created in chapter 5 that implement what is essentially a report—specifically a
list of resources by subject from our web_sites database. Although the struc-
ture is similar to those in chapter 5, there are two essential differences. First, this
report brings together multiple tables to create its report via relations. Second,
results are broken down by content type. This will make it easier for users to find
those items that interest them.

201

202 CREATING PUBLIC INTERFACES

We need to set this application up in a separate directory with a separate
configuration file and separate permissions. Because public users won’t need to
add, edit, and delete data in the database, we make adjustments to accommodate
the fact:

1. Create a new directory—pub_sites—to contain our new pages

2. Create a new account—~web_Sites_public—which we allow only to
access the database from localhost, give no global privileges and only
SELECT (searching) access to web_sites, give it a password of
pub_sites, and remove SELECT permissions on the users table

3. Create a pub_sites.php file containing username, password, and data-
base connection routines for web_Sites_public (see example 9-1)
and place in our PHP include directory (see Setup.pdf in the compan-
ion materials download file); create a local_prepend.php file in the
pub_sites directory with a pointer to pub_sites.php file in it

Example 9-1
’15 §user = Migh Sices Public";
46| spassword = "pub_sites";
47| $dbneme = "web _sites®:

fq §db = mysql_connect ("localhost™, juser, fpasswocd) :
49| mysql_select_dn(§dbname, $db):

To remove SELECT rights for users, you need to make adjustments in

phpMyAdmin:
* Log into phpMyAdmin and click on the Privileges link

* Go to the line containing the web_sites_public user and click on the
Edit icon in the far right column

e Under Database-specific privileges, find the line for web_sites and click
on Edit

* Under Table-specific privileges either type the name of the users table or
select it from the drop—down list next to Add privileges on the following table

e At the bottom of the SELECT column, check the None box and then click
on the Go button

Now that user will no longer have access to the users table.

In the dynamic_page.php program, I have created basic script that outputs
all of the pages within a subject, broken down by content type. The page is built
in six sections:

1. We first get the subject number for requested subject (example 9-2). If
the page is called with subject=<subject>, then that value is saved to

CREATING PUBLIC INTERFACES 203

$subject. If no value (or a bad value) was passed, we redirect the user
(line 9) to a selection page (subject_select.php).

Example 9-2

(3] srrer
* If § GET["subject”] has not been set OR if Check for Dup_Fields{) doesn't
* find an entry for §_GET["subject"], redirect to page to select a subject

rarwsnny Termrenn rrsasrnane rewmrrrne;

it { !isset(§ GET["subject®]) || !Check for Dup Fields({ “"subject", “subjecta", §_GET, "¥*) | |
header("Location: subject_select.php")

Y mise |

§subject = §_GET{"subject"]:

2. We search, once a subject has been selected, to determine the subject’s
primary key (subjectno) (example 9-3).

Example 9-3

54 $subj_query = "SELECT subjectno FROM subjects WHERE subject='j§subject'":

$sub])_record = Do_Search(§aub)_guery);

5 $subi_row = jsubj_record[0]:

57| $suwoiectno = §sub)_vow["subjectno"];

3. We use the key to look up all content types represented within that sub-
ject (example 9-4).

Example 9-4

|| ;r.‘. joccype_query = "SELECT DISTINCT content_type, CORLEnt CYpenc
% FROM content_types, sites types, sites, sites subjecta
65 VHERE content _types.content Lypenc = sites Lypes.st _content _typenc
AND =ites cypes.st_sitence=sites.sitenc
S8 AND mites subjects.ss siteno=sictes.siceno
5 AND sites_subjects.ss_subjectno='§subjectno'
65 ORDER BY content_type":
¢ 0| sctype_records = Do_Search(§ctype_query):
¥ $etype num rows = count|{ §crype records):
4. We take the results and create an array of content types (example 9-5).

Example 9-5

78] sccype=0:

79| for (§b=0; $b<fctype_num rows; $b++) {
ferype_row = {etype records[$b]:
$content_typ2[8ctvpe] - Sctypg_ruv["cuntent_:w!"]:
§content_typeno[$ctype] = §ctype_row["content_typeno”]:
jooype+d;

5. We use the array to build a type index at the top of the screen that will
link to output for each type (example 9-6).

Example 9-6
9(for { $w=0: $w<icoype: Swid)
35 if (§w =0) (
echo "<a hrefs\"ficontent_typeno[§w]\">§content type[fu]<fax 7
} else (
echo * | §concenc_type(fv] *;

6. We go through the $content_typeno array and output all records for
the requested subject for each content type (example 9-7).

204 CREATING PUBLIC INTERFACES

Example 9-7

i| for { $x=0: $x<tcrype: fxe+) o
jtables = " sjres cypes, sites, =ires subjects ";
fvhere = " sites.siteno=sites types.st_siteno
AND sites.zitenc=sites_subjects.ss_siteno
AND =ites subjects.ss_subjectno=isubjectno
MND sites types.st content typenc=jcontent typens[ix]
ORDER BY name";:
fout_gquery = "SELECT DISTINCT * FROM $tables WHERE $where":
$out_records = Do_Search(jout_guery };
§our_num rows = count(fout_records);
echo "<hr<a § ;| §x]>§ _type[§x]<a/></brculs";
for { $b=0; §h<fout_num rows: Fhé+) |
fout_row = fout records[{b]:
$name = fout_rov|"name"]: /4 amsign the field names to
furl = fout_row["url"]: I variekles
jdescriprion = §out_row["description”];
schy "§name"; // output a clickeble URL
if | trim{ §description J = **) | /7 Af there ism a description
echo " - fdescription”; // output it
)
i
echo "";
echo "Return to top</er<p>":

A list of content_types is created at the top of the page (example 9-6) as
it is output, each name being a link pointing to a target on the page where items
of that content type will be output:

echo "Scontent_type

[Swl ";

Then, as we output the records for a content type, we wrap the header in (line 126 of example 9-7), which
creates a hyperlink to the target destination. To make navigation easier, I have
placed a link directing the browser back to the top of the page after each block.

We can thus use the same page for all of our subjects, simply by changing
the subject string passed to the script. For example, the following produces our
music page:

<a href="http://some.library.info/subjects/dynamic_page
.php?subject=Music">Music

If we were to change the URL to read dynamic_page.php?subject=
Anthropology, a page would be created that would output links for anthropol-
ogy, and if we were to change it to dynamic_page.php?subject=History, a
history page would be output, and so forth.

Because this page requires input to know which subject to use, we need to
have some way of handling those users or situations in which such a parameter
is not given. As noted, if one is not, the user is directed to subject_select.php.
This page uses RadioButtons () to create a page that dynamically generates a
list of all possible subjects for the user to select from. Thus, as subjects get
added, the page will automatically accommodate the new entries.

CREATING PUBLIC INTERFACES 205

PUBLIC SEARCHING

It is also a good idea to provide a search facility for your end users so that they
can create their own result sets. To do this, we need to build a public searching
application, building on techniques that we have learned, but adding some new
features that make it more useful to the public. Such features include

support contact information, where available

a stopword list

outputting values from foreign tables associated with the sites record
links to full records, including information in linked tables

option to control number of results per page returned

allow Boolean AND searching of many-to-many fields

full keyword searching, mimicking online search engines by enabling
keyword searching, embedding phrases in double quotes, and
searching multiple fields

Let’s go through each of these to see how we can implement them.

Including Support Contact Information

We need to provide the information we have been including in the supports
table to provide our public users with a way of contacting library staff to obtain
help. We are storing a numeric value in the sites_supportno field, but need to
give the user the information to which it is pointing. Because the supports
authority table contains e-mail addresses, one approach would be to output a mailto
link for the support field. To do this, we use the Auth_vals () function (in line
56 from public_search.php in example 9-8) to create an associative array of values.

Example 9-8
§_BESSION["dbquery] = "Wy
ipager = “pager.php";
§_SESSION["pagec”] = Spagec:

§fields = “sites.™";
ftables = "sites®;
flink str = *";
fuhere_str = *%;

Jrrrrarrsrrrarerastarereareearrattrarraney trrrsrrrratrraresrrserTsTeTaary

* Creste a Ssupport_sry accay to inclute support emsil addresses for those
* sites vhere a SUpport person has been idencified in the systes.
Y

SBupport_ary = Auth Vala{ "aupporcno®, "support_smail”, "supporta®)i

fresnanenn wenrrarrnaTr Ay arnanarreny rrvsnenrarraany LT T T TTTT T T
* Next, we define the fields to display (fdisplay_fields) and count che
* npusber of fields that ace in the arcay, Then, e asaign the contencs
* of those varisbles co the session varisble of the ssme name.

ey

saResguTasmsEsesasasy

fdisplay fields = array| "siteno®, “name”, "ucl®, "descripticn®, "sices format", “sites status®, Msites supporten® |:
(68| §_SESSION[“display fields™] = fdisplay fields;
65| idispiay ficlds mumm = count| §display fields)!
‘68| §_sSESSIGN["display fields pun¥] = fdisplay fields mums
sE7| Snum to dispiay = §_SESSION[“num _to_displsy“);

206 CREATING PUBLIC INTERFACES

The function creates an associative array of values ($support_ary), using
the primary key of supports ($supportno) as the array index (key) and the
field containing the support person’s e-mail address ($support_email) as the
contents (value) of the array element. As we go through the search results, when
we encounter the sites_supportno field, we use its value to obtain the e-mail
address from the $support_ary associative array (see example 9-9, especially
lines 207 and 208).

Example 9-9

&1 | elseif [§2id == "sites_supportmo® | |

207 fsupportno = frow[§2ld);

208 if [imset| fsupportno | | |

‘209 wcho "orer<od aligns) *right) *s<BsSupporto/Be</edaceds

210 <& hrefsi"mailtel fsuppore_mey|fsuppertns] | "> Teuppoes_ary|Pauppertno] ofae/ v/ een;

This may at first be difficult to understand, but you will soon see both how
elegant it is and how powerful PHP can be. Say the record in supports with
supportno of 1 has jsmith@isp.net in the support_email field. Calling
Auth_vals () aswe did above would create an element $support_ary [1] equal
to jsmith@isp.net. Thus, if the contents of a sites_supportno field were 1,
plugging that value (1) as a key into $support_ary would cause jsmith@isp
1et to be retrieved (and then be placed into a mailto link and output to the page).

Stopwords

In searching a database, one problem that users have is that they sometimes
attempt to enter a natural language query—such as “Who was Christopher
Columbus?”"—and expect an answer back. One way to assist those users is to cre-
ate a list of “noise” words such as “who” or “was” and then filter out those words
before the query is sent to the database. The Process_Quoted_string()
function provides the ability to do just this. To make the most of it

use the stopwords.sql file in the data directory of the companion mate-
rials download file to create and fill a st opwords table in your data-
base (see Setup.pdf)

populate the table with those words that you wish to filter out from user
queries

add a third parameter—v—to your call to Process_Quoted_
String ()

Look at public_keyword_query.php for an example of how this can be used.
If you have loaded the web_sites data that came in the download file, try run-

CREATING PUBLIC INTERFACES 207

ning public_query.php with the query “Music.” Then try another search “What
is music?” You should end up with exactly the same results.

Including Values from Foreign Tables

When doing a search, not all of the values that the user wants to see are con-
tained in the main table. In our case, the user may want subjects or content types
included in the search output. One approach to this is to use the primary key of
the retrieved records and, following up the path of relationships, execute a
search that will retrieve the associated values. This is what I have done in pub-
lic_search.php, as shown in example 9-10.

Example 9-10

for | §a=0; §ac<iresult num rows: fa++)
$row = frecords[fa):
for | §b=0: §b<idisplay_fields men §hés)
§fld = §display_fielda[$b]:
if { frow[§zld] != "") |
§label = ucwords(§2id); // make first letter of each word in §f£ld upper case
if | §£ld == "sitenc” | |
iziteno = Srow[§fld];
echo "<te><td colspan=)"2* align=\"left\">
View Complete Record</rds</tr>";
) elseif | $£id == mucl®) (
FURL = $Ild:
echo “str><td align=\"right\"><BE>URL</tdr<tdo$row[$Lld] </cd></ecx";
¥ oelseif | §f£1d == “sites supportno®)
§supportno = frow[$£ld];
if | isaet| Fsupporcno))
echa "erer<td align=)~righe)“>Suppore</Br</rd><ed>
<A href=) "mailto: up _acglisupporenc))™ ap

_aEp(] <far</ tdr</ Lest;
]

) eise {
echo "coe»<cd align=\"right\" walign=\"cop\">§label</vdr<rd>§row[§Lld]) </cdo</Tea";

1

Jrerssransessnranranny wew seeriesrreanen

® Use Cutput_Links to retrleve subjects Zrom the subjectz table, using

" the linking information to cetrieve the subjects based on the §sitenc.

* See the documentation for che Oucput Links=(] function for decails

* on the various paremeters. Once you have the string, you create the
lsbel and cutput the string.

...... -/

$subject_str = Output_Links| “subject”, “subjecta®, "subjectno¥,

"sites subjects”, "sa_subjectno”, "ss siteno”, §sitens):
echo "<tr><od align=i"right” valign=\"top)">Subject:</td><td>§aubject_str<ftd></ec>";
echo "atpr<tdr<brr</tdr</fer>™;
fdisplayed rows++:
if | fdisplayed rows == §num vo_display) |

echo "</cable>";
echo "</hody>":
echo "</heml>";
exic:

After saving the primary key (siteno) to a variable that can be used in a
function (line 200), I use the output_Links () function to obtain the required
values (225-226) and output them (line 227). Although this function has a lot of
parameters, it is fairly straightforward and uses the following information:

subject—the name of the field that contains the value we want to output

208 CREATING PUBLIC INTERFACES

subjects—the name of the authority table containing that field (for-
eign table)

subjectno—name of that table’s primary key (used to link to the link-
ing table)
sites_subjects—the name of the linking table

ss_subjectno—linking table field containing the foreign key from the
authority table’s primary key

ss_siteno—linking table field containing foreign key from main
table’s primary key

$siteno—the primary table’s primary key to enter in the search

Links to Full Records

There is only so much room on the search results screen for outputting record
values. As a result, many fields cannot be displayed. Many library systems have
addressed this problem by displaying short (abbreviated) records to help the user
identify what he or she may wish, and including a link within the display to bring
up a long (complete) record.

If you look at line 202 in example 9-10 from public_search.php, we have
used the $siteno value that we obtained in line 199 to create a link to a page
named public_site_display.php. This latter page uses several functions to take
the $siteno passed to it and then to create a page that outputs full records
(example 9-11).

Example 9-11

WI §sites_row = Get_Nain_Record{ “*", "sites”, "siteno™, faiteno);

61| $subject_ary = Get_Linked Records("sites_subjects”, *ss_subjectno®, “as_siteno¥, “§sitenc®);
62| $ctype_ary = Get_Linked Records({ "sites_types", "st_content_typeno”, "st_siteno”, "§siteno”):
§3ubj name ary = Auth Vals("subjectno”, "subject”, "subjecca” };

64| S$erype_name ary = huth Vals| "content_typeno”, "content_type”, "content types");

! $support_sacy = Auth_Vals("supportno”, "support_email”, "supporta”):

$fields = array("Name, name”, “URL,url®, “Description,desacription”, "Format,sites format®,
"Status,sites status", "Proxy?,requires proxy”, "help page®,
"Subscription?, subscripcion”, "Date added,added date”,
"Restrictions,restrictions_on_use", "sices_supportno”)

>

<table>

73| <?php

| $=upt = array("Support”, “"sites supportno”, §support_ary }:

Display Record(§fields, §sices row, "url help page®, §supt);

76| Display Links({ "Subjects”, isubject_ary, $=ubj_name ary):

7] Display Links("Content Types", fctype ary, §ctype neme acy)

This code works as follows (please see Functions_Guide.pdf in the compan-
ion materials download file for complete information on each function):

Retrieves all records from data and linked tables (lines 60-62).

CREATING PUBLIC INTERFACES 209

Uses Auth_vals () to construct associative arrays that can be used in
outputting foreign table values (lines 63-65).

Defines the fields to be output. Note that each array element is itself a
comma-separated list. If there are two subelements, the first will be
used as the label for the field in the output page and the second is
the field name; if only one, then the field name will be used for both
(lines 67-70).

Creates an array to output mailto links for the supportno value (line
74), the array containing the display label, the field name, and the
array of e-mail addresses.

Calls Display_Record (), passing it $fields, main data table record,
comma-parsed list of fields to make into hyperlinks, and the array to
create mailto links (75).

Calls Display_Links () to output linked information (lines 76-77).

Paging through Results

Until now, all our search results pages have output all the records that matched
the query. This is not something that will work well if the number matched is
large and/or there are a large number of fields to be displayed. One way to han-
dle this is to break the results down into manageable chunks and allow the user
to page through them. Although you could write the retrieved records to a tem-
porary file and write an application to go through them, this approach has sev-
eral drawbacks:

It is not easy to install the necessary software.

Programming it would not be easy.

It places a huge performance hit on your application because it relies on
disk access, requiring significantly more time for each search to
complete.

It requires a fair amount of disk space.

It is not easily transportable from machine-to-machine or platform-to-
platform.

Fortunately, MySQL provides a wonderful feature called LIMIT you can use
to limit your output to a defined range of records. For example, if you were to
do a search such as:

210 CREATING PUBLIC INTERFACES

SELECT * FROM web_sites LIMIT 0, 20

MySQL would perform the search and then, starting at the first record in the
retrieved set, would return the next twenty records (actually nineteen plus the
original one). Then, if you wanted to see the next twenty, you would enter
another search:!

SELECT * FROM web_sites LIMIT 20, 20

which would start at the twenty-first record and output the next twenty.

Setup

To make paging work, we need to use sessions to store parameters between
pages, thereby allowing us to use them to redo the search with different LIMIT
parameters and permitting us to page through large results sets. As we have seen
with authentication, using sessions requires that the session variables be regis-
tered each time a page is loaded. To facilitate this, we add the following to the
pub_sites.php file to register the variables (example 9-12).

Example 9-12
JE] =ession_scare():
"Q session_registec [dbquery');
" B0| session cegistec|'ceault_num fowa'); /¢ ¥ ot covs query retrieves
q,g; session register('display fielda'j: ¢ lisc of fields to display
82| session cegister('display fields mum'); ¢/ number of fields co display
‘Sg session_register ('num to display'): /f number of rows to display
%g £_SESSION["num_to_display™] = 10: 4/ Sec § to display per screen
Searching

Next, let’s set up the search page. We begin by taking the query file (sites/site_
query2.php) and saving it to a new name in a different directory (pub_sites/
public_query.php). Next, we save the search file (sites/site_search2.php) in a
similar way (as pub_sites/public_search.php). We then proceed to modify pub-
lic_search.php to include the appropriate code (see example 9-8 for the follow-
ing example references). After initializing the $SESSION["dbquery"] variable
by setting it to " " to clean out any old query string that it may contain in line 44,
we define the page that will handle paging through the results (pager.php) and
define the base $fields, $tables, $1link_str, and $where_str to be used
in the search (lines 45-47).

Next, we store our values to the session variables that we will be using: line
63-64 of example 9-8 ($display_fields), line 65-66 ($display_fields_
num). Then, as we can see in example 9-13, we define additional variables in line
153 ($dbguery) and line 167 ($result_num_rows) as well as localizing (making
a superglobal value into a local value) $num_to_display (line 67 of example 9-8).

CREATING PUBLIC INTERFACES 211

Example 9-13

§query = "SELECT DISTINCT §fields FROM §tables WHERE 1 §jlink sctr §jwhere scr ORDER BY siteno™;
§_SESSION["dbquery”] = Squery:
§records = Do_Search(§query):
§result_num rows = count(frecords |:
ferrssss wes sees wen e =
* Hext, we check to see if any records were returned by the guery. If mot,
* the uger i3 informed of that fact and the script exivs. If records are
* found, the number of records recrieved is displayed on the page and the
* records are output.
rrrsssenas e S swns sune =
if | §resulc_num rows == 0) {
echo "No Records Found":
exic;
) eloe {
echo "<center>Your gquery returned §result num rows records</center>T;
§_SESSION["result_num_rows"] = jresult_num rows;
1

Jfreazes -
* Next, if we have reccieved more than §num to_display number of records,
we put in a navigational header. The URL for each option invokes the
pager.php file, passing it the option a= a GET varisble (cype=<str>).
Vhen the user clicks on that link, pager.php will be invoked and it will
use that parameter, along with the §_SESSION variables, to construct
anocher query to recrieve $num to_display records to display.

rray rrERw * /
{ §resulc_num rows >= §num to_display) |

echo “<center>Firac | ";

echo "<a href=\"§{pagerityp gatarting © reNexc</ar | "3

echo "Previous | ";
echo "Last</center><hr>":

Last, we create navigation links to place at the top of the page to allow us to
look at different sets of the retrieved records (lines 178-183 of example 9-13).
Because it doesn’t make sense to page through results if we retrieve fewer
records than our maximum-per-page number, we only put up the navigation
links if the number of retrieved records is greater than our $num_to_display
value (lines 178-183). Each of the lines invokes our $pager file (pager.php),
passing it the parameter for First, Next, Prev, and Last. In the second and third
instances, we also pass it the number the current search started at (initially 0).
Those parameters are then used in pager.php to define which subset of records
to retrieve. Thus, though public_search.php handles the initial search, any sub-
sequent output will be handled by pager.php.

Paging through the Results

In creating the paging script, we begin by taking the searching and outputting
sections of public_search.php and saving them to a new file named pager.php.
Then, at the top of the paging script, after creating the $support_ary array and
localizing the session variables (storing them to local variables) to make them
easier to use (lines 52-57 of example 9-14), we check to see with which record
the users began the previous retrieval set and use that to define their next SQL
query (lines 59-75). We then create our HTML page, using our updated start-
ing numbers to redo the First/Next/Previous/Last navigation bar. We then do the

212 CREATING PUBLIC INTERFACES

search with our new parameters, using exactly the same code to output the
results as was used in public_search.php.
Example 9-14

52| $num to display = §_SESSION["num_to_display"];

/53| $result_num rows = §_SESSION{"resulc_num rows"];:

54| $display_fields = §_SESSION["displey_fields"]:
fdisplay_fields num = § SESSION[“display_fields num"]:
§cloquery = §_SESSION([“dbguery”]:

$pager = §_SESSION(“pagec™];

i (§oype == "fizst) {
fatarc = O;
} elseif { fcype == "nexc™) {
if ([fatarcing _record + §oum_to_display) »= freaulc num rowa) |
§stare = §starting recocd:
} else {
§start = §starting record + $num to_display:
¥
} elapif (Stcype == “prev®) {
if [$starcing_record - $oum_to_display < 0) {
fatare = O:
} elae {
§scarc = $atarcing_record - $num to_display:
]
b oelseif [feype == "lasc") {
§scarc = §result_num rows - 1;
¥

AND'ing foreign keys

Until now, we have looked at using Boolean AND and OR between fields within a
table and using OR between field value parameters in foreign key tables.
However, there will be times that you will want to AND values that reside in the
same many-to-many-related authority tables (such as being able to search for
sites that use both Anthropology and Music as subjects). Although you could rad-
ically denormalize your database, store subjects as keywords in a keyword field
in your main sites table, and then use keyword searching to retrieve them, this
approach creates other problems, such as how you can maintain authority tables,
enforce uniform entry of values, and create drop-down lists.

The problem is that the approach you think should work does not:

SELECT *

FROM sites, sites_subjects

WHERE sites.siteno=sites_subjects.ss_siteno

AND sites_subjects.ss_subjectno=3

AND sites_subjects.ss_subjectno=28
What this query is actually doing is requiring that the sites_subjects table
have a single record where ss_subjectno is equal both to 3 and to 28 at the
same time—something that obviously won't happen.

CREATING PUBLIC INTERFACES 213

The solution is to create separate aliases (copies, if you will) of the linking
table—one for each term to be searched—and then using those separate aliases
in your WHERE statement. The result is that the following does work:

SELECT sites.*

FROM sites, sites_subjects AS sl, sites_subjects AS s2
WHERE sl.ss_siteno=s2.ss_siteno

AND sites.siteno=sl.ss_siteno

AND sl.ss_subjectno=3 AND s2.ss_subjectno=28

Breaking this down, we can see how it is constructed:

Line 1—list of fields to retrieve

Line 2—using aliases (sites_subjects as S1, sites_subjects as
S2) to create separate logical instances of the linking table—in this
case the sites_subjects table—for each term to be searched

Line 3—make sure that all the aliases” primary key (in this case
ss_siteno) field values are linked (equal to each other)

Line 4—make sure that one of them is equal to sites.siteno

Line 5—use a separate alias of sites_subjects for checking each for-
eign key (ss_subjectno) field value to see if it is equal to a value
coming in from the searching form

If all of this is a little beyond what you want to deal with, don’t worry. You
can use the Process_gQuery_aAnd_array () function in the ala_functions.php
library to do the job for you. Example 9-15 from public_search2.php shows one
way to use it.

Example 9-15

if | isset(§subjectno)) |
if (ismet(§Operatorl) && §Operatorl == "AND") |(
§tmp_ary = Process Query And_irray("ss_subjectno”, §subjectno, "sites_subjecta”,
"sites.siteno", "ss_siteno”):
it (count(§tmp mry) !=0) {

jtables .= ", §tmp ary[0]": // define §tables che Oth (1sc) element
§link _str .= " femp_acry[i] ": // define §link_str w/2nd element
$where ary[§x] = $tmp ary[2]: // where scring using the 3rd element
b
1]
) elze

ftmp_str = Process_Query Array("ss_subjectno”, §subjectno }:
if (§twp_str i= "M)
§rables .= ",sites subjects";
§link_sctr = " AND sices.siteno=sites_subjects.ss_siteno ":
§where ary[§x] = §rmp_str:
Sxbar

214 CREATING PUBLIC INTERFACES

Providing Links from Authority Entries

Before concluding, let me show you one more technique, which we can see at
work in public_search2.php. It involves using values (in this case subject head-
ings) to create links that we can then use to do another search. We do this by first

adding two parameters to the call to Output_Links () on line 275 of example
9-16:

Y (to indicate we want to create links)

public_search2.php (the name of the file that will do the follow-up search).

Example 9-16
z274 §subject_scr = Oucpur Links{ "subjecc", "subjects", "subjectno”, "sites subjects”,
275 "ss_subjectno”, "ss_siteno”, §sitenn, "Y", "public_searchz.php”):
276 echo "<tr><td align=\"right\" valign=\"top\">Subject:</td><td>¥subject_str</td></tr>™
20 echo "oor><od><be></ed></er>";

Next, because the link created by output_Links () creates a GET variable
named $lookup_val, we place code at the top of public_search2.php, which
will process the page if such a variable is passed to it. We see this done in lines
4245 of example 9-17. If it does exist, we create a one-element array called
$subjectno and save $_GET["lookup_val"] as that element. Otherwise, we
save $_GET["subjectno"] to the $subjectno variable. By setting this vari-
able, the search will be done just as if the value had come from public_

query2.php.

Example 9-17
42| 1f (issec(§_GET["lookup_val™])) {
'!13' $subjectno = array(§_GET(["lookup_wval®]):
44|) else (
45 §subjectno = §_POST["subjectno”]:

46|)

Full Keyword Searching

Although fielded searching is something that most librarians take for granted,
our users are more familiar with search engines like Google, AltaVista, and oth-
ers where they simply put in keywords or phrases embedded within double
quotes to do their searches. For such an approach to work in a fielded database,
we need to be able to search through multiple fields at a time as well as being
able to treat collections of words within double quotes as a single phrase and
those that are not as simple keywords.

To address this need, we can use another function in the ala_functions.php
library—process_Quoted_string (), which also supports right-hand trunca-
tion. As with Process _Query Array () earlier, we use this function to create
WHERE elements that we can plug into a query. We can see a simple example of

CREATING PUBLIC INTERFACES 215

how it is used in example 9-18 where we pass it only two parameters: the name
of the field to be searched and the variable containing the string to be processed
(for an example of how it can be used to search multiple fields, see public_key-

word_search.php).

Example 9-18
92| iz (sxeywords t= "¢)
13 §tmp_str = Process Quoted String("description,nama®, $keywords |:
14 fvhere = " fowp str ";
15|) else (
‘16 echo "You need to enter a search":
a7 exity

asgl

Note that, due to the complexities involved in doing so, this function is not
able to search values located in tables linked via many-to-many joins (in this case,
either subjects or content_types). It does, however, provide the ability to
search for terms within any field within a single table.

PLACING YOUR APPLICATION IN PRODUCTION

Once the application has been written and tested, it’s time for users to try it out.
When presenting it, it is a good idea to walk them through the entire program,
showing them how to use it and—in the case of searching scripts—what values
they can use to search the database. Users should also be given a list of tasks for
which the system was designed and then be left to work through each task in this
list, looking for data entry or storage problems.

When users are happy with the application, it is time to move it into produc-
tion. The process of moving an application into production involves a number of
steps:

Use phpMyAdmin to execute a complete backup dump of the data
structures and data, exporting the results to a file.

Clean up test data in the database.
Create a second database dump containing both structures and data.

Define a new production environment where the application will live
and copy the complete source code tree from your development
area to the new area. You may need to change internal paths, con-
figuration information (such as logging directories and files), and
other parameters so that the application will work in the new envi-
ronment and will not conflict with the development version. If possi-
ble, set up the new production environment on a separate computer

216 CREATING PUBLIC INTERFACES

so that you can maintain the same database, configuration, and path
information for each version of the database. (If you do not, moving
new versions into production will be tricky and time consuming.)

Define a new database and use the second dump file to create and pop-
ulate the tables.

Create or modify MySQL user accounts to allow access to the new data-
base, adding this information to your configuration files, as needed.

Test the application fully, afterward deleting any test data that might
have been added to the database and reloading the database.

Establish and implement a backup plan (if you have not already done so).

Continue to use the original area for development. If development will
be substantial, create a third area for that development, maintaining
this second area for bug fixes and minor feature enhancements.

Set up Web server authentication access control for your development
area or areas. Then, if you want users to test the system, you can
temporarily add them to the system and delete them when testing is
over. Although the development area does not pose a security
threat, placing password control on the area will keep users from
mistakenly continuing to use it as a production area when testing has
been completed.

Make appropriate links on your Web site to the new application.

MAINTAINING AND UPGRADING
YOUR APPLICATION

Once the program has been placed into production, your work doesn’t end. Bugs
will show up, features will need to be enhanced or added, and users’ questions
will need to be addressed. You need to make sure that you are set up to handle
this type of maintenance. In addition to having separate support and production
areas, there are several things you should do to make this process work properly.

First is to designate who will be responsible for maintenance. Make sure in
doing so that you have adequately trained persons available (either on staff or
outsourced) who will be able to support the application down the road, both in
terms of programming and database maintenance.

CREATING PUBLIC INTERFACES 217

Second is to develop processes for upgrading the application. Because users
will find new features they would like included in the application, you need to
have a process by which such upgrades can be suggested, evaluated, and imple-
mented. This process will also need to include procedures—similar to those in
chapter 6—in which functional requirements are established, data modeling
done, and the application designed. Once the enhancements are agreed upon,
you will need to implement them in your development area and fully test the
resulting application.? As noted in chapter 6, because testing and debugging can
be a time-consuming process, it is best to batch enhancement requests so that
such activities can be done more efficiently.

Third is to document your application. This is a critical part of any develop-
ment project—so important in fact that I devote much of the next chapter to it.

Things to Watch Out For

It is important to understand that there are a number of things that can affect
your application that have nothing to do with the code you have written. Changes
in a number of things, including the php.ini file, Apache’s configuration file, and
the functions library can end up causing your application to crash. Although
there is not enough time to get into all of them, there are a few rules of thumb
you should consider:

Be extremely careful of the changes you make in global function files,
such as ala_functions.php. Changing how they work can introduce
all sorts of hidden bugs into your apps. Think through all modifica-
tions you want to make to those files before making changes and test
the resulting library with all applications that use the functions.

Never make changes on the production version of the function library.
Any syntax or other error you make there will cause every PHP
application on your Web server to crash. A better idea is to edit it in
the development environment, test all of your apps with the new set-
up, and then propagate the changes into your production environ-
ment.

Work with the server administrator—if you are not the one responsible
for administering your Web server—so that no one changes basic
configuration files without letting you know. Such changes might
affect all PHP files throughout the system—something that .htac-
cess files can help address in multiuser systems, such as ISP-based
situations.

218 CREATING PUBLIC INTERFACES

MOVING ON

We have now programmed our application, ensured data security, designed our
user interfaces, completed testing, and placed the application in production. In
the final chapter we will look at some practices and approaches that will make
development easier and will help you avoid problems along the way.

Notes

1. This is another example of how computers can do things in logical but counterintuitive
ways. Humans begin counting with 1, computers with 0. Thus the fifth element in an
array would be sarray [4].

2. This really does involve full testing. Given that parts of a program can interact in ways
you may not expect (particularly if there are bugs in the code), you will need to test
everything to make sure that they still function properly.

DEVELOPMENT
PROCEDURES

Chapter

In developing applications, you want to ensure that the process
proceeds smoothly and efficiently, and that the application will be
supported. We now discuss how best to do this.

GENERAL PRACTICES

When undertaking any type of programming project, you want to follow certain
practices while you're writing the code for your application. These are designed
to standardize your approach, make code readable and—more important—sup-
portable, and ensure proper functioning with a minimum of effort. They break
down into the four areas: establishing a development process, implementing pro-
gramming standards, establishing quality assurance procedures, and using good

debugging techniques.

Establishing a Process

It is important to define a development process to keep the project on track and
to make things work as smoothly and as efficiently as possible. Although there are
a number of ways you can do this, I suggest something along the following lines:

1. Define who is going to be given what tasks.
2. Build applications one step at a time.

219

220 DEVELOPMENT PROCEDURES

3. Test and debug as you go—it is much easier to debug ten lines of code
than two hundred and fifty.

4. Review code periodically, making sure that code is following program-
ming standards (see below).

5. Check into CVS or other version control system periodically.!

6. Test the application fully using documentation developed in chapter 6.

Implementing Standards

As with any area of automation, consistency and clarity in how programs are laid
out makes them much easier to develop and support. Although it can be tempt-
ing to developers to throw themselves into the coding and not worry about being
careless and/or cute in how they name things, the results of such development
can be a trial to understand and to support. Above all, inconsistency in naming
and practices requires developers to remember a lot more than they should need
to (and more than people unfamiliar with the code will want to). Consistency,
though boring, makes one’s job much easier.

I provide, in appendix B, the standards I used in creating the applications
and scripts in this book. Although some are somewhat arbitrary, the same is true
of almost any standards one might create. What is important is that standards are
consistent and make sense within the organization where they are adopted, not
that they are an absolute truth.

Quality Assurance
As you develop your application, submit each section to a quality-review process
to make sure that it is being written correctly. Nothing is more unnerving to end-
users than to have an application malfunction, leaving possibly their self-assur-
ance (and certainly their confidence in the application) shaken. Taking the time
to get it right the first time will make their (and certainly your) lives much easier.
There two things you can do to implement successful quality assurance pro-
cedures. First is to develop testing documents. Using the testing procedures we
have talked about can be very valuable in finding errors. Second is to institute
code reviews. In addition to debugging, reviewing code line-by-line can be
extremely useful in producing quality applications. The ideal is to work with
someone else—preferably an accomplished programmer—going through the
programs and explaining what is (at least supposed to be) happening, what you
are trying to do, and how you are doing it. Sometimes just having to explain the
code line-by-line will reveal anomalies that you had not previously seen. Even
doing this on your own can be a valuable exercise.

DEVELOPMENT PROCEDURES 221

Documentation

Following programming standards goes hand in hand with documenting the
application. They're equally important. Documentation lets users know how to
use the application and helps developers and support personnel know how to
maintain it. Four levels should be developed: technical, code, user, and end-user
help. We look at each one in turn.

Technical

Technical documentation details how the application is laid out, how it works,
and what each piece of the program does along with its relationship to other
parts of the project. In large part, the documentation you developed in chapter
6 will provide the basis for this type of documentation. Other useful elements
include

e alist of all files used in an application and their functions
e a road map of how the files interrelate

e annotated source code for all scripts

e fully documented function libraries, where appropriate

e testing documents and procedures

Code

It is extremely important that your program code be documented to help pro-
grammers see more readily how the application works. Appendix B contains a
description of the code annotation structures used in the book’s applications.
Programmers, being the creative people that they are, would far rather code
something new than document code they've already written. This natural ten-
dency needs to be overcome if you want supportable applications. Having a
code review process in place can help provide the discipline needed to make this
happen.

If developers comment the code as they go, the going is that much easier.
Initially, preliminary comments at given points are generally adequate. As sec-
tions are completed, however (perhaps preparatory to a code review), develop-
ers should write concise yet complete comments. If changes are made to an
application, existing comments in the code should be reexamined to make sure
that they are still accurate. Nothing is more frustrating and counterproductive
than comments that describe coding that is no longer in the program (“nothing
is deader than yesterday’s news”).

222 DEVELOPMENT PROCEDURES

User

Particularly in more complex applications, users need to have support materials
to help them to know what the application does, what the input fields mean and
what they do, how to navigate the application, and how to know where certain
tasks are accomplished. Having such documents available is critical to user train-
ing, particularly for staff who may not be familiar with the application.

One methodology is to take the roadmap created in the technical documen-
tation above and proceed through the application, taking screen shots of each
step. Then, for each screen shot, provide a description of each field, indicating
what it does and what alternatives it provides. You can also indicate where alter-
nate tasks are supported and where multiple branches can be taken, referring to
the relevant screenshot at the appropriate point.

Help Screens

Pairing written and online documentation is also useful. Given the hypertext basis
of the Web, it is quite easy to provide context-sensitive help at any point in the pro-
gram with hyperlinks embedded at appropriate places in the application pages.

Debugging

No matter how good a programmer you are, you won't always get it right the first
time. Things may not work as you expect; values don’t get added to the database
or, if they are, they are incorrect. A number of techniques that you can use with
PHP and MySQL can help you track such problems down quickly.

For me, the most useful approach to debugging is to start at the beginning
of the script and work your way through. The essential technique is to run a few
lines of code, use echo to print out how things are doing, and immediately use
exit to stop script processing. If everything is okay, you move the echo/exit
pair down a little in the script to check things out. The moment you encounter
something you don’t expect, you know that the problem is between the place
where you last got what you expected and the position where it failed. You want
to be sure to check for several items:

Is aloop being entered? Placing an echo "HERE I AM" may not be ter-
ribly exciting, but it does at least tell you if your loop is being
entered. If it isn’t, you need to check your conditions to make sure
things are getting set as they should be, and that you don’t have a
typo or have misnamed a variable.

DEVELOPMENT PROCEDURES 223

Are you not getting what you expect from an SQL query? Try either
echoing it to the screen or using the mysgl_num_rows () function
to learn how many records are being returned by the query. If the
number is 0, there aren’t any matching records, meaning that you
either need to add records or there is a mistake in your query.

Is an error message not appearing in the browser? Sometimes MySQL
simply won't do this. One work-around technique I have found use-
ful is to echo the squery to the screen and then to cut and paste it
into phpMyAdmin’s SQL box, and then to run it there.

Has a variable been set? Echoing a variable can also let you know
whether it has been set. Using printable characters on either side of
the variable is sometimes useful. For example, using the line echo
"xSvar*"; will print out ** if the variable is empty.2

Are queries actually querying? One technique I have used throughout
the examples in this book (and have included in the function library)
has been to use or die (the mysqgl_error () function) each time
I run a query. Doing so outputs the error the script gets from
MySQL, prints it out on the screen, and then exits. This can be an
extremely useful debugging technique.

GETTING HELP

In the course of these ten chapters, we have taken a rather whirlwind tour of
what is involved in creating database-backed Web applications. Space limitations
in this book—or in any book—preclude it being a one-stop guide to a topic this
complex and rich in possibilities. The good news is that there are many resources
to draw on for your work. Consult first this book’s website. In addition to down-
loadable files, you'll find a bibliography, answers to questions, and other
resources. It will also have updated information on the book as well as on the
sample applications and function library and their use.

Of particular use are those beloved Internet search engines with which we
carry on such a love-hate relationship. Although I wouldn't want to base my
scholarly research solely on them, they are a wonderful resource—particularly in
this area. Chances are you aren't the first or even the hundredth person to
encounter a difficulty. Because these tools are used by Web developers so regu-

224 DEVELOPMENT PROCEDURES

larly, someone is bound to have asked the question (or a similar one) and gotten
more than one response. A keyword or keyphrase search in a search engine
might just get you an answer, often within minutes.

CONCLUSION

In this book, I have shared with you a number of ideas and techniques that I have
found useful in putting databases up on the Web. Unfortunately, it is impossible
to deal with all possible ways of doing things or every technique you might want
to use. It is my hope that I have given you enough tools to get you started in this
venture comfortably.

Good luck and happy coding!

Notes

1. Although not necessary where there are only a few simple applications, version control
systems can be very valuable where there are many complex programs being developed
and supported.

2. Without the printable characters, it can be hard to know if the line is even being run.

CREATING
SHRIMP ETOUFFEE

Appendix

This appendix provides what the author thinks is a fairly good

recipe for shrimp étouffée with the idea of using it to provide a

full example of how easily such a recipe can translate into pro-
gramming code.! The recipe is the result of combining various recipes along with
some experimentation on the part of the author. The purpose is not to teach you
how to cook well, just to understand programming (although I do happen to like
this recipe). We will first write out the recipe in traditional style. We will then
key each section to a graphic representation of the process below and then, using
that structure, program the recipe.

INGREDIENTS
4 tablespoons flour 2 teaspoons salt
6 tablespoons butter 1 teaspoon white pepper
5 cloves of minced garlic 1 teaspoon black pepper
% cup chopped green onions 1 teaspoon cayenne pepper
2 cups chopped onions Y% teaspoon oregano
1 cup chopped celery Y% teaspoon paprika
1 cup chopped green pepper 1% teaspoons dried basil leaves

225

226 CREATING SHRIMP ETOUFEE

% teaspoon dried thyme leaves 2% cups shrimp stock (see
1 bay leaf recipe below)
1 cup tomatoes, peeled, seeded, 2 1lbs. shrimp, peeled and

and diced deveined

6 cups cooked rice

In a large saucepan, melt the butter and whisk in flour. Continue to cook until
roux turns a rich brown color.

Add garlic and whisk for approximately 30 seconds and then add the onions, cel-
ery, green pepper, and spices, cooking until the vegetables are soft. Add
stock and tomatoes, bringing mixture to a boil and then reducing heat to a
simmer and stirring occasionally. Simmer for approximately 25 minutes.

Just before serving, add shrimp and green onions, cooking for about 2—-3 minutes
or until the shrimp turn a rich orange color.

Serve with rice.

Shrimp Stock

Shells from 2 1lbs. shrimp 2 stalks of celery
1 large onion, cut into eight % lemon cut into four pieces
pieces

Water to cover

In a 4-quart saucepan, place the shells, onion, celery, and lemon pieces, cover-
ing with water. Bring to a boil, then lower heat. Simmer for approximately
2-3 hours, refilling water as necessary. Strain and throw away solids.

Makes 5-6 cups.

"PROGRAM"” STRUCTURE

Figure A-1 provides a graphic representation of the recipe as laid out above.
Reading from left to right and top to bottom, you will see each of the steps we
have defined to be part of the process of creating the finished product and to
which we have therefore given a number. Those numbers designate the corre-
sponding points in both the recipe and the program.

Now that we have taken a look at the real recipe and how it is structured,
let’s look at how this might be written in a very theoretical language—Tlet’s call it

CREATING SHRIMP ETOUFEE 227

Shrmip Froufes

I
I I I I I I

Iﬁ'm [rous | o I.E‘i.I I [sene |

15
Add Simimer
Mesaxs oy ke shrimp and Takc off
Hpioes Yegotables ok green 13 L=t
onionS
1 2
2 3 12 14
I T T 1
Conok Add Adid Siinmer
vesgies stock Timates
8 9 10 11
Figure A-1

WCL.2 First of all, there are certain functions built into this language to get us
started (language developers are very nice that way). Some functions from this
language that we will be using include:

add_to_pan(Span, Scontents) — take $contents and place them in $pan

strain_into_bowl (Span, S$contents, $bowl) — take S$contents from S$pan and strain them into S$bowl
heat_pan(S$pan, Sheat_source, Show_hot) — heat $pan over S$heat_source at S$how_hot setting
observe(Span, Sparameter) — look at contents in S$pan to check the $parameter characteristic
simmer_contents(S$pan) — cook contents in $pan at reduced heat

stir_contents($pan) — stir the contents in $pan

remove ($pan, $heat_source) — take Span off of $heat_source

In addition to the functions that are built into the WCL language, we create
three local functions (see bottom of program for function code):

make_roux(Span, Sfat, Sthickener, $color) — in S$pan cook S$thickener in $fat until $color color
make_stock(Smeat, S$veggies) — make a stock using Smeat and S$veggies

peel_shrimp($shrimp) — peel S$shrimp and separate into $shells and Smeat

The code follows.

<?wcl

Span = "Chef’s Pan";
Sheat_source = "Stove";
Show_hot = "High";

Sbowl = "large mixing bowl";

228 CREATING SHRIMP ETOUFEE

Sthickener = 4 * T(flour);

sfat = 6 * T(butter);

Scolor = "Rich Brown";

Srice = (6 * C(cooked white rice));
1

$garlic = 5 * cloves(garlic);

Sgarlic = minced(S$garlic);

$shrimps = 6 * 1lb(shrimp);

$spices = array((2 * t(salt)),
(1 * t(White Pepper)),
(1 * t(Black Pepper)),
(1 * t(Cayenne Pepper)),
(.5 * t(Paprika)),
(.5 * t(Oregano)),
(1.5 * £(basil leaves)),
(.75 * t(dried thyme)),

(1 * (bay leaf)));

2
Sveggies = array((2 * C(chopped onion)),
(1 * C(chopped celery)),
(1 * C(chopped green pepper));
Stomatoes = 1 * C(tomatoes, peeled, seeded, and chopped);
3

Sshrimps = peel_shrimp($shrimps);

Sstock_veggies = array((1 * onion), (2 * celery), (1/2 * lemon), (water));
Sstock = make_stock($shrimps["shells"], S$stock_veggies);
4

heat_pan($pan, Sheat_source, S$how_hot);

Sroux = make_roux(S$pan, $fat, Sthickener, $color);

5

add_to_pan(Span, Sgarlic);

$seconds = 0;

while (S$seconds < 30) {
stir_contents($pan);

$seconds++;

6

Sveggie_count = count (S$veggies);

CREATING SHRIMP ETOUFEE 229

for ($x=0; S$x<S$veggie_count, $x++) {
add_to_pan(pan, Sveggies[$x]);

stir_contents(S$pan, "5 seconds");

}

7

$spice_count = count($spices);

for ($x=0; S$x<S$spice_count, S$x++) {
add_to_pan(span, $spices(sx]);
stir_contents($pan);

}

8

Sveggies_done = "False";

while (!$veggies_done) {
stir_contents($pan);
wait(10);
$done = observe(S$pan, "consistency");
if ($done == "soft") {

Sveggies_done = "True";

}

}

9

$liquid = 2.5 * C($stock);

add_to_pan(S$pan, $liguid);

10

add_to_pan(pan, Stomatoes):

11
Sboiling = "False";
while (!$boiling) {
stir_contents(Span);
$is_boiling = observe(S$pan, "temperature");
if ($is_boiling == "True") {
Sboiling = "True";
} else {
wait(60);
}
}
Show_hot = "Low";

heat_pan($pan, $heat_source, S$how_hot);

Stime = 0;

230 CREATING SHRIMP ETOUFEE

while ($time < 25) {3
simmer_contents($pan);
if (Stime == 5 || $time == 10 || S$time == 15 || $time == 20 || S$time == 25) {

stir_contents(S$pan);

}
wait(60 * seconds);
Stime++;

}

12

add_to_pan(pan, Sshrimps["meat"]);

add_to_pan($pan, .5 * C(chopped green onions));

13

Stime = 0;

while ($time < 3) {
stir_contents($pan);

wait(30 * seconds);

14

remove_pan(S$heat_source);

15
serve_contents(Span, SSrice);

// end make_etouffee.wcl

EEEE SRR R SR R &R S & R S & R S R R R i
Below this line are the three local functions
FHAGHA R R R R
function peel_shrimp($shrimps) {

foreach ($shrimps) {

$shrimp = peeled($shrimps);

Sshells .= $shrimp("shell");
$meat .= S$shrimp("meat");
}
Sresult = array("meat"->Smeat, "shells"->$shells);

return(S$result);

CREATING SHRIMP ETOUFEE 231

function make_stock (S$meat, S$veggies) {
global S$pan;
global show_hot;
global $heat_source;
add_to_pan($pan, Smeat);
add_to_pan(pan, Sveggies);
add_to_pan(Span, Swater);
heat_pan(pan, Sheat_source, $how_hot);
stime = 0;
while ($time < 180) {
simmer_contents($pan);
wait(1);
if (Stime == 30 || S$time == 60 || $time == 90 || Stime == 120 || S$time == 150) {
stir_contents($pan);
}
Stime = Stime++;
}
$liguid = strain_into_bowl($pan, $contents, Sbowl);

return($liquid);

function make_roux(Span, Sfat, S$thickener, S$color) {global S$pan;
add_to_pan($pan, $fat);
add_to_pan($pan, Sthickener);
$roux = "not ready";
while ($roux != "ready") {
stir_contents($pan);
Scheck = observe($pan, "color");
if ($check == S$color) {

Sroux = "ready";

}

return(Sroux);

One further thing: please note certain characteristics about the way that this
is coded. It is very important to observe these—or some kind of standardized—
rules when programming. They make your programs easier to read and—more
important—support. For an example set of standards, see appendix B.

Notes

1. Iam a Yankee, but earned a master’s degree from LSU, where I became a
Cajun-wannabe.

2. For Westman’s Cooking Language, of course!

3. Note that, unless otherwise stated, the unit of time in this application is minutes, so this
line reads “while time is less than 25 minutes.”

PROGRAMMING
STANDARDS

Appendix

In developing standards for programming applications, no princi-

ple is more important than consistency. Developing a consistent

approach to naming your databases, tables, fields, files, and vari-
ables as well as to how you lay out and name your programs can save you more
time and frustration than you can possibly imagine. Rather than saying “what did
I call that field?” and then having to go back to the database definitions to
remind yourself, or having a query not work because you tried to retrieve the
name field, rather than the Name field, having standards allows you to focus on
what’s really important: programming the application.

In this book I have developed, explained, and used a number of suggested
standards that you may want to use in your programming. You may disagree with
some—or even most—of the specifics, and you may or may not follow the sug-
gestions. The important thing is to develop a consistent way of doing things.

GENERAL OBSERVATIONS

Unless you have a sound reason for passing parameters via a URL, always use the
pOST method to pass values to action pages. Not only is it more secure, it
also avoids limitations that some browsers have on the length of GET values
they can handle. The one exception would be when passing parameters
between query forms and searching action pages, where POST can require
reloading the page when returning to it.

232

PROGRAMMING STANDARDS 233

For security reasons, never rely on global variables. Always use superglobals
(that is, $_GET, $_POST, and $_SESSION, and so on).

To make life easier, you can use the technique showed in example 5-20 in chap-
ter 5 to localize $_pOST variables. However, for security reasons you should
not use this technique for any other type of superglobal array and always
before starting any sessions.

Even if for some reason global variables are set to on, always reference any
$_SESSION variable directly (for example, $_SESSION["admin"] rather
than $admin). Use of the latter poses a significant security risk.

Use the shorter (and more current) form of the php superglobal arrays ($_GET,
$_POST, $S_SERVER, and $_SESSION) instead of the deprecated (no longer
used) ones ($SHTTP_GET_VARS, $HTTP_POST_VARS, and so on).

Maintain separate areas for production and production support code and data-
bases. If you are doing serious development, create a third area (see chapter
9 for more information).

NAMING

General

Naming should make code self-documenting. Use names that are descriptive—
that tell you what the thing is, or what is being done. For example,
$number_rows rather than $no or Write_Log rather than Log. Do not
make names too long—say, over twenty to twenty-five characters. Doing so
makes them harder to type in and more prone to typos.

When using compound names, separate the words using the underscore (_)
character (for example, $first_name) and never use a space in names. This
makes them easier to read, particularly in dense program code.

Unless it makes the name too long, use full words, rather than an abbreviation
(for example, $subject_row instead of $sub_row).

In general, standardize on lowercase names (with the exception of function
names, for reasons to be explained below). Not only is this a standard prac-
tice in database programming, it alleviates potential problems with case sen-
sitivity (something that can be an issue even for MySQL on the normally
case-insensitive Windows platform).

234 PROGRAMMING STANDARDS

Do not use reserved PHP or MySQL words (see the bibliography at this book’s
website for links to lists of reserved words).

Databases, Tables, Fields

Make sure that each field name is unique within the database and application,
not just the table.

Standardize on lowercase names.

In naming primary and foreign key pairs, use the full name of the concept that
the key represents as a base and add a suffix to it in a consistent manner, usu-
ally including a code at the end to indicate the data type. For example, if the
primary key of a sites table is auto_increment, then the name of the pri-
mary key should be concept followed by no. Those foreign key fields into
which the primary key value to create the link is to be placed should use the
primary key field name, prefixed by the name of the table in which the for-
eign key will be placed (adding an underscore to differentiate it from the pri-
mary key). Thus for the supports table, the primary key would be
supportsno and foreign key would be sites_supportsno.

When names might be duplicated across different entities, prefix the field name
with the name of the table (with a trailing underscore) to distinguish it (for
example, sites_format).

Functions

Devise a convention to differentiate local functions from PHP functions. In the
case of the ala_function library, the first letter of each “word” in a function
name is uppercase (all native PHP function names are all lowercase).

Files

All file names should have a .php extension, including configuration and include

files.

In naming authority tables, the name of the table should be the plural of the
concept it represents (for example, format authority records go into the
formats table).

PROGRAMMING STANDARDS 235

In naming script files, use the basic format <view>_<task>.php where <view> is
the name of the view whose data is being accessed or maintained and <task>
is the task the particular script is to undertake (see chapter 6 for a discussion
of how we mean views in this book). For example

<view>_add.php—name of the form used for inputting records

<view>_insert.php—name of action page that inserts the record into
the database

<view>_query.php—name of file users can use to input search terms

<view>_search.php—name of the action page that takes the parameters
from the query page, does the search, and then outputs the results,
providing links to editing pages where needed

<view>_get.php—name of file used to select authority file record for
editing

<view>_edit.php—name of file to which links in <view>_search.php
point and that is used to edit records for this view

<view>_update.php—name of action page that updates the database

<view>_delete.php—name of action page that deletes a record and
linked records

<view>_<task>#.php—if multiple versions, use canonic name followed

by the script number (site_add2.php)

Variables

Never reuse a variable name or one that has been used in a different context
within the same application.

Use a consistent naming standard for variables in which you take the context or
function of the variable (table name, task, concept) within the application as
the base and add an underscore character followed by a standardized suffix
that describes the type of value (string, array, date, number, and so on):

$<prefix>_query—variable for defining a query
$<prefix> result—variable that will contain the result

$<prefix>_records—name of array in which the set of retrieved
records will be stored

$<prefix>_num_rows—number of rows in the result query

236 PROGRAMMING STANDARDS

$<prefix>_row—name of array into which individual records will be
read as an associative array

$<prefix>_fields—fields to be used in this particular query

Non-table-destined variable names:
$<prefix>_ary—name of array to be used to store values
$<prefix>_ str—name of string
$<prefix>_date—variable containing a date

$<prefix>_num—name of integer

Other examples include:
$tables—mname for tables to be used
$fields—mname of the field or fields to be included
$1ink_str—string that will contain the linking table information
$where_ary—array of WHERE conditions
$where_str—WHERE string for use in SQL statements
sorder_by—field or fields by which to sort a query result
Use, when creating database maintenance forms, the name of the field into
which a datum will be going (including case and agreement) in the name
parameter in the adding/editing form. For example, if an input field is to go

into the title field of a table, the inputting prompt should be: <input
type="text" name="title">.

Always use associative arrays when working with values identifying names (such
as database records) and named parameters (for example, $row
["title"]) rather than a numeric index (for example, $row[0]) to access
values in the array.

File Structure

Use a consistent file structure for all apps. The following provides the basic
structure for the basic files mentioned above:

Always use <?php and 2> to define php blocks. Use of others, such as
the ASP style (<% and %>) can cause problems, particularly in XML
processing.

All HTML tags should be lowercase.

PROGRAMMING STANDARDS 237

Define constants (rather than using literals in the code) at the top of the
file or in the configuration file wherever possible. For example, if
you want to put the Webmaster’s name or e-mail address on every
page, define a variable in your configuration file called $webmaster
and assign it the Webmaster’s name as its value. Then, any time you
want to echo it, you just use the command echo $webmaster.
Doing this allows for easy changes should they need to be made.

Each time there are conditional blocks, the body of the loop should be
indented one stop (that is, three spaces). The opening curly brace
should come at the end of the conditional line and the closing brace
should be in the same column as the first character of the opening
conditional statement. For example:

a 12 (Sa==0) ¢
.5 $bh = 3;
5])

If there are conditional blocks within conditional blocks, each embed-
ded block should be indented one stop further. When setting inden-
tation, use a setting of three spaces per level—two not being visu-
ally clear and more than three placing deeper levels of indent too far
to the right. For example:

7| while (Srow = wmysgl fetch erray(§result)) (
8 $name = $row[“name"];:

9 jdeparcment = §row("department”]:

10 if | $departmwent == "Nusic") {

fiat if (§neme == "Hahler™) {

1z echo "Gustav is here”:

13 }

14 }

5] ¥

If possible, use spaces rather than tabs (using tabs puts you at the mercy
of text editors with larger tabs stops—particularly a problem with
code featuring several levels of indentation). Note that though
NoteTab Light uses a <tab> character, NoteTab Pro allows you the
option of putting in fixed tabs, which insert the designated number
of spaces.

To help ensure proper programming of blocks, you should create the
closing curly brace when you open the block by typing in the open-
ing curly brace, leaving at least one blank line between the two of
them into which to write the code. This practice should be followed
even if there is only one statement in a loop because there may be

238 PROGRAMMING STANDARDS

more down the line and placing the braces there now makes it more

readable.

Separate sections of code by one blank line and place comment imme-
diately before the new code.

Wherever a value is placed within parentheses (conditional loops, func-
tion calls, and so on), a single space should follow the opening
parenthesis and another immediately precede the closing parenthe-
sis. If there are multiple values within the parentheses, they should
also have a space before them. This will make your code more read-
able. For example:

18| 1t (§a == 0) {

22| Display Text($varl, $§var2):

There should be a space before and after all operators (=, 1=, ==, |,
&&, and so forth). For example, sa = 2, not $a=2. One exception
to this rule concerns those cases, such as for() loops, where adding
a space would decrease legibility:

1| for (%$x=0; §x<fy: §x++) |

2 HOT
3| for [$x = 0; §x < §y; §x++) |

SQL Queries

Use all capital letters for SQL keywords (for example, SELECT title,name
FROM books WHERE author='Dickens').

Always write your query to a variable and then use the variable when calling the
mysqgl_query () or Do_Search () functions. This allows you to echo the

query for debugging purposes, if needed.

Always surround the values you pass to the database with single quotes.

Development Process

As noted, whenever you begin a conditional block (if, while, for, and so
forth), close the block by entering the } before entering any code within the
block.

Use view grids to test each application as you go.

PROGRAMMING STANDARDS 239

When programming insert/update action pages, begin with filling in all of the
fields in the inputting form and setting prod=N in the action page, making
sure that all fields are filled in with the proper values before setting it to v.

Always include a logging function that saves all database-changing queries to a
text file that can be used to restore in case of database problems. (Although
MySQL does provide a way to do this, its approach is to save all queries from
all databases into a single file.)

If a section of code is used more than once, rather than typing it in again, con-
sider moving it to a function that can be called repeatedly.

Functions

In creating functions, be consistent with the order of parameters passed to the
function (that they are sent in the same order that they will be received).

If writing similar functions, make sure that each type of parameter (for example,
fields, table, and so on) is in the same order from function to function.

Always place mandatory parameters first.

If optional, give a default value so that, if there is no value passed from the form,
the function will still work. If a default value is something other than a blank
string, you need to set it using _Set_Default_Value() or some other
method to ensure a value is set.

You do not need to insert a parameter for an optional value into the function call.
However, if you want to pass an optional value, make sure that you insert a
placeholder for any optional parameter up to the optional parameter you are

changing.

Commenting Code
All code should be commented:
Before annotating, always eliminate old debug statements or other nonfunc-
tioning code. This will make the code much easier to read and support.
Indent comments to same column as the code the comment describes.

When a comment takes up more than one line, create a hanging indent by
placing the second and subsequent lines one stop further to the right.

Differentiate style of comments:

240 PROGRAMMING STANDARDS

File

e Division

e Function

Individual line—place at end of line, separating from code by //
Types of comments

e Function library file header:

LEEREREREE PR R PR R R E R PR R R R EEE PR
File name: ala_functions.php

Purpose: library of basic functions that are to be used in developing
HyS0L/php/ kpache database-backed applications.

Functions in thiz library
HTHL Inputting - Single Values
TextBox - inputting single lines of text
PasaBox - for password and where user input should be masked

Revision History:

#
#
#
#
#
#
#
#
#
H
L3
#
[3
4/29/2005 by SRV

Changes made:

Documented Checkbox function
#

LR EEEEREEE R PR EEE R R R PR EEE R EE R R EE R R PP R

HERHREAREH RN AR BN RO OB RN AR RSN A A R HRB R AR
Function name: TextBox
Pucpose: Create o text inputting box (single line)

Parameters:
§name - "name" parameter from form into which user input is stored
§size - size (in number of characters) of input box (default=20)
fmaxlength — nunber of ch that can be input (if greater
than §size, the user will have o moving window of §size number of
characters [defaulc=20)
fdefault_val - default value of field (used in edicing). Default is
a blank string

Cutputs:
HTHL text box

#

#

L3

L]

“

#

#

"

#

#

L

#

#

ALA functions called:
L) Hone

#

php functions called:
L]
H
#
H
L]
#
"
L]
L)
#
#

htmlapecialchara - encode variable for HTTF tranamiasion

Called By:
HTHL Forms

Revision History:
9/1/2004 by SRW

Changes made:
Documenced

BB AR RSB B OHHHRRHRE A BN RAA BB B R

PROGRAMMING STANDARDS 241

* Block comments (inside a function or program)

Use ##### type blocks for major sections, /* */ for subsections:

2. Create and send a guery to the database, localizing the 4 values,
coming in from the query form. However, rather than doing each
one individually, we use php's list({) function to turn the
§_POST superglobal into an array, saving the field name to §key
and the value to jvalue., Note the use of §{$keyl. Thi= i= a php
trick that takes a string and creates a variable with that string's
mame.
Eii s bl B b EE R EE LR EE R R R B B LR
while (list($key, §value) = each(§ POST)) {

§i5key)=Svalue;
]

,o‘IC‘S"SII!'IIS'I'SI'SGIltilli‘l{t‘i8"'1I'I!‘SIil“tl'Iilit"ii'ltlli!lltl"!
* Next, we go through each field coming in from the form.
II’lI'!"'ll'llllD"!'I!D‘I!I""Ql'l’l'll"‘!'Illll!ll"llll""'lll!!lll"
if (trim{ §Fieldl) != "" gg trim({ §Valuel) |= w» j
if (§Fieldl == Mlccation") |
jremp where str = " HATCH (location) AGAINST ('+§Valuel' in BOOLEAN MODE) ":
) else (-
§temp_where _str = " §Fieldl = '{Valuel' *;
}
) else (
echo "Pleass enter & gquery":
exit:

Indent comment to the same level as the code:

P e e s
* After initislizing §html (above) and for each row retrisved by $guery,

* we define {display name (the fisld value that will be displayed in the
* select list output). If §field num equals 1 (i.e. if only one field is
* being searched), that means that the code and display name are the

* same field and make Sdisplay_name egqual to $row[0]). Ocherwise, make

* §display nemwe egual to frow[1].

f
for { fa=0; §a<inum rows: fa++)

§rov = §records[ia]:

§code = htmlspecimlchars| frow{0]): // give fcode firsc array value

if [§field num == 1) { // is this che firsc field?
$display name = $row[0]: // then make fcode display value

F else { // otherwise, there are twno
§display_name = §row(l]: /f thus item 2 iz display value

/ rvwe Terer e o TrEvEaEy Trrsraaey
* Check to see if §display name iz the same as the value passed to

* this funceion. If ie is not | §eow[0] != fdefaulc walue), then it
* putputs the value as an <option></option> line. If it is, the

* §default _code and §display_default_value are set (and will be

* output later.

if | §display name != fdefault value) {
Af [§row[D] != $default wvalue) {
fhtml .= "<option value=\"jcodel">§display_name</option>\n™:
1 else
jdetaulc_code = §row[0]:
$display default value = §row[1]:
§2_key found = 1;
¥

242 PROGRAMMING STANDARDS

e File header:

File Nome: subject_add.php
Author: Stephen R. Vestman
View: Subjecta

Version: 1.0

Creation date: 4/30/2004

#

#

#

#

#

#

Taskis) Pecformed:

Creates inputting form for Subjects view
#

Scripts called by:

HNons

#

Scripta this file calls:
subject_inserc.php
#

Functions used:

Hons

-4

Session varisbles:

4 None

#

Special techniques:

Hone

o

Revision History

#

#

4/30/2004 by SRV

#
L L R L e R L e L B L R R R L]

e Inline comments—used for defining a particular line:

$page=~§ SERVER["PHP_SELF"]: // Name of page loading the prepend file
$pos = scrpos(§page,”login.php"): // Check to see if page i# login.php. 1If so, =kip
if | $pos == 0) | // ro avoid an infince loop

if | §_SESSICH["authenticaced”] != "crue”) {
‘header ("Location: login.php?pages§page”}:
3

Glossary

*nix shorthand way of saying Linux and various flavors of Unix, such as Solaris,
HP-Unix, and AIX.

action page a page that takes input, either passed to it from a form or URL or
embedded in the page itself, and then acts on that input (performs a search,
adds/updates a record, and the like).

administration See database administration.

Apache an open source Web server and the most popular Web server software
currently available on the Internet (see http:/httpd.apache.org/ABOUT _
APACHE html for more information).

Apache module modules that can be built into an Apache Web server that then
become integral to it. Several act as application servers, allowing developers
to build HTML pages where programming instructions are included in spe-
cially marked sections of the page, and then executed by the module, with
the results embedded in the HTML page and returned to the user. Scripts
that use modules are much easier to code than CGI programs and run much
faster. See also CGI.

API See Application Program Interface.

Application Program Interface (API) a set of hooks (routines) built into
applications that programmers can use to write external programs that
access that application. APIs provide an easy way for outside programs to
send information or requests to the application and/or to access information
from inside the application.

arbitrary key a primary key of a table that does not reflect any content within
the record in which it is contained, usually automatically assigned as a num-
ber by the computer (for example, the bibliographic record number in on-
line catalog records). See also auto_increment, descriptive key.

arrays a set of variables grouped based on a common characteristic or use.
Whereas many programming languages require that arrays contain data of
the same data type (integer, character, and so on), PHP does not. Individual

243

244 GLOSSARY

items within the array are called elements and are accessed using an index,
the elements “address” within the array. Indices may either be numeric
(position within the array) or descriptive (associative arrays). Although some
languages, such as Perl, use a different symbol to create an array, PHP uses
the $ as the prefix as it does for variables. See also associative array; element.

associative array in PHP, an array in which the individual elements within the
array have a name associated with them (as an index) rather than a number
indicating the element’s position in the array. Associative arrays can be very
useful, particularly in outputting database searches where you can use the
field name to access the value for that field. For example, if we have a vari-
able $record that contains a bibliographic record, we could access the title
by looking at $record["title"] rather than having to know the number of
the element within the array that has that value. See also arrays; index (arrays).

authentication making sure that a user is who the user claims to be. Normally
done through login screens that check username and password against a
database containing authorized users of a system. See also authorization.

authority table table that contains the “authorized form of entry” for a given
term, concept, or person and is used to create links to other records (by plac-
ing its primary key in the appropriate foreign key field). In the Web environ-
ment, this can be achieved by creating drop-down lists, checkboxes, or radio
buttons containing the authority table’s primary key as the value of the
inputting element, which is then sent to the action page when the form is
submitted.

authorization process in which an authenticated user is given rights to do the
requested action. See chapter 8 for a discussion. See also authentication.

auto_increment a technique used by MySQL that automatically assigns the
next available number (from an internally maintained ordered sequence of
numbers) to serve as the primary key field of a record.

binary distribution a software package in which the source code has already
been compiled (transformed from human-readable code to code that the
computer can understand and process) for a particular platform. Although
this is the more familiar way for Windows users to obtain a program, open
source products often come with source code only, so that the user can, if
desired, make changes to the code or to the base configuration and then
compile it. See also RPM.

case sensitivity whether a difference in the capitalization of characters within
a word or phrase has an effect on the processing of that data (for example,

GLOSSARY 245

eXist, an open source XML database, is not the same thing as exist, a state
of being). A case insensitive search for eXist would retrieve records with
both forms, but a case sensitive search should bring back only records about
the database. By default, MySQL searching is case insensitive. See also
SELECT... WHERE BINARY.

CGI (Common Gateway Interface) a protocol built into Internet Web
servers by which requests can be passed from the Web server to an external
program that is in turn run by the host operating system and the results
returned to the Web server. Unlike Web server—based scripting, CGI scripts
run outside the control of the server. The server merely passes data to the
external program and then takes the output of that program and passes it
back to the user. Because an external process is called, CGI tends to be sig-
nificantly slower than Web server-based scripting alternatives to it.
Although PHP can be used as a CGI language, the most commonly used lan-
guage for CGI programs is Perl. See also Apache modules, Web
server—based scripting.

comma-parsed string a single string enclosed in double quotation marks and
containing a number of data elements with commas between them (for exam-
ple, "author, title, copyright"). See also comma-separated values.

comma-separated values (CSV) a format used by applications for transfer-
ring data from one program to another or to create an array of values within
an application. It usually puts quotation marks around each data element
and places a comma between the values (for example, "name", "address",
"phone"). This is in contrast to a comma-parsed string, in which a list of ele-
ments are separated by commas and encased in a single set of double quo-
tation marks ("name,address,phone"). See also comma-parsed string,
delimited text files.

concatenate to append a number of different elements to each other to cre-
ate a single entity. An example of concatenation, using the PHP concatena-
tion operator (*.’), is the following statement:

Sperson = "John";

Sphrase = "Hello, " . "World." . " This is " . S$person;

results in $phrase having the value "Hello, World. This is
John".

CPAN (Comprehensive Perl Archive Network) a large repository of Perl
modules that users can download and use in their own applications. A simi-
lar initiative—PEAR—is being undertaken for PHP. See also PEAR.

246 GLOSSARY

CSV See comma-separated values.

data modeling the process of taking all of the pieces of information to be
included in a database and creating a map of where each item should be
placed. The goal is to optimize efficiency of storage and retrieval of the data.
See also database design.

data record record containing the data for a given set of transactions. Other
types of records include authority records and linking records. See also
authority table, linking table.

data structures ways in which data is structured. In the case of RDBMS data-
bases, this can include both the logical elements (tables, fields, and so on)
and the ways in which those elements were set up to support the application
(indexes, foreign key constraints, and so on).

database the basic container where data is stored in a database management
system. See also relational database management systems.

database administration a set of tasks that must be undertaken to ensure that
the database continues to work efficiently and correctly. These tasks include
doing backups, creating databases and implementing data models, building
indexes, maintaining data and database security, and ensuring referential
integrity in all database applications. See chapter 2 for more details.

database design the process of taking a data model and creating the database
to implement that model. See also data modeling.

delimited text files text files that contain values with each value being sepa-
rated from the other by a delimiter or special character. For example:

Dickens|Charles|Tale of Two Cities

Kazantzakis|Nikos|Report to Greco

See also delimiter, comma-separated values.

delimiter character within a delimited file that separates one piece of informa-
tion (field) from another within a given line (record). To avoid confusing the
computer, the delimiter character must not be used anywhere within the
data to be stored in the file. One good character to use is the pipe symbol (I)
because that value is rarely found in data fields. See also pipe.

descriptive key a value, based on the content of the record, used as the pri-
mary key for a table. Although using a descriptive key does make it much
easier for humans to follow relationships when looking at the data in the
database, it can create problems should the values within the record change.
If you change the key to keep the key descriptive of the record’s contents,
you have to ensure that all foreign keys linked to the primary key are

GLOSSARY 247

changed appropriately as well. See also arbitrary key, foreign key constraint,
primary key.

dynamic pages Web pages created when the page is accessed, usually by a
database query that retrieves and presents information. See also static pages.

element (arrays) an individual entity, similar to a field, within an array where
values are stored.

entity aunique concept or subject to be stored in a database. In relational data-
bases, individual entities are usually represented by individual tables.

error handler programming routines or code called in the event of a problem
in application execution.

field structure within a record to store specific pieces of information on the
entity being described in a record. See also record, table.

file type physical format of the digital file in which database data is stored.
Although MySQL includes support for several types, we discuss only two in
this book—MyISAM (MySQL default) and InnoDB (supports more
advanced database techniques).

foreign key value within records that points back to a primary key to create a
link between the two records. Unlike primary keys, which must be unique,
foreign keys values may appear multiple times within a table. See also arbi-
trary key, descriptive key, foreign key, foreign key constraints, key.

foreign key constraint feature built into RDBMS products that enforces rela-
tional integrity between primary and foreign keys. Setting a constraint
between a primary and a secondary key ensures that

no foreign key field will have a value not already in the primary key

field

if the primary key field is changed or deleted, certain actions will be
taken on the foreign key—such as automatically making the same

changes in the foreign key fields

See chapter 2 for more information. See also foreign key, primary key, rela-
tional integrity.

function individual section of programming code, usually designed to do one
task, set apart so that it can then be called by other routines to perform that
task. See also function library.

function library files in which a number of functions have been grouped to
make them easier to manage. See also function.

GNU a recursive acronym for “GNUs Not UNIX,” the GNU project started in
1984 with the goal of developing a free and complete UNIX-style operating
system. GNU software is a major part of the Linux operating system.

248 GLOSSARY

Graphical User Interface (GUI) a program interface based on graphical ele-
ments and pointing devices, rather than keystrokes, to make programs eas-
ier to use. Windows and Web browsers are two examples.

GUI See Graphical User Interface.

handle in PHP, a particular type of variable to which a database connection is
assigned so that it can then be used by an application to send data to, and
receive data from, that database. Although an application may have multiple
handles, each handle can access only one database at a time. For example:

handle

= mvsql_connect{ tlocalhost’,
mysgl select_db("web_infg
fguery = "SELECT * FRON phohes ORDER BY last_ name,first_nawe”:
$result = mysgl cuery($query,] or die(mysql_errox()):

"Phones", "Fone_Usc");

increment increase a value by one. Useful in programming blocks to know how
many times the block has executed.

index (arrays) the address of a particular value within an array. The most com-
mon types of indices are numeric and associative. See also arrays, associative
arrays, elements.

index (databases) files used to quickly find and access records containing
requested values within a database.

InnoDB table type, created by Innobase Oy, used by MySQL to implement
record-level locking as well as transaction and foreign key integrity support.
See also table type, MyISAM.

joins technique used in SQL queries to link tables, based on their primary-
foreign key relationships, to access information in a relational database.

key a field within a record that contains information linking it to records in
other tables within the database. Keys can either be primary or foreign. See
also primary key, foreign key, setting a relation, foreign key constraint.

LAMP acronym for the very popular combination of open source tools: Linux,
Apache, MySQL, and PHP. See also WAMP.

legacy system system, usually long-standing, containing data of current, his-
torical, or archival importance to an organization.

linking See setting a relation.

linking table tables used to relate one or more records in one table to one or
more records in a second table. This is achieved by creating a table with two

GLOSSARY 249

foreign key fields: one to contain the foreign key for each of the two records
from the tables to be linked. There may be situations, such as in circulation
systems, in which linking tables can also be a data table (such as checkout
records that contain due dates). See chapter 2 for more details.

localhost ~ name for the loopback interface on a computer (IP address
127.0.0.1) that exists so that a computer can talk to itself. An Internet con-
nection is not needed for this address to work.

localizing taking a value from a superglobal and making it into a local variable
for use. See also superglobals.

locking temporarily restricting access to specific database resources. This may
either be a WRITE lock (in which users can neither read a record or table
nor write to it while the lock is in place) or a READ lock (in which everyone
can read but no one can write to the resource). Most modern RDBMSs
(including MySQL, if one uses InnoDB tables) support locking at the record
level.

logging writing computer activities—such as database interactions—to a file.
Logs can be used for debugging as well as for restoring a system.

lookup table See authority table.

maintaining state the ability to remember a user from one Web interaction
to the next. Because the Web is “stateless” (once a Web server is through
with a task, it closes the connection and has no way of remembering anything
about that task), some technique is needed to allow the server to have a way
to recall things about the user from transaction to transaction. Techniques
that implement this capability are said to be maintaining state.

many-to-many relationship multiple records in one table are related to mul-
tiple records in another table by a linking table. See chapter 2 for more infor-
mation. See also relations, one-to-one relationship, one-to-many relation-
ship, linking table.

MyISAM MySQL: version of Indexed Sequential Access Method (ISAM) files,
which defines how database information is stored on disk and then accessed.
Although the data is stored sequentially, its use of integral indexes allows for
quick retrieval of information. It also allows for the creation of FULLTEXT
indexes to support keyword searching.

MySQL an open source relational database management system (see http://
www.mysql.com/ for more information).

normalization the processes involved in removing data redundancy (unneces-
sary data duplication); standardizing format, spelling, and case of data

250 GLOSSARY

entered into the database; and ensuring efficient storage and use of the data-
base. When dealing with individual data elements, it includes the process—
similar to authority control in libraries—of taking variant forms of a value
and mapping them to a single authorized form of the value.

object within the context of object-oriented programming, an object is pro-
gramming code that is self-contained and includes both data and code used
in processing that data.

object-oriented programming type of programming that combines data
structures with programming code to create self-contained and reusable
objects. This allows for the development of modules that do not need to be
changed if one wants to do something slightly different. Instead, the devel-
oper creates an offspring module that can inherit features (methods, data,
and so on) from the parent module, changing only those aspects that differ.
See also procedural programming, object.

ODBC (Open Database Connectivity) a protocol, developed in 1992 by
Microsoft, based on recommendations from the SQL Access Group, that
allows retrieval of data from any compliant database management system
using a standardized command set. ODBC utilizes an intermediate entity
(driver) between an application and the database system that translates the
application’s data queries into commands that the system understands and
then returns the results back to the calling application.

offload to download or extract data from a system, often for use in another sys-
tem.

one-to-many relationship one record in one table is linked to multiple
records in another table by a primary key placed in those records’ foreign
key field. See chapter 2 for more details. See also relations, one-to-one rela-
tionship, many-to-many relationship.

one-to-one relationship where one record in one table is linked to only one
record in another table. See chapter 2 for more information. See also rela-
tions, one-to-many relationship, many-to-many relationship.

Open Database Connectivity See ODBC.

open source a new paradigm of software development that is community-
based, rather than a product of a single—usually commercial—company. In
open source projects, users of the software (along with other interested par-
ties) are free to contribute to software development.

operator precedence in a Boolean context, which operator (AND, OR, NOT)
should be invoked first. The issue is one of meaning. For example, does
“This summer, I'm going to Paris AND London OR Vienna” mean “I'm

GLOSSARY 251

going to Paris and London or I'm going to Vienna” or “I'm going to Paris and
then I'm either going to London or to Vienna”? If AND has precedence,
then the statement has the first meaning; if OR, then the second one is true.

parameter avalue that gets passed to a function as a part the call to that func-
tion. The function then uses the parameter to do its assigned task. There
may be multiple parameters in a single function call.

§html = "v;
$html .= "<input type=\"cexc\" name=\""| fname."\ " sizeg\"". §3ize."\"";
S$heml .= " maxlengthy\"".Sma :
$heml .= " valus=\"r. Y i g L2
echo $html:

<tr>
<td colspan="2">
URL:
<?php TextBox(CTurl™ 60T (F250™
</ed>
</tr>

QEites, rougmur D) 25

PEAR (PHP Extension and Application Repository) a repository—similar
to CPAN—for PHP code. See also CPAN.

personal bibliography software software, such as EndNote and ProCite,
that enables the user to create bibliographies of books, articles, and so on.

personal information managers software that enables users to enter a wide
variety of types of information—usually in an unstructured format (that is,
no tables, fields, and so on)—and that then allows for searching and retrieval
of that information.

PHP an open source Web programming language that can be used both as an
Apache module and via CGI (see http://www.php.net for more information).

pipe the | character. Often used as a delimiter because it is rarely found in data
to be included in delimited files. See also delimited text files, delimiter, pipe-
delimited file.

pipe-delimited file a delimited text file that uses the pipe symbol (I) as the
delimiter. See also comma-parsed file, comma-separated file, delimited text
file, delimiter, pipe.

252 GLOSSARY

primary key field within a record that uniquely identifies a record within the
table and is used as a foreign key in other tables to link back to that record.
See also foreign key.

procedural programming a more-or-less linear approach to programming—
as described in this book—in which you essentially provide step-by-step
instructions to the computer in the order you want them processed. See also
object-oriented programming.

programming language language used to write commands to tell computers
what to do. Although programmers write using relatively recognizable
words, for the computer to understand them, they need to be put in machine
language. This can be done either by compiling it (as in C) or interpreting it
(as in Per]l and PHP).

query command sent to a database system, telling it to do something, such as
add, update, or delete records or to retrieve records matching certain criteria.

RDBMS See Relational Database Management System.

record the structure within tables containing descriptions of individual
instances of the entity that the table represents. Individual elements of those
entities are stored in fields. See also field, table.

referential integrity process by which the links between primary keys and
foreign keys are maintained properly. See also setting a relation, primary key,
foreign key.

regular expression a sophisticated programming technique that permits match-
ing and/or changing strings within other strings using certain parameters.

Relational Database Management System a system that incorporates rela-
tional databases; SQL support for database querying, maintenance, and
administration; user and data access security; and other techniques to sup-
port the creation of sophisticated database-based applications. See also rela-
tional database.

relational database a database in which tables are linked via setting relations
using primary key and foreign key pairs. See also primary key, foreign key,
Relational Database Management System, setting a relation.

reserved variables the official PHP term for superglobals. See also superglobals.

reserved words in databases or programming languages, certain words that
have a specific use in the application which, if they are used by the user for
other purposes, can create confusion within the application. See the online
bibliography for sites containing lists of MySQL and PHP reserved words.

return value value returned by a function after it has done its work. You cap-
ture this value by calling the function and assigning the return value to a vari-
able. For example:

GLOSSARY 2533

Function
function Auth Vals(§p_key, $display name, $table) {

§vals cquery = "SELECT §p_key, §display_nawe FROH $table”;
$records = Execute Query($vals query, "S"):
$num_rows = count(frecords):
for ($a=0:; $a<fnum rows: $a++) {

§vals_row = jrecords(%a):

$return pkey = §vals row[$p key]:

§return_value = §vals_row[§display_nawe]:

§jrevurn_array[$return_pkey] = §return value;

Calling the function

- Auth Vals("subjectno”, "subject", "subjects"):

RPM a type of package, usually for the Linux platform, that is ready to be
installed directly into the system. RPM packages can come compiled or as
source code. See also binary distribution.

scalability ability to meet present needs as well as to support demands that
might be placed in the future.

SELECT... WHERE BINARY MySQL method for a case-sensitive search.
For example, to search for eXist but not exist, you would enter:

SELECT * FROM <table> WHERE BINARY <field> LIKE 'eXist';

setting a relation the process of using a shared value, placed in primary and
secondary key fields in two tables, to link two records. See also relations.

SQL See Structured Query Language.

static pages traditional Web page content that is changed manually rather than
by server programming. See also dynamic pages.

stored procedure function or element of user-created code stored inside a
database that can be run by the RDBMS for certain tasks. See also trigger.

string an entity containing a contiguous collection of characters (including
spaces).

Structured Query Language standardized language for interacting with rela-
tional database management systems. See Relational Database Management
Systems.

superglobals associative arrays, built into PHP, used to pass information be-
tween pages. The most important ones are

254 GLOSSARY

$_POST—contains the name/value pairs in a POST transaction
$_GET—contains GET name/value pairs

$_SESSION—contains session variables, linked to a particular session
ID

$_SERVER—holds the information about the server and/or server envi-
ronment variables such as HTTP_REFERRER, REMOTE_HOST, and so
forth

table the group unit within databases in which data is stored. Within tables,
data are stored in records. Information within a record is broken into fields.
See also field, setting a relation, entity, record.

trigger a stored procedure that is executed when certain conditions within the
RDBMS system are met. See also stored procedure.

variable a symbolic container that stores a value that the computer can
process. Programming languages differ in how variables are named. PHP
requires that all variables are preceded by the $ character (for example,
$name).

WAMP acronym for popular combination of tools for database-backed Web
development: Windows, Apache, MySQL, and PHP. See also LAMP.

Web server-based scripting technique by which HTML pages can contain
programming code that can be run by a module and the results output as
part of the page. This differs from CGI scripts in that the processing is done
by modules built into Web servers rather than passing the request to an
external process. Server-based scripting runs more quickly and makes devel-
opment much quicker and less error-prone. PHP as used in this book is an
example. See also Apache modules.

Web-aware a database has an API or other techniques that allow Web-based
programs to be written to dynamically access data contained in the database.

Index

Symbols
/* */ (annotation), 91
<l s (annotation), 91
* (asterisk), 3
{} (braces) 74 237
[1¢(brackets), 159, 179
, (comma), 16
I= (does not equal operator), 31
$ (dollar sign), 70
| (exclamation mark), 185
/ (forward slash), 91
%20 (hexadecimal value for space), 96
() (parentheses), 79, 238
% (percent), 30
. (period), 111n2
| (pipe character), 16, 251
(pound sign), 91
" (quotation mark), 16
' (single quotation mark), 30, 34, 186
_ (underscore), 125, 233

A
access control
authentication, 187-89
authorization, 189-90
defining data model, 123
flush privileges command, 202
using sessions, 190-94
accounts. See user accounts
action pages
application example, 128-31
building, 152
defined, 243
encrypted passwords and, 188
input validation and, 159
programming standards, 235, 239

structure of, 98-99
updating, 154-55
adding records
creating main application, 165-71
with INSERT statement, 34
project design, 129-30, 136-37
SQL statements and, 29
addslashes() function, 186
administration
backups, 63-64
creating indexes, 61-63
database. See database administration
defined, 243
security and, 64-65
ala_functions.php, 12-13, 217
aliases, 213
AND Boolean operator
paging through results, 212-13
Process_Query_Array() function and,
182n19
regular expressions and, 180
searches and, 31, 101, 105-9, 173
annotations, 91, 238-42
Apache module, 243
Apache Web server
basic_auth variable, 186
configuration file, 183
defined, 243
overview, 12
popularity of, 10
SSL and, 184
API (Application Programming Interface),
243
application authentication, 187-89
application control
configuration files and, 183

255

256 INDEX

application control (cont.)
deleting records, 197-99
encryption and, 196-97
external threats, 185-87
internal threats, 184-85
logging. See logging
transactions and, 194-95
Application Programming Interface (API),
243
applications. See also programming
adding records, 165-71
annotations in, 91
application flow, 128-31
authority table maintenance, 150-55
considerations for tools, 84
creating configuration files, 148-50
database maintenance functions, 161-65
documenting. See documentation
dynamic subject pages, 2014
dynamic Web page reports and, 6
editing records, 171-78
fields with duplicate entries, 156-57
function library and, 81-82
implementing data model, 146
input validation, 159-60
interaction logging, 64
interface design, 13941
maintaining, 216-17
multiple values within fields, 178-81
placing in production, 215-16
programming steps, 145
project design, 126-27
providing useful response, 160-61
public searching interface, 141
query logging, 158
search, 99-10
search interface, 205-15
setting up foreign key support, 14648
testing, 165
upgrading, 216-17
views and, 131-37
arbitrary keys, 27, 243
arrays
associative. See associative arrays
counting from zero, 218n1
defined, 24344
elements in, 247
indexes in, 17, 248

keyword searching and, 179
linking full records and, 209
outputting, 93
overview, 70-71
PHP and Javascript compatibility, 159
programming standards, 236
associative arrays
defined, 71, 244
global, 97
making changes with, 175
mysql_fetch_array() function, 94
superglobals, 253-54
asterisk, 30
audience, identifying, 115
authentication
defined, 187, 244
HTML and, 98
local_prepend.php and, 190
overview, 187-89
for phpMyAdmin, 4849, 186
authority tables
defined, 23, 244
duplicate entries and, 156-57
foreign keys and, 175, 177-78
making changes and, 164-65, 175
programming maintenance, 150-55
programming standards, 234
views and, 133-35
authorization
defined, 187, 244
deleting records, 197
flush privileges command, 202
HTML and, 98
overview, 189-90
Auth_Vals() function, 205-6, 209
auto_increment
capturing value, 164
defined, 244
loading data example, 54
NOT NULL value and, 46

B
backups
interaction logging, 64
placing applications in production and,
215-16
server, 63—-64
user accounts for, 66n12

basic_auth directive (Apache), 186

Begin() function, 194-96, 198

Bibliographic Record (BR) number, 41n7

binary distribution, 244

BINARY operator, 31

blank strings, 45-46

Blank_Links() function, 199

Boolean data type, 44, 180

Boolean operators. See AND Boolean opera-
tor; OR Boolean operator

border attribute, 167

Bourret, Ronald, 13n3

braces { }, 74, 237

brackets [|, 159, 179

browsers, 159, 223

Build Date() function, 168

business rules (constraints), 122-26, 147

Cc
capitalization, 128, 233. See also
case sensitivity
case sensitivity. See also capitalization
defined, 24445
searches and, 30-31
SELECT.. WHERE BINARY statement,
253
CGI (Common Gateway Interface), 67, 245
change control, 115
char data type, 44
checkboxes, creating, 166-67
CheckBoxes() function, 166-67
Check_for_Dup_Fields() function, 156-57
Check_for_Dup_Records() function, 157
Check_Rights() function, 197, 200n10
Check_User() function
application security, 189, 193-94
functionality, 199n7
Codd, E. ., 18
coding. See programming
ComboList() function, 179
comma, 16
comma-parsed string, 245
comma-separated values. See CSV
comments, 91, 238-42
Commit() function, 194-96, 198
Common Gateway Interface (CGI), 67, 245
Comprehensive Perl Archive Network
(CPAN), 245

INDEX 257

concatenate, 245
concatenation operator, 111n2
conditional statements, 74-76, 237
configuration file
application security, 183, 191
creating, 148-50
enabling sessions, 195
programming standards, 237
constants, 237
constraints, 122-26, 147. See also foreign key
constraints
controlled vocabulary, 177
cookies, 189-90
copyright restrictions, 13n4
counter variables, 76
count() function (PHP), 109
CPAN (Comprehensive Per] Archive
Network), 245
Create button (phpMyAdmin), 50-51
cross-platform support, 84
CSV (comma-separated values)
defined, 245
linking records and, 209
loading data, 52-55
transferring data, 47
cygwin utilities (RedHat), 88n11

D
data definition, 44—46
data elements. See elements
data management, 15-20
data models
building, 123-26
defined, 246
gathering information for, 119-23
implementing, 47-52, 146
overview, 22-28, 118-19
data structures, 47-48, 246
data types
Boolean, 44
char, 44
date, 44, 46, 167—-69
defined, 44
float, 44
integer, 44
text, 44
varchar, 44
Y/N, 44, 169

258 [INDEX

database administration
application security, 186
defined, 246
maintenance functions, 161-65
tools for, 48-50
database structures, 17-20
database-backed Web pages, 3-9
databases
adding, 50-52
connecting to, 89
conversion programs, 55-56
creating, 47-52
as database structure, 17
defined, 246
design rules, 27-28
duplicate values in, 156-57
indexes and, 62
integrity of, 35-37
manual conversion, 43-55
programming standards, 234
relational, 252
updating, 176-77
XML, 19
date data type
adding, 167-70
defined, 44
NOT NULL value, 46
DBManager conversion program, 56
DBTools Software, 56
debugging development procedures,
222-23
decision blocks, 72-77
DELETE statement, 35
Delete Links() function, 177, 198
Delete Record_Check() function, 197
Delete Record() function, 198
deleting records
application control, 197-99
with DELETE statement, 35
programming applications, 154
project design, 131
SQL statements and, 29
delimited text files
defined, 15, 246
pipe-delimited file, 251
rules for, 15
transferring data, 47

delimiters
CSV. See CSV
defined, 246
pipe as, 16, 251
quotation marks as, 16
rules for, 15-16
descriptive keys, 27, 24647
development environment
debugging and, 222-23
documentation and, 221-22
establishing processes, 219-20
help and resources, 223-24
implementing standards, 220
placing applications in production and,
215-16
programming standards, 238-39
quality assurance, 220
Display_Affected_Record() function,
199
Display_Date() function, 168-70
display_errors directive, 186
Display_Links() function, 209
Display_Record() function, 209
displays. See screens
Display_Values() function, 171
DISTINCT operator (SQL), 104
documentation
development procedures, 221-22
programming standards, 233
project design and, 112-14, 143-44
does not equal operator, 31
dollar sign, 70
Do_Query() function, 173
Do_Search() function, 238
drop-down lists
adding, 1034, 106
selecting multiple values, 178-79
duplicate values
checking for, 156-57
PRIMARY index and, 62
programming standards, 234
dynamic pages, 2014, 247
dynamic reports, 6-7

E
EAD finding aids, 8, 19
echo statement, 94, 222-23, 238

editing records
links for, 164
programming applications, 153-54, 171-78
project design, 130, 137-38
SQL statements and, 29
table/row locking, 36
with UPDATE statement, 34-35
elements
assigning, 70-71
defined, 247
defining, 44-46
defining data model, 119-23
empty strings, 45-46
encryption
application control and, 196-97
of passwords, 185, 188-89, 193
end users, 57-60, 66n12. See also public
interfaces
application security, 185
authenticating, 187-89
documentation and, 222
placing applications in production, 215-16
providing useful responses to, 160-61
search facility for, 205-15
testing applications, 14243
using sessions, 190-94
entities
defined, 21, 247
defining data model, 119-21
variables and, 70
eregi() function (PHP), 184-85
error handlers
considerations for tools, 84
defined, 247
for failed queries, 152
error_log directive, 186
error_reporting variable, 186
exclamation mark, 185

F
fields
authority tables and, 23
checking for input in, 102
for data elements, 44
data modeling, 23, 119, 123-26
database rules, 28
as database structure, 17

INDEX 259

defined, 247
with duplicate entries, 156-57
entering information in phpMyAdmin,
51-52
input validation of, 159
INSERT statement, 34
multiple values within, 178-81
mysqgl_fetch_array() function, 94
NOT NULL value, 46
ordering searches by, 32
programming standards, 234, 236, 239
searching all, 30
single-table databases, 18
views and, 131-38
Fields input box (phpMyAdmin), 51
file definitions grid, 143
file formats, 47
file types, 247
files, programming standards, 234-38
filtering, data models and, 121
Firebird system, 39
float data type, 44
flush privileges command, 202
for conditional statement
overview, 74, 76
programming standards, 238
searches and, 174
foreign key constraints
database security, 36-37
defined, 247
deleting records and, 197
FULLTEXT indexes and, 105, 177
implementing within phpMyAdmin,
14647
referential integrity and, 155
foreign keys
authority tables and, 175,
177-78
defined, 22, 247
deleting records and, 197
keyword searching and, 146
linking tables via, 21-22, 124-25
programming standards, 234
referential integrity and, 155
setting up support, 14648
views and, 133-34
<form> tag, 181n12

260 INDEX

formatting convention
for dates, 168
indenting, 74-75
forward slash, 91
FULLTEXT indexes
defined, 37, 63
foreign key constraints and, 105, 177
InnoDB support, 146, 180
keyword searching and, 104-05
phpMyAdmin example, 52
function library, 81-82, 247
functions
assembling, 79
coding and, 77-79
defined, 247
maintaining databases, 161-65
programming standards, 234, 239
return values, 252-53

G

g++ (C++ compiler), 85

GANTT diagrams, 117

gee (gnu C compiler), 85

Genezzo RDBMS, 39

$_GET superglobal
application security, 192
duplicate entries and, 156
passing variables via, 96-97, 111n4
programming standards, 232-33
public interfaces, 214

Get_Linked Records() function, 175

Get_Main_Record() function, 175

Get_Page_Name() function, 191

GLOBAL privileges, 59, 66n12

global variables, 233

GNU, 247

GNU Public License (GPL), 38

Go_Link() function, 161

GPL (GNU Public License), 38

GUI (Graphical User Interface). See also

public interfaces
creating constraints, 14748
database administration tools, 48
defined, 248

H
handles, 248
help screens, 222

Hernandez, Michael J., 41n10, 144n1
hexadecimal value for spaces, 96
hidden variables, 154-55, 176
htaccess files, 149, 185
HTML
application security, 186
comments in, 91
outputting to tables, 174
.php extension and, 98
programming standards, 236
Web pages and, 4-6
htmlspecialchars() function, 186
httpd.conf file, 183
https directory, 184
hyperlinks, 204

|
if conditional statement, 74-77
ILS (integrated library systems), 47
include files, 181n6, 183-84
include() function (PHP)
application security, 184
functionality, 148-49, 181n4
include_path directive, 150
increments, 248
indenting
as formatting convention, 74-75
programming standards, 237, 241
indexes
creating, 61-63
as database structure, 17
defined, 248
entering information in phpMyAdmin,
51-52
FULLTEXT. See FULLTEXT indexes
overview, 37
PRIMARY. See PRIMARY indexes
UNIQUE. See UNIQUE indexes
Ingres RDBMS, 39
Initial Fields List grid, 116, 122
InnoDB file type
defined, 248
FULLTEXT index support,
146, 180
LIKE operator and, 172
record-level locking, 41n18
setting up tables, 146
transactions and, 194

input forms
access control and, 188
adding, 166-69
application example, 129-30
building action page for, 152
naming conventions, 99
prototyping, 139-40
for searching, 97-98, 106-7
input validation, 159-60
INSERT statement, 34, 47
inserting records, 136-37, 152
Insert_Links() function, 170
Insert_Record() function, 163, 170, 188
integer data type, 44
integrated library systems (ILS), 47
interfaces, designing, 13941
interoperability, data models, 119
interviews, 116, 119
isset() function, 77

J

Java language, 85

Javascript language, 159, 186
joins, 32-34, 248

K
keys
arbitrary, 27, 243
defined, 248
descriptive. See descriptive keys
foreign. See foreign keys
primary. See primary keys
keyword searching
foreign key support and, 146
full, 214-15
implementing, 179-81
overview, 103-5
spaces and, 41n15
transactions and, 146
keywords, data models, 119

L

LAMP, 248

language support, phpMyAdmin, 49-50
legacy systems, 248

licensing restrictions, 13n4

LIKE operator, 104, 172

LIKE statement, 30-31

INDEX

LIMIT feature (MySQL), 209-10
linking. See also setting relations
from authority entities, 214
creating hyperlinks, 204
for editing records, 164
jumping to previous pages, 161
to records, 20-21, 208-9
views and, 131
linking tables
aliases of, 213
data modeling example, 124-26
defined, 23, 248-49
making changes and, 175
links grid, 143
list() function (PHP), 110
LOAD method (phpMyAdmin), 55
loading data, 52-55
localhost
creating user accounts, 59
defined, 249
phpMyAdmin and, 65n6
localizing, 111n10, 249
local_prepend.php file, 150, 190-92
LOCK TABLES privileges, 66n12
locking
defined, 249
record-level, 41n18
table/row, 36
logging
application control and, 195-96
defined, 249
interaction, 64
programming standards, 239
queries, 158
lookup tables. See authority tables
lowercase. See capitalization

M
mailto link, 94, 209
maintaining
applications, 216-17
authority tables, 150-55

261

database maintenance functions, 161-65

referential integrity, 155
state, 249

manual conversion
creating database, 47-52
defining data for, 44-46

262 [INDEX

manual conversion (cont.)

loading data, 52-55

offloading data, 46-47

overview, 43
many-to-many relationships

data modeling example, 124-25

defined, 23, 249

linking tables and, 23

overview, 25-27

views and, 134
MARC systems, 19-20, 47
Microsoft Access, 16, 47
Microsoft Excel, 16, 47
modeling, data. See data models
mod_php engine, 183
mSQL RDBMS, 39
MyISAM file format

as default, 146

defined, 249

FULLTEXT indexes and, 177
MySQL database

administration tasks, 61-65

conversion programs, 55-56

DATE field type, 168

default format, 146

defined, 249

LIMIT feature, 209-10

logging support, 181n10

manual conversion, 43-55

NULL values and, 45-46

overview, 12, 38

popularity of, 10

PostreSQL vs., 39-40
mysql_connect() function (PHP), 92
mysqldump program, 64
mysql_error() function, 223
mysql_fetch_array() function (PHP), 93-94
mysql_id() function (MySQL), 164
mysql_num_rows() function (PHP), 102, 223
mysql_query() function (PHP), 93, 152, 238
mysql_select_db() function (PHP), 92

N
Name input box (phpMyAdmin), 50-51
naming conventions

data elements, 44

data models and, 122-23

input forms, 99
programming standards, 233-34
for variables, 70

normalization, 249-50

NOT NULL value, 45-46

NULL value, 4546, 62

o
object-oriented database management systems
(OODMS), 19
object-oriented programming, 250
objects, 250
ODBC (Open Database Connectivity)
conversion programs and, 56
defined, 250
overview, 65n4
transferring data files, 47
offloading data, 46-47, 250
ON DELETE condition, 148
ON UPDATE condition, 148
one-to-many relationships
defined, 23, 250
foreign keys and, 125
overview, 25
one-to-one relationships
defined, 23, 250
foreign keys and, 125
overview, 24
onSubmit attribute, 160
OODMS. See object-oriented database
management systems
OOP. See object-oriented programming
Open Database Connectivity. See ODBC
open source software
advantages of, 9-10
copyright and licensing, 13n4
costs, 1-2
defined, 250
RDBMS, 38-39
operating systems
defining data models, 119
open source software and, 9, 82-87
operator precedence, 250-51
operators
AND Boolean. See AND Boolean operator
coding and, 77
concatenation, 111n2

DISTINCT, 104
does not equal, 31
LIKE, 104
OR Boolean. See OR Boolean operator
programming standards, 238
OR Boolean operator
Process_Query_Array() function and,
182n19
regular expressions and, 180
searches and, 31, 105-9
ORDER BY keyword, 31-32
ordering
delimited text files, 15
search records, 31-32, 93, 106—7
Output_Links() function, 207-8, 214
outputs
for arrays, 93
defining data models, 119
obtaining selective, 94-99
paging through results, 209-10
to tables, 174

P
parameters
application security, 185-86
defined, 251
defining data models, 119
eliminating spaces, 101
functions and, 78-79
passing via URLs, 95-97
programming standards, 232, 239
for queries, 134-35
parentheses (), 79, 238
passwords
application security, 185
authentication and, 187-88
connecting to databases, 89
creating user accounts, 59
encrypting, 185, 188-89, 193
in include files, 181n6
PHP language and, 65
for phpMyAdmin authentication, 49
PEAR (PHP Extension and Application
Repository), 251
percent symbol, 30
period, 111n2
Perl language, 86

INDEX 263

permissions. See user permissions
personal bibliography software, 18, 251
personal information managers, 18, 251
PERT charts, 117-18
Peterson, Andrea, 40n2
PHP Extension and Application Repository.
See PEAR
.php file extension, 181n6, 183
PHP language
arrays and, 159
associative arrays and, 71
comment style, 91
concatenation operator, 111n2
defined, 251
dollar sign support, 70
operators, 77
overview, 12, 86
passwords and, 65
popularity of, 10
session support, 190-94
PHP tag (<?php), 91, 236
php.ini file, 150, 185-86
phpMyAdmin tool
adding databases, 50-52
administration tasks, 61-65
application security, 186
backups and, 215
creating user account, 57-60
deleting records and, 197
foreign key constraints and, 14648
overview, 12, 48-50
PHPSESSID (cookie), 190
PIMs. See personal information managers
pipe character, 16, 251
plain text, 196
planning
defining data model, 119
defining projects, 115-18
overview, 42-43
project design and, 11215, 143
planning documents, 143
$_POST superglobal
apphcation security, 191-93
configuration file and, 148
duplicate values and, 156-57
inserting action pages, 170
passing variables via, 111n4

264 INDEX

$_POST superglobal (cont.)
programming standards, 232-33
PostgreSQL database management system,
39-40
pound sign, 91
PRIMARY indexes, 37, 62
primary keys
aliases and, 213
considerations when changing, 155
data modeling and, 124-25
defined, 22, 252
deleting records and, 197
including values from foreign tables, 207-8
linking tables via, 21-22
NOT NULL value and, 46
NULL value and, 62
programming standards, 234
procedural programming, 252
procedures, testing, 141-43
processes
establishing for development, 219-20
formalizing, 14344
graphical representations of, 117-18
Process_Query_And_Array() function, 213
Process_Query_Array() function
Boolean operators and, 182n19
functionality, 179
keyword searching and, 214
Process_Query_String() function, 180
Process_Quoted_String() function, 206-7, 214
production environment, 215-17
Program Evaluation Review Technique,
144n3
program flows, 143
programming
annotations when, 91
coding, 72-79
creating reports, 67-68
decision blocks, 72-77
development procedures, 219-24
documenting code, 221
functions and, 77-82
operators, 77
overview, 68—-69
procedural, 252
shrimp étoufée recipe, 225-31
structured approach, 82

tool selection, 82-87
values, 69-71
programming language, 252
programming standards
implementing, 220-21
naming conventions. See naming
conventions
parameters, 232
programs. See applications
project design
defining data models, 118-26
defining projects, 115-18
designing applications, 126-41
formalizing processes, 14344
overview, 112-15
testing procedures, 141-43
prototyping, 114, 13940
public interfaces
dynamic pages, 2014
maintaining applications, 216-17
placing applications in production, 215-16
public searching, 205-15
public-access components, 14041
Python language, 86-87

Q

quality assurance, 220

queries. See also searching; SQL
application flow for, 138
application security, 194-95
creating, 90, 152
debugging, 223
defined, 252
logging, 158
paging through results, 209-13
programming standards, 235-36, 238-39
sending, 90
views and, 131, 134-35

queries grid, 143

quotation mark, 16

quotation mark, single, 30, 34, 186

R
RadioButtons() function, 167, 204
RDBMS (relational database management
system)
choosing, 38-39

database security, 35-37
defined, 252
development of, 18-19
indexes and, 37
overview, 20-28
SQL and, 28
READ locks, 36
records
adding. See adding records
arrays and, 70
changing, 175-76
data, 246
database rules, 28
as database structure, 17
defined, 246, 252
defining views, 131-35
deleting. See deleting records
delimited text files, 15
duplicate, 157
editing. See editing records
inserting, 136-37, 152
linking, 20-21, 208-9
NULL vs. NOT NULL value, 45-46
obtaining selective output, 94-99
ordering for searches, 31-32
searching tables, 29-31
single-table databases, 18, 29-31
table/row locking, 36
RedHat, 88n11
referential integrity, 155, 252
register_globals directive, 185
regular expressions
defined, 41n20, 252
eregi() function, 184
keyword searching and, 104, 180
relational database management systems. See
RDBMS
relational databases, 1819, 252
relational diagrams, 143
reports
creating, 67-68
creating basic, 89-99
creating report program, 90-94
creating report structure, 89-90
creating search applications, 99-110
obtaining selective output, 94-99
user accounts and, 57

INDEX 265

require() function (PHP), 181n4
reserved variables, 97, 234, 252
results
outputting, 90
paging through, 209-13
reading into variables, 93
return value, 81, 252-53
Rollback() function, 194-96, 200n12
rows, locking, 36
RPM, 253
Ruby language, 87

S
scalability, 253
screens
help, 222
mock-ups of, 114, 139-41
scripting
global logging configuration for, 195
for input validation, 159
passwords and, 65
programming standards, 235
Web server-based, 68, 85-87, 254
search applications, 99-110
search engines, 214, 223-24
searching
application flow for, 138
application interfaces, 141
arrays and, 70-71
data elements and, 44
defining data models, 121
input forms for, 97-98
keyword. See keyword searching
multiple fields, 100-103
multiple values within fields, 178-81
NULL value and, 46
programming applications, 171-75
public, 205-15
SELECT statement for, 29-34
SQL statements and, 29
stopwords, 2067
supporting end users, 141
Secure Sockets Layer (SSL), 184-86, 196-97
security
access control. See access control
application control, 194-99
authentication. See authentication

266 INDEX

security (cont.)
authorization. See authorization
database integrity, 35-37
external threats to, 185-86
internal threats to, 184-85
overview, 64—65
for phpMyAdmin authentication, 48-49
user permissions. See user permissions
SELECT statement
searching multiple tables, 32
searching single tables, 29-32
three-table joins, 33-34
two-tables joins, 32-33
SelectList() function, 166, 179
SELECT.. WHERE BINARY statement, 253
$_SERVER superglobal
application security, 184
components, 200n8
passing variables via, 111n4
programming standards, 233
servers
backing up, 63-64
session IDs, 190
$_SESSION superglobal
application security, 185, 190, 193
logging transactions, 195-96
paging through results, 210
passing variables via, 111n4
programming standards, 233
session_destroy() function, 200n9
sessions
access control via, 190-94
closing, 200n9
logging and, 195
paging through results, 210
transactions and, 194
session_start() function (PHP), 190-91
SET keyword, 34-35
setting relations, 23-27, 253. See also linking
setup
conversion programs, 55-56
manual conversion, 43-55
Show_Global_Vals() function, 161
shrimp étoufée recipe, 225-31
sign-offs, 114-15
single-table, fixed-field databases, 17-18,
20-21
sizing data elements, 44

sorting. See ordering
spaces
keyword searching and, 41n15
programming standards, 237-38
trim() function, 101
URL strings and, 96
spreadsheets, 122. See also Microsoft Excel
SQL (Structured Query Language)
defined, 253
DELETE statement, 35
INSERT statement, 34
SELECT statement, 28-34
transferring data, 47
UPDATE statement, 34-35
SSL (Secure Sockets Layer), 184-86, 196-97
standards. See programming standards
state, maintaining, 249
static pages, 253
static reports, 5-6
stopwords, 206-7
stored procedures, 38, 253
strings
blank, 45-46
comma-parsed, 245
defined, 253
eregi() function, 185
Process_Quoted_String() function, 206-7
programming standards, 236
regular expressions and, 180
spaces in, 96
variables with same names, 110
strpos() function (PHP), 109
Structured Query Language. See SQL
structured text files, 15-16
structures
data, 4748, 246
database, 17-20
superglobals
defined, 97, 253-54
$_GET. See $_GET superglobal
list() function, 110
$_POST. See $_POST superglobal
programming standards, 232-33
$_SERVER. See $_SERVER superglobal
$_SESSION. See $_SESSION superglobal
showing values, 161
support contract information, 205-6
switches, 64

T

table definitions, 143

Table Definitions grid, 125-27, 146

<table> tag, 174

tables
authority. See authority tables
border attribute, 167
capitalization of names, 128
database rules, 28
as database structure, 17
defined, 23, 254
foreign key constraints and, 147
InnoDB file type and, 146, 194
linking. See linking tables
locking, 36
making changes, 175-76
mysqldump program, 64
outputting to, 174
programming standards, 234
RDBMS and, 21
records in, 252
searching multiple, 32
searching single, 29-32
three-table joins, 33-34
two-tables joins, 32-33
types of, 23
values from foreign, 207-8
views and, 37-38

tasks, views and, 136-38

tel scripting language, 85-86

<td> tag, 174

technical documentation, 221

TEI documents, 8, 19

testing
applications, 165
change control and, 115

placing applications in production and,

215-16, 218n2
procedures, 141-43
quality assurance and, 220

testing documents, 143

text boxes, 100-103

text data type, 44

text files
delimited. See delimited text files
offloading data, 46-47
structure of, 15-16

TextBox() function, 162

INDEX

timeouts, 186

<tr> tag, 174

transactions
application control, 194-95
database security, 36
encrypting, 196-97
FULLTEXT indexes and, 105
keyword searching and, 146
logging, 64, 195-96

transferring data, 47

triggers, 38, 254

trim() function (PHP), 101

truncation symbol (%), 30

V)
underscore, 125, 233
UNIQUE indexes, 37, 62, 156
UPDATE statement, 34-35
Update_Auth_Links() function, 165
Update_Auth_Record() function,
164-65
Update_Links() function, 177
Update_Record() function, 164, 188
updating
action pages, 154-55
authority table changes, 164-65
upgrading applications, 216-17
uppercase. See capitalization
URLs, 95-97
user accounts, 57-60, 66n12
user documentation, 222
user permissions
authorization and, 190
for backup accounts, 66n12
flush privileges command, 202
setting, 57-60
user requirements, 114
usernames
authenticating, 188
connecting to databases, 89
creating user accounts, 59
for phpMyAdmin authentication, 49

\"
Validate() function
<form> tag and, 181n12
functionality, 160, 175-76
validating input, 159-60

267

268 INDEX

values
defining data model, 123
including from foreign tables, 207-8
lost foreign key, 177-78
multiple within fields, 178-81
showing for superglobals, 161
ways to store, 69-71

varchar data type, 44

variables
counter, 76
debugging, 223
defined, 254
global, 233
hidden, 154-55, 176
localizing, 111n10, 249
overview, 69-70
programming standards, 235-36
reading query results into, 93
reserved, 97, 234, 252
strings with same name, 110
superglobal. See superglobals

views
authority table maintenance, 151-55
capitalization of names, 128
defined, 37-38, 144n7
defining, 131-35
defining tasks, 136-38
interface design, 13940

views grid, 143

virtual tables. See views

Visual Basic language, 77

W

WAMP, 254

Web pages
creating, 90
database-backed, 3-9

dynamic, 247
embedded programming in, 68
jumping to previous, 161
outputting values to, 94
static, 253
by subject, 14041

Web server authentication, 187

Web server-based scripting, 68, 85-87, 254

Web servers
CGI programming and, 67
dynamic Web page reports and, 7
server administrator and, 217
Web pages and, 4-6
Web-aware, 254
WHERE statement
checking field input, 102
DELETE statement and, 35
functionality, 30
NULL value in, 46
obtaining selective output with,
94-99
searches and, 108, 173, 179-80
taking values from lists, 181n15
UPDATE statement and, 35
while conditional statement, 74-75, 93
wildcards, 30
WRITE locks, 36
Write_Log() function, 158, 196

X

XML and Databases (Bourret), 13n3
XML databases, 19

XML files, 47

Y
Y/N data type, 44, 169
Y _or N() function, 169

